Research article

Fractional order modeling for injectable and oral HIV pre-exposure prophylaxis

  • Received: 04 January 2023 Revised: 05 April 2023 Accepted: 27 April 2023 Published: 09 June 2023
  • The search for therapies and prevention methods for HIV infection is essential for controlling the virus in a population. In this paper, we introduce a fractional order mathematical model to study the impact of the oral to the injectable Pre-Exposured Prophylaxis modality, which is completely new in terms of public health. For that, we consider current antiretroviral therapies, undiagnosed cases, and the impact of PrEP on the case diagnosis. To investigate the model, besides the use of fractional order derivatives, we also consider illustrative cases by means of demographic data from Brazil and parameter values from the literature. We compare the influence on incidence, prevalence, diagnosis, and mortality of oral PrEP with the injectable PrEP, which is the new current trend on the subject. As a result, an increasing in incidence, prevalence and also mortality are revealed by augmented fractional order of derivatives for both PrEP modalities, but PrEP reached better results in its oral modality. Despite the need for further studies, this contribution is intended as a first preliminary step to contribute to decision-making by health authorities.

    Citation: Erick Manuel Delgado Moya, Diego Samuel Rodrigues. Fractional order modeling for injectable and oral HIV pre-exposure prophylaxis[J]. Mathematical Modelling and Control, 2023, 3(2): 139-151. doi: 10.3934/mmc.2023013

    Related Papers:

  • The search for therapies and prevention methods for HIV infection is essential for controlling the virus in a population. In this paper, we introduce a fractional order mathematical model to study the impact of the oral to the injectable Pre-Exposured Prophylaxis modality, which is completely new in terms of public health. For that, we consider current antiretroviral therapies, undiagnosed cases, and the impact of PrEP on the case diagnosis. To investigate the model, besides the use of fractional order derivatives, we also consider illustrative cases by means of demographic data from Brazil and parameter values from the literature. We compare the influence on incidence, prevalence, diagnosis, and mortality of oral PrEP with the injectable PrEP, which is the new current trend on the subject. As a result, an increasing in incidence, prevalence and also mortality are revealed by augmented fractional order of derivatives for both PrEP modalities, but PrEP reached better results in its oral modality. Despite the need for further studies, this contribution is intended as a first preliminary step to contribute to decision-making by health authorities.



    加载中


    [1] I. Boniphace, M. Omari, R. S. Fred, M. Ferdinand, T. Marcel, HIV/AIDS, Clinical Manifestations and their Implication for Patient Clinical Staging in Resource Limited Settings in Tanzania, The Open AIDS Journal, 5 (2011), 9–16. https://doi.org/10.2174/1874613601105010009 doi: 10.2174/1874613601105010009
    [2] UNAIDS, Global HIV and AIDS statistics, 2022. Available from: https://www.unaids.org/en/resources/fact-sheet
    [3] A. B. D'Angelo, D. A. Westmoreland, P. B. Carneiro, J. Johnson, C. Grov, Why Are Patients Switching from Tenofovir Disoproxil Fumarate/Emtricitabine (Truvada) to Tenofovir Alafenamide/Emtricitabine (Descovy) for Pre-Exposure Prophylaxis? AIDS Patient Care STDS, 35 (2021), 327–334. https://doi.org/10.1089/apc.2021.0033
    [4] R. Schaefer, H. M. A. Schmidt, G. Ravasi, A. Mozalevskis, B. B. Rewari, F. Lule, et al., Adoption of guidelines on and use of oral pre-exposure prophylaxis: a global summary and forecasting study, The LANCET HIV, 8 (2021), e502–e510. https://doi.org/10.1016/S2352-3018(21)00127-2 doi: 10.1016/S2352-3018(21)00127-2
    [5] P.M. Luz, A. Benzaken, T. M. de Alencar, C. Pimenta, V. G. Veloso, B. Grinsztejn, PrEP adopted by the brazilian national health system: What is the size of the demand? Medicine (Baltimore), 97 (2018), S75–S77. https://doi.org/10.1097/MD.0000000000010602
    [6] M. Montess, D. Tan, N. J. Lachowsky, Special to Western News, Expert insight: Long-acting injectable PrEP is a big step forward in HIV prevention. The HIV prevention drug cabotegravir is not yet available in Canada, 2021. Available from: https://news.westernu.ca/2022/12/expert-insight-long-acting-injectable-prep-is-a-big-step-forward-in-hiv-prevention/
    [7] WHO, WHO recommends long-acting cabotegravir for HIV prevention. New WHO guidelines advise countries to deliver long-acting cabotegravir as part of comprehensive approach to HIV prevention, 2022. Available from: https://www.who.int/news/item/28-07-2022-who-recommends-long-acting-cabotegravir-for-hiv-prevention#:~:text=WHO%20today%20released%20new%20guidelines%20for%20the%20use,for%20people%20at%20substantial%20risk%20of%20HIV%20infection.
    [8] E. M. D. Moya, D. S. Rodrigues, A. Pietrus, A. M. Severo, A Mathematical Model for HIV/AIDS Under Pre-Exposure and Post-Exposure Prophylaxis, BIOMATH, 11 (2022), 1–28. https://doi.org/10.55630/j.biomath.2022.08.319 doi: 10.55630/j.biomath.2022.08.319
    [9] S. B. Kim, M. Yoon, N. S. Ku, M. H. Kim, J. E. Song, J. Y. Ahn, et al., Mathematical modeling of HIV prevention measures including pre-exposure prophylaxis on HIV incidence in South Korea, PLoS One, 9 (2014), 537–553. https://doi.org/10.1371/journal.pone.0090080 doi: 10.1371/journal.pone.0090080
    [10] M. U. N. Nsuami, P. J. Witbooi, A stochastic model for HIV with the use of PrEP, J. Math. Model., 9 (2021), 537–553. https://doi.org/10.22124/JMM.2021.16870.1461 doi: 10.22124/JMM.2021.16870.1461
    [11] C. J. Silva, D. F. M. Torres, Modeling and optimal control of HIV/AIDS prevention through PrEP, Discrete and Continuous Dynamical Systems, 11 (2018), 119–141. https://doi.org/10.1016/j.physa.2018.10.033 doi: 10.1016/j.physa.2018.10.033
    [12] K. Diethelm, The Analysis of Fractional Differential Equations, 1 Eds., Springer-Verlag Berlin Heidelberg, 2004.
    [13] L. Carvalho de Barros, M. M. Lopes, F. S. Pedro, E. Esmi, J. P. C. D. Santos, D. E. Sánchez, The memory effect on fractional calculus: an application in the spread of COVID-19, Comput. Appl. Math., 40 (2021), 72. https://doi.org/10.1007/s40314-021-01456-z doi: 10.1007/s40314-021-01456-z
    [14] M. Saeedian, M. Khalighi, N. Azimi-Tafreshi, G. R. Jafari, M. Ausloos, Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model, Phys. Rev. E, 95 (2017), 022409. https://doi.org/10.1103/PhysRevE.95.022409 doi: 10.1103/PhysRevE.95.022409
    [15] R. Figueiredo Camargo, E. Capelas de Oliveira, Cálculo fracionário, 1 Eds., Brasil: Livraria da Fısica, Sao Paulo, 2015.
    [16] H. Kheiri, M. Jafari, Optimal control of a fractional order model for the HIV/AIDS epidemic, Int. J. Biomath., 7 (2018), 1850086. https://doi.org/10.1142/S1793524518500869 doi: 10.1142/S1793524518500869
    [17] B. B. Gerstman, Epidemiology Kept Simple: An Introduction to Traditional and Modern Epidemiology, 2 Eds., Hoboken, NJ: Wiley-Liss, 2003.
    [18] K. J. Rothman, Epidemiology: An Introduction, Oxford University Press, 2012.
    [19] K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever, Nonlinear Dynamics, 71 (2013), 613–619. https://doi.org/10.1007/s11071-012-0475-2 doi: 10.1007/s11071-012-0475-2
    [20] W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709–726. https://doi.org/10.1016/j.jmaa.2006.10.040 doi: 10.1016/j.jmaa.2006.10.040
    [21] E. D. Moya, A Pietrus, S. M. Oliva, Mathematical model with fractional order derivatives for Tuberculosis taking into account its relationship with HIV/AIDS and Diabetes, Jambura Journal of Biomathematics, 2 (2021), 80–95. https://doi.org/10.34312/jjbm.v2i2.11553 doi: 10.34312/jjbm.v2i2.11553
    [22] C. M. A. Pinto, A. R. M. Carvalho, Diabetes mellitus and TB co-existence: Clinical implications from a fractional order modelling, Appl. Math. Model., 68 (2019), 219–243. https://doi.org/10.1016/j.apm.2018.11.029 doi: 10.1016/j.apm.2018.11.029
    [23] C. M. A. Pinto, A. R. M. Carvalho, The HIV/TB coinfection severity in the presence of TB multi-drug resistant strains, Ecol. Complex., 32 (2019), 1–20. https://doi.org/10.1016/j.ecocom.2017.08.001 doi: 10.1016/j.ecocom.2017.08.001
    [24] O. Diekmann, J. A. P. Heesterbeek, M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010), 873–885. https://doi.org/10.1098/rsif.2009.0386 doi: 10.1098/rsif.2009.0386
    [25] P. van den. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2003), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [26] D. Valério, A.M. Lopes, J. A. Tenreiro Machado, Entropy analysis of a railway network's complexity, Entropy, 18 (2016), 388. https://doi.org/10.3390/e18110388 doi: 10.3390/e18110388
    [27] Fatmawati, M. A. Khan, E. Bonyah, Z. Hammouch, E. M. Shaiful, A mathematical model of tuberculosis (TB) transmission with children and adults groups: A fractional model, AIMS Math., 5 (2020), 2813–2842. https://doi.org/10.3934/math.2020181 doi: 10.3934/math.2020181
    [28] C. M. A. Pinto, A. R. M. Carvalho, A latency fractional order model for HIV dynamics, J. Comput. Appl. Math., 312 (2017), 240–256. https://doi.org/10.1016/j.cam.2016.05.019 doi: 10.1016/j.cam.2016.05.019
    [29] A. R. M. Carvalho, C. M. A. Pinto, D. Baleanu, HIV/HCV coinfection model: a fractional-order perspective for the effect of the HIV viral load, Adv. Differ. Equations, 2018 (2018), 1–22. https://doi.org/10.1186/s13662-017-1456-z doi: 10.1186/s13662-017-1456-z
    [30] C. Castillo-Chavez, Z. Feng, W. Huang, On the computation of $\Re_{0}$ and its role on global stability. In: Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction. Springer-Verlag, New York, 2002.
    [31] A. R. M. Carvalho, C. M. A. Pinto, Non-integer order analysis of the impact of diabetes and resistant strains in a model for TB infection, Commun. Nonlinear Sci. Numer. Simulat., 61 (2018), 104–126.
    [32] Projeção da população, 2022. Available from: https://www.ibge.gov.br/apps/populacao/projecao\/index.html
    [33] Secretaria de Vigilância em saúde-Ministêria da Saúde, Boletim Epidemiológico-HIV/AIDS, 2018. Available from: https://www.saude.df.gov.br/documents/37101\/87308/Boletim-AIDS-IST-2018.pdf/d8af8a94-6af7-f3b8-b6ba-7165108b759c?t=1648581629043
    [34] Secretaria de Vigilância em saúde-Ministêria da Saúde, Boletim Epidemiológico-HIV/AIDS, 2019. Available from: https://www.gov.br/saude/pt-br/centrais-de\-conteudo/publicacoes/boletins/epidemiologicos/especiais\/2019/boletim-epidemiologico-especial-hiv-aids-2019/view
    [35] B. D. L. Marshall, W. C. Goedel, M. R. King, A. Singleton, D. P. Durham, P. A. Chan, Potential effectiveness of long-acting injectable pre-exposure prophylaxis for HIV prevention in men who have sex with men: A modelling study, Lancet HIV, 5 (2018), e498–e505. https://doi.org/10.1016/S2352-3018(18)30097-3 doi: 10.1016/S2352-3018(18)30097-3
    [36] A. K. P. Barbosa, P. Monteiro, D. Montenegro, J. D. A. L. Batista, U. R. Montarroyos, HIV Pre-Exposure Prophylaxis (PrEP) in a Brazilian Clinical Setting: Adherence, Adverse Events, Sexual Behavior, and Sexually Transmitted Infections, Arch. Sex. Behav., 21 (2007), 2603–2611. https://doi.org/10.1007/s10508-021-02112-7 doi: 10.1007/s10508-021-02112-7
    [37] J. H. Ali, T. G. Yirtaw, Time to viral load suppression and its associated factors in cohort of patients taking antiretroviral treatment in East Shewa zone, Oromiya, Ethiopia, 2018, BMC Infect. Dis., 19 (2019), 1–6. https://doi.org/10.1186/s12879-019-4702-z doi: 10.1186/s12879-019-4702-z
    [38] CDC, Evidence of HIV Treatment and Viral Suppression in Preventing the Sexual Transmission of HIV, BMC Infect. Dis., 19 (2020), 1–6.
    [39] HIV/AIDS, 2022. Available from: https://www.who.int/news-room/questions-and-answers/item/hiv-aids
    [40] X. Leng, S. Liang, Y. Ma, Y. Dong, W. Kan, D. Goan, et al., HIV virological failure and drug resistance among injecting drug users receiving first-line ART in China, BMJ Open, 4 (2014), e005886. http://dx.doi.org/10.1136/bmjopen-2014-005886 doi: 10.1136/bmjopen-2014-005886
    [41] K. Jobanputra, L. A. Parker, C. Azih, V. Okello, G. Maphalala, B. Kershberger, et al., Factors Associated with Virological Failure and Suppression after Enhanced Adherence Counselling, in Children, Adolescents and Adults on Antiretroviral Therapy for HIV in Swaziland, PLoS One, 10 (2015), e0116144. https://doi.org/10.1371/journal.pone.0116144 doi: 10.1371/journal.pone.0116144
    [42] A. S. Hassan, H. M. Nabwera, S. M. Mwaringa, C. A. Obonyo, E. J. Sanders, T. F. Rinke de Wit, et al., HIV-1 virologic failure and acquired drug resistance among first-line antiretroviral experienced adults at a rural HIV clinic in coastal Kenya: A cross-sectional study, AIDS Res. Ther., 11 (2014), 1–12. https://doi.org/10.1186/1742-6405-11-9 doi: 10.1186/1742-6405-11-9
    [43] M. Rupérez, C. Pou, S. Maculuve, S. Cedeño, L. Luis, J. Rodríguez, et al., Determinants of virological failure and antiretroviral drug resistance in Mozambique, J. Antimicrob. Chemoth., 70 (2015), 2639–2647. https://doi.org/10.1093/jac/dkv143 doi: 10.1093/jac/dkv143
    [44] J. Todd, J. R. Glynn, M. Marston, T. Lutalo, S. Biraro, W. Mwita, et al., Time from HIV seroconversion to death: a collaborative analysis of eight studies in six low and middle-income countries before highly active antiretroviral therapy, AIDS, 21 (2007), S55. https://doi.org/10.1097/01.AIDS.0000299411.75269.E8 doi: 10.1097/01.AIDS.0000299411.75269.E8
    [45] Ministério do Desenvolvimento Social e Agrário, Bolsa Família: como funciona. Assistência Social, 2015. Available from: http://mds.gov.br/assuntos/bolsafamilia/o-que-e/como-funciona
    [46] Ministério do Desenvolvimento Social e Combate à Fome. Secretaria Nacional de Renda de Cidadania, Programa Bolsa Família: uma década de inclusão e cidadania, 2013. Available from: http://www.ipea.gov.br/portal/images/stories/PDFs/livros\/livros/livro$_{-}$bolsafamilia$_{-}$10anos.pdf
    [47] M. L. Bastos, D. Menzies, T. Hone, K. Dehghani, A. Trajman, The impact of the Brazilian family health strategy on selected primary care sensitive conditions: a systematic review, PLoS One, 12 (2017), e0182336. https://doi.org/10.1371/journal.pone.0189557 doi: 10.1371/journal.pone.0189557
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1370) PDF downloads(151) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog