This study addresses a modified mathematical model of tumor growth with targeted chemotherapy consisting of effector cells, tumor cells, and normal cells. To investigate the dynamics of the model, local and global stability analyses have been performed at the equilibrium points of the model. It is found that the tumor-free steady state is globally asymptotically stable under certain conditions, which suggests that the prescribed treatment can eradicate tumor cells from the body for a threshold value of tumor growth rate. The main result of this study is that if the tumor growth rate is tiny, it is possible to eradicate the tumor from the body using a smaller amount of targeted chemotherapy drugs with less harm to the other healthy cells. If not, it requires a high dose of targeted chemotherapy drugs, which can increase the side effects of the drugs. Numerical simulations have been performed to verify our analytical results.
Citation: Anusmita Das, Kaushik Dehingia, Nabajit Ray, Hemanta Kumar Sarmah. Stability analysis of a targeted chemotherapy-cancer model[J]. Mathematical Modelling and Control, 2023, 3(2): 116-126. doi: 10.3934/mmc.2023011
This study addresses a modified mathematical model of tumor growth with targeted chemotherapy consisting of effector cells, tumor cells, and normal cells. To investigate the dynamics of the model, local and global stability analyses have been performed at the equilibrium points of the model. It is found that the tumor-free steady state is globally asymptotically stable under certain conditions, which suggests that the prescribed treatment can eradicate tumor cells from the body for a threshold value of tumor growth rate. The main result of this study is that if the tumor growth rate is tiny, it is possible to eradicate the tumor from the body using a smaller amount of targeted chemotherapy drugs with less harm to the other healthy cells. If not, it requires a high dose of targeted chemotherapy drugs, which can increase the side effects of the drugs. Numerical simulations have been performed to verify our analytical results.
[1] | R. Eftimie, J. L. Bramson, D. J. D. Earn, Interactions between the immune system and cancer: a brief review of non-spatial mathematical models, Bull. Math. Biol., 73 (2011), 2–32. https://doi.org/10.1007/s11538-010-9526-3 doi: 10.1007/s11538-010-9526-3 |
[2] | K. Dehingia, H. K. Sarmah, M. B. Jeelani, A brief review on cancer research and its treatment through mathematical modelling, Ann. Cancer Res. Ther., 29 (2021), 34–40. https://doi.org/10.4993/acrt.29.34 doi: 10.4993/acrt.29.34 |
[3] | V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295–321. https://doi.org/10.1016/S0092-8240(05)80260-5 doi: 10.1016/S0092-8240(05)80260-5 |
[4] | M. Kolev, Mathematical modelling of the competition between tumors and immune system considering the role of the antibodies, Math. Comput. Modell., 37 (2003), 1143–1152. https://doi.org/10.1016/S0895-7177(03)80018-3 doi: 10.1016/S0895-7177(03)80018-3 |
[5] | M. Robertson-Tessi, A. El-Kareh, A. Goriely, A mathematical model of tumor-immune interactions, J. Theor. Biol., 294 (2012), 56–73. https://doi.org/10.1016/j.jtbi.2011.10.027 doi: 10.1016/j.jtbi.2011.10.027 |
[6] | K. Dehingia, H. K. Sarmah, Y. Alharbi, K. Hosseini, Mathematical analysis of a cancer model with time-delay in tumor-immune interaction and stimulation processes, Adv. Differ. Equ.-NY, 2021 (2021), 2273. https://doi.org/10.1186/s13662-021-03621-4 doi: 10.1186/s13662-021-03621-4 |
[7] | K. Dehingia, P. Das, R. K. Upadhyay, A. K. Misra, F. A. Rihan, K. Hosseini, Modelling and analysis of delayed tumour-immune system with hunting T-cells, Math. Comput. Simulat., 203 (2023), 669–684. |
[8] | A. Das, K. Dehingia, H. K. Sarmah, K. Hosseini, K. Sadri, S. Salahshour, Analysis of a delay-induced mathematical model of cancer, Adv. Contin. Discrete Models, 15 (2022), 1–20. https://doi.org/10.1186/s13662-022-03688-7 doi: 10.1186/s13662-022-03688-7 |
[9] | E. Allison, A. D. Colton, A. D. Gorman, R. Kurt, M. Shainheit, A mathematical model of the effector cell response to cancer, Math. Comput. Model. Dyn. Syst., 39 (2004), 1313–1327. https://doi.org/10.1016/j.mcm.2004.06.010 doi: 10.1016/j.mcm.2004.06.010 |
[10] | D. Li, W. Ma, S. Guo, Stability of a mathematical model of tumor-induced angiogenesis, Nonlinear Anal. Model. Control, 21 (2016), 325–344. https://doi.org/10.15388/NA.2016.3.3 doi: 10.15388/NA.2016.3.3 |
[11] | H. Dritschel, S. L. Waters, A. Roller, H. M. Byrne, A mathematical model of cytotoxic and helper T cell interactions in a tumour microenvironment, Lett. Biomath., 5 (2018), S36–S68. https://doi.org/10.1080/23737867.2018.1465863 doi: 10.1080/23737867.2018.1465863 |
[12] | S. Ghosh, S. Banerjee, Mathematical modeling of cancer–immune system, considering the role of antibodies, Theory Biosci., 137 (2018), 67–78. https://doi.org/10.1007/s12064-018-0261-x doi: 10.1007/s12064-018-0261-x |
[13] | Y. Shu, J. Huang, Y. Dong, Y. Takeuchi, Mathematical modeling and bifurcation analysis of pro- and anti-tumor macrophages, Appl. Math. Model., 88 (2020), 758–773. https://doi.org/10.1016/j.apm.2020.06.042 doi: 10.1016/j.apm.2020.06.042 |
[14] | P. Liu, X. Liu, Dynamics of a tumor-immune model considering targeted chemotherapy, Chaos Solit. Fractals, 98 (2017), 7–13. https://doi.org/10.1016/j.chaos.2017.03 doi: 10.1016/j.chaos.2017.03 |
[15] | V. A. Kuznetsov, G. D. Knott, Modeling tumor regrowth and immunotherapy, Math. Comput. Model., 33 (2001), 1275–1287. https://doi.org/10.1016/s0895-7177(00)00314-9 doi: 10.1016/s0895-7177(00)00314-9 |
[16] | D. Kirschner, J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37 (1998), 235–252. https://doi.org/10.1007/s002850050127 doi: 10.1007/s002850050127 |
[17] | L. G. de Pillis, A. Eladdadi, A. E. Radunskaya, Modeling cancer-immune responses to therapy, J. Pharmacokinet. Pharmacodyn., 41 (2014), 461–478. https://doi.org/10.1007/s10928-014-9386-9 doi: 10.1007/s10928-014-9386-9 |
[18] | L. G. de Pillis, A. E. Radunskaya, The dynamics of an optimally controlled tumor model: a case study, Math. Comput. Model., 37 (2003), 1221–1244. https://doi.org/10.1016/s0895-7177(03)00133-x doi: 10.1016/s0895-7177(03)00133-x |
[19] | L. G. de Pillis, A. E. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach, J. Theor. Med., 3 (2000), 79–100. https://doi.org/10.1080/10273660108833067 doi: 10.1080/10273660108833067 |
[20] | L. G. de Pillis, W. Gu, K. R. Fister, T. A. Head, K. Maples, A. Murugan, et al., Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls, Math. Biosci., 209 (2007), 292–315. https://doi.org/10.1016/j.mbs.2006.05.003 doi: 10.1016/j.mbs.2006.05.003 |
[21] | L. G. de Pillis, W. Gu, A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, J. Theor. Biol., 238 (2006), 841–862. https://doi.org/10.1016/j.jtbi.2005.06.037 doi: 10.1016/j.jtbi.2005.06.037 |
[22] | L. G. de Pillis, K. R. Fister, W. Gu, C. Collins, M. Daub, D. Gross, et al., Mathematical model creation for cancer chemo-immunotherapy, Comput. Math. Methods Med., 10 (2009), 165–184. https://doi.org/10.1080/17486700802216301 doi: 10.1080/17486700802216301 |
[23] | L. G. de Pillis, H. Savage, A. E. Radunskaya, Mathematical model of colorectal cancer with monoclonal antibody treatments, Journal of Advances in Medicine and Medical Research, 4 (2014), 3101–3131. https://doi.org/10.9734/BJMMR/2014/8393 doi: 10.9734/BJMMR/2014/8393 |
[24] | L. G. de Pillis, A. E. Radunskaya, C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 65 (2005), 7950–7958. https://doi.org/10.1158/0008-5472.CAN-05-0564 doi: 10.1158/0008-5472.CAN-05-0564 |
[25] | S. Chareyron, M. Alamir, Mixed immunotherapy and chemotherapy of tumors:Feedback design and model updating schemes, J. Theor. Biol., 258 (2009), 444–454. https://doi.org/10.1016/j.jtbi.2008.07.002 doi: 10.1016/j.jtbi.2008.07.002 |
[26] | F. Ansarizadeh, M. Singh, D. Richards, Modelling of tumor cells regression in response to chemotherapeutic treatment, Appl. Math. Model., 48 (2017), 96–112. https://doi.org/10.1016/j.apm.2017.03.045 doi: 10.1016/j.apm.2017.03.045 |
[27] | A. Arabameri, D. Asemani, J. Hajati, Mathematical modeling of in-vivo tumor-immune interactions for the cancer immunotherapy using matured dendritic cells, J. Biol. Syst., 26 (2018), 1–22. https://doi.org/10.1142/S0218339018500080 doi: 10.1142/S0218339018500080 |
[28] | M. A. Alqudah, Cancer treatment by stem cells and chemotherapy as a mathematical model with numerical simulations, Alex. Eng. J., 59 (2020), 1953–1957. https://doi.org/10.1016/j.aej.2019.12.025 doi: 10.1016/j.aej.2019.12.025 |
[29] | B. Dhar, P. K. Gupta, A. Yildirim, Dynamical behaviour of a tumour-immune model focusing on the dosage of targeted chemotherapeutic drug, Int. J. Comput. Math., 99 (2022), 2568–2582. https://doi.org/10.1080/00207160.2022.2074789 doi: 10.1080/00207160.2022.2074789 |
[30] | Z. Abernathy, K. Abernathy, J. Stevens, A mathematical model for tumor growth and treatment using virotherapy, AIMS Math., 5 (2020), 4135–4150. https://doi.org/10.3934/math.2020265 doi: 10.3934/math.2020265 |