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Abstract: This study addresses a modified mathematical model of tumor growth with targeted chemotherapy consisting of effector
cells, tumor cells, and normal cells. To investigate the dynamics of the model, local and global stability analyses have been performed at
the equilibrium points of the model. It is found that the tumor-free steady state is globally asymptotically stable under certain conditions,
which suggests that the prescribed treatment can eradicate tumor cells from the body for a threshold value of tumor growth rate. The
main result of this study is that if the tumor growth rate is tiny, it is possible to eradicate the tumor from the body using a smaller amount
of targeted chemotherapy drugs with less harm to the other healthy cells. If not, it requires a high dose of targeted chemotherapy drugs,
which can increase the side effects of the drugs. Numerical simulations have been performed to verify our analytical results.
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1. Introduction

Cancer, the abnormal growth of tumor cells that invade
other body parts, is now the second leading cause of death
worldwide after cardiovascular disease. So, managing
cancer disease by developing new treatment strategies is a
new research area for researchers. However, it is essential to
understand the dynamics of tumor cells’ growth and their
complex interactions with the immune system to develop
new treatment strategies. To do this, researchers heavily
relied on mathematical models.

Many scientists have studied mathematical modelling of
tumor evolution, interaction with different cells, and tumor
proliferation by developing various models over the last few
decades [1–8]. Allison et al. [9] developed an experiment-
based, mathematical model to measure the effect of tumor
growth rate, carrying capacity, and cytolytic activity of the
effector cells on the progression of a tumor. Li et al. [10]

explored the effects of angiogenic growth factors secreted by
the tumor associated with the angiogenic process on tumor
growth using a nonlinear time-delay model. They observed
that the time delay on angiogenic growth is harmless for
the model’s local and global dynamical properties. In
[11], the authors observed the dynamical properties such
as stable steady states, unstable steady states, and limit
cycles of a tumor micro-environment mathematical model
consisting of tumor cells, cytotoxic T cells, and helper
T cells by varying the infiltration rates of cytotoxic and
helper T cells. Their results showed that the tumor always
escaped when the infiltration rates of cytotoxic and helper
T cells were both low. Two types of bistability can occur
at intermediate values of the infiltration rates of cytotoxic
and helper T cells. One is bi-stability between tumor escape
and elimination; the other is between tumor escape and
tumor coexistence with the immune system, the coexistence
state representing either a finite equilibrium state or a time-
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dependent periodic solution. The tumor is permanently
eliminated when the infiltration rates of cytotoxic and helper
T cells are high. Ghosh and Banerjee [12] investigated
the role of antibodies in cancer elimination by considering
the clinical fact that antibodies can directly kill cancerous
cells. Their quantitative analysis reveals that the antibodies’
effectiveness plays a significant role in killing cancer cells
directly. Shu et al. [13] explored the interactions between
tumor cells, M1 and M2 macrophages and suggested some
new results, such as the dual role of M1 and M2 immune
macrophages on the tumor and the balance between the
immune system and tumors in the host, which are essential
from a biological perspective.

There are several common treatment modalities for
cancer, such as chemotherapy, targeted chemotherapy,
radiotherapy, immunotherapy, and surgery. Among these
cancer treatments, targeted chemotherapy is a systematic
therapy that fights and kills the cancer cells in the tumor
site without any significant effect on the effector-normal
cells so that the tumor cells can not migrate to other
parts of the body [14]. Mathematical modeling of tumor
growth and treatment has been approached by several
researchers using a variety of models over the past few
decades [15–17]. De Pillis and his collaborators investigated
several mathematical models to measure the impact of
chemotherapy [18–20], immunotherapy [17, 21], chemo-
immunotherapy [22], and monoclonal antibody (mAb)
therapy [23] on tumor growth and other healthy tissue.
In [19], the authors observed “Jeff’s phenomenon” for a
tumor growth competition model. They obtained new
optimal treatment protocols that lower tumor growth and
stabilize the normal cell population. A phase-space analysis
of a mathematical model of tumor growth with immune
response and chemotherapy has been performed, and it has
been observed that optimally administered chemotherapy
drugs could drive the system into a desirable basin of
attraction [18]. In [24], the importance of CD8+ T cell
activation in cancer therapy was addressed. Moreover,
Pillis et al. developed a cancer treatment model [21]
in which they observed that combining chemotherapy and
immunotherapy can eliminate the entire tumor rather than
the therapies applied alone. An optimally controlled chemo-
drug administration was presented in [20], which discussed

the role of a quadratic control, a linear control, and a state
constraint. In [22], it is observed that CD8+T cells play
an active role in chemo-immunotherapy to kill tumor cells.
The effectiveness of mAbs treatment on colorectal cancer
has been discussed in [23]. An optimal feedback scheme
was proposed based on [24] that aims to tumor regression
under a better health indicator profile and to improve
treatment strategies in the case of mixed immunotherapy
and chemotherapy of tumor [25]. Ansarizadeh et al.
[26] examined the effectiveness of chemotherapy on tumor
regression by developing a model of partial differential
equations. They observed that the closer the point of
injection of the chemotherapeutic drug is to the invasive
fronts, the more regression in tumor cells occurs, and
they also observed a clinically verified phenomenon called
“Jeff’s phenomenon.” Arabameri et al. [27] designed a
dendritic cell-based immunotherapy model by fitting it
with experimental data, which predicted that the successive
injection of DC-based vaccines might be very effective
in suppressing tumor cells. A combination of stem-cell
and chemo-drug therapy models for cancer treatment was
investigated in [28], and the results suggested that the
combination treatment may cure cancer and improve the
patient’s life. Recently, Liu and Liu [14] proposed a targeted
chemotherapy cancer treatment mathematical model that
suggests that the effectiveness of targeted chemotherapy
in killing tumor cells is better than regular chemotherapy.
The effect and efficacy of the targeted chemotherapeutic
drug were investigated in [29], which shows that an
adequate dosage of the targeted chemotherapeutic drug of
low molecular weight is necessary for removing tumor cells
from the infected tumor system.

In the present study, we will examine the effectiveness
of targeted chemotherapy on tumor and normal cells by
modifying the model of de Pillis et al. [18], which describes
the interaction between tumor cells and healthy tissue or
normal cells. In the very next section, we formulate our
model. In Section 3, we verified the positive invariance
and boundedness of the models’ solutions. A steady-state
analysis has been performed in Section 4. We have checked
the global stability of the tumor-free state in Section 5. A
numerical simulation and a concluding remark have been
carried out in Sections 6 and 7.
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2. Model formulation

We consider the model developed by de Pillis et al. [18],
in which a set of ordinary differential equations is used to
characterize the dynamic interplay between effector cells,
tumor cells, and healthy cells. We employ a novel adaptation
in the model proposed by de Pillis et al. [18] that a targeted
chemotherapy approach slows tumor growth. Traditional
chemotherapy drugs kill all cell types at varying rates, which
can cause severe side effects like hair loss, fatigue, anaemia,
etc. On the other hand, targeted chemotherapy mainly
targets tumor cells so that it may have fewer unintended
consequences. We describe this attachment by the term
–kTC in the last equation of the system (2.1), where k

denotes the rate of attachments of targeted chemo-drugs with
tumor cells. Also, to measure the effectiveness of targeted
chemotherapy on immune and normal cells, we introduce a
parameter η [14]. Thus, our modification takes the following
model:

dI
dt

= s +
ρIT
σ + T

− c1IT − d1I − a1(1 − η)CI,

dT
dt

= r1T (1 − b1T ) − c2IT − c3T N − a2CT,

dN
dt

= r2N(1 − N) − c4T N − a3(1 − η)CN,

dC
dt

= u − d2C − kTC,

(2.1)

and the initial conditions are: I(0) = I0 > 0, T (0) = T0 > 0,
N(0) = N0 > 0 and C(0) = C0 > 0. I(t), T (t), and N(t)
represent the densities of effector cells, tumor cells, and
normal cells, respectively, at time t and C(t) represents the
amount of targeted chemo drug administered at time t. In
terms of the model’s novelty, we normalized the number of
normal cells by taking their carrying capacity equal to one.

3. Positive invariance and boundedness

In this section, we will investigate whether the model
(2.1) solutions are biologically feasible or not for the
considered values of all parameters. To do this, we must
show that the solutions of the model are positive and
bounded. Using standard comparison theory [30], we get

dI(t)
dt

= s +
ρIT
σ + T

− c1IT − d1I − a1(1 − η)CI ≤ s − d1I.

Integration of the above leads to

I(t) ≤
s

d1
+ I(0) exp−d1t =⇒ lim

t→∞
sup[I(t)] ≤

s
d1
.

Again,

dT (t)
dt

= r1T (1 − b1T ) − c2IT − c3T N − a2CT

≤ r1T (1 − b1T ).

Proceeding as above, we have

T (t) =
1

b1 + T (0) exp−r1t =⇒ lim
t→∞

sup[T (t)] ≤
1
b1
.

Similarly, we have

dN(t)
dt

= r2N(1 − N) − c4T N − a3(1 − η)CN

≤ r2N(1 − N)

=⇒ N(t) =
1

1 + N(0) exp−r2t

=⇒ lim
t→∞

sup[N(t)] ≤ 1,

and
dC(t)

dt
= u − d2C − kTC ≤ u − d2C

=⇒ C(t) ≤
u
d2

+ C(0) exp−d2t

=⇒ lim
t→∞

sup[C(t)] ≤
u
d2
.

Using the considered initial values, we assume that I(t) ≥
0,T (t) ≥ 0,N(t) ≥ 0 and C(t) ≥ 0 for all t > 0.
Consequently, the corresponding domain region for the
system (2.1) is

∆ = {(I,T,N,C) ∈ R4
+|I(t) ≤

s
d1
,T (t) ≤

1
b1
,N(t) ≤ 1,C(t) ≤

u
d2
}.

The domain region ∆ is positively invariant, which verifies
that the model system (2.1) is biologically feasible.

4. Equilibrium and stability

In this section, we will study the stability of the system
and the system’s stability around the equilibrium. To do this,
we compute dI

dt = 0, dT
dt = 0, dN

dt = 0, and dC
dt = 0 and get the

following equilibrium:
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• Tumor-free equilibrium: E1(I1,T1,N1,C1) where,

I1 =
r1−c3r2+{c3a3(1−η)−a2}

u
d2

c2
, T1 = 0, N1 =

r2−a3(1−η) u
d2

r2
,

C1 = u
d2
.

The tumor-free equilibrium E1 exists if r1 +

{c3a3(1 − η) − a2}
u
d2
> c3r2 and r2 > a3(1 − η) u

d2
.

• Co-axial equilibrium: E∗(I∗,T ∗,N∗,C∗) where,

I∗ =
r1(1−b1T ∗−c3r2+c3c4T ∗)+{c3a3(1−η)−a2}

u
d2+kT∗

c2
,

N∗ =
r2−c4T ∗−a3(1−η) u

d2+kT∗

r2
, C∗ = u

d2+kT ∗ , and from the
following quadratic equation, we will calculate the
value of T ∗.

c1I∗T ∗2 −
{
s − ρI∗ + c1σI∗ + d1I∗ + a1(1 − η)C∗I∗

}
T ∗

+
{
d1σI∗ + a1σ(1 − η)C∗I∗ − sσ

}
= 0.

After substituting the values of I∗ and C∗, we get

a11T ∗5 + a12T ∗4 + a13T ∗3 + a14T ∗2 + a15T ∗ + a16 = 0,
(4.1)

where,

a11 =r1(c3c4 − b1)c1k2,

a12 =
(
kr1(1 − c3r2) + d2r1(c3c4 − b1)

)
c1k+

kr1(c3c4 − b1)
(
c1d2 + (ρ − c1σ − d1)k),

a13 =
[
kr1(1 − c3r2) + d2r1(c3c4 − b1)

][
c1d2+

(ρ − c1σ − d1)k
]
+ kr1(c3c4 − b1)

[
(ρ − c1σ − d1)d2

+ d1σk − a1(1 − η)u
]
+

[
r1(1 − c3r2)d2+

c3a3(1 − η)u − a2u
]
c1k − k2s2,

a14 =
[
r1(1 − c3r2)d2 + c3a3(1 − η)u − a2u

][
c1d2σ + (ρ

− c1 − d1)k
]
− (sσk2 + 2kd2s2)

+ kr1(c3c4 − b1)
[
d1σd2 + a1(1 − η)u

]
+

[
kr1(1 − c3r2) + d2r1(c3c4 − b1)

][
(ρ − c1σ − d1)d2 + d1σk − a1(1 − η)u

]
,

a15 =
[
r1(1 − c3r2)d2 + c3a3(1 − η)u − a2u

][
(ρ − c1σ − d1)d2 + d1σk − a1(1 − η)u

]
+

[
kr1(1 − c3r2) + d2r1(c3c4 − b1)

][
d1σd2 + a1(1 − η)u

]
− (2sσkd2 + s2d2

2),

a16 =
(
r1(1−c3r2)d2+c3a3(1−η)u−a2u

)(
d1σd2+a1(1−η)u

)
−sσd2

2 .

The co-axial equilibrium E∗ exists if the roots of the
equation (4.1) is positive i.e., T ∗ > 0 and following
inequalities must holds:

r1(1 − b1T ∗ − c3r2 + c3c4T ∗) + {c3a3(1 − η) − a2}
u

d2 + kT ∗
> 0,

and r2 > c4T ∗ + a3(1 − η)
u

d2 + kT ∗
.

As N = 0 implies that the patients will not be alive, we
do not consider those cases where N = 0. To investigate
the linear stability of the system around the two above
stability, we must compute the Jacobian of the system, and
the Jacobian is

M =


m11 m12 0 m14

m21 m22 m23 m24

0 m32 m33 m34

0 m42 0 m44

 , (4.2)

where
m11 =

ρT
σ+T − c1T − d1 − a1(1 − η)C,

m12 =
σρI

(σ+T )2 − c1I,
m14 = −a1(1 − η)I,
m21 = −c2T , m22 = r1 − 2r1b1T − c2I − c3N − a2C,
m23 = −c3T ,
m24 = −a2T ,
m32 = −c4N,
m33 = r2 − 2r2N − c4T − a3(1 − η)C,
m34 = −a3(1 − η)N,
m42 = −kC,
m44 = −d2 − kT .

• The eigenvalues of the Jacobian matrix (4.2)
corresponding to the steady-state E1 are:
λ1

1 = −d1 − a1(1 − η)C1, λ1
2 = r1 − c2I1 − c3N1 − a2C1,

λ1
3 = r2 − 2r2N1 − a3(1 − η)C1, and λ1

4 = −d2. Clearly,
λ1

1 < 0 and λ1
4 < 0.

Therefore, E1 will stable if λ1
2 < 0 =⇒ r1 < c2I1 +

c3N1 + a2C1 and λ1
3 < 0 =⇒ r2 < 2r2N1 + a3(1−η)C1;

otherwise E1 becomes unstable.
• The Jacobian corresponding to the stability E∗ is

M∗ =


m∗11 m∗12 0 m∗14

m∗21 m∗22 m∗23 m∗24

0 m∗32 m∗33 m∗34

0 m∗42 0 m∗44

 , (4.3)
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where

m∗11 =
ρT ∗

σ+T ∗ − c1T ∗ − d1 − a1(1 − η)C∗,
m∗12 =

σρI∗

(σ+T ∗)2 − c1I∗, m∗14 = −a1(1 − η)I∗,
m∗21 = −c2T ∗, m∗22 = r1 − 2r1b1T ∗ − c2I∗ − c3N∗ − a2C∗,
m∗23 = −c3T ∗, m∗24 = −a2T ∗, m∗32 = −c4N∗,
m∗33 = r2 − 2r2N∗ − c4T ∗ − a3(1 − η)C∗,
m∗34 = −a3(1−η)N∗, m∗42 = −kC∗, and m∗44 = −d2−kT ∗.

At E∗, the eigen values of the corresponding Jacobian
matrix (4.3) are the roots of the following equation

λ4 + A11λ
3 + A12λ

2 + A13λ + A14 = 0, (4.4)

where

A11 = − m∗11 − m∗22 − m∗33 − m∗44,

A12 =m∗11m∗22 + m∗11m∗33 + m∗11m∗44 + m∗22m∗33 + m∗22m∗44

+ m∗33m∗44 − m∗21m∗12 − m∗23m∗32 − m∗24m∗42,

A13 = − m∗11m∗22(m∗33 + m∗44) − m∗33m∗44(m∗11 + m∗22)

+ m∗23m∗32(m∗11 + m∗44) + m∗24m∗42(m∗11 + m∗33)

+ m∗12m∗21(m∗33 + m∗44) − m∗42(m∗23m∗34 + m∗14m∗21),

A14 =m∗11m∗22m∗33m∗44 + m∗11m∗23(m∗34m∗42 − m∗32m∗44)

+ m∗33m∗42(m∗14m∗21 − m∗11m∗24) − m∗33m∗44m∗12m∗21.

According to Routh-Hurwitz stability rule, the
equilibrium point E∗ will be asymptotically stable if

A11 > 0, A13 > 0, A14 > 0, A11A12A13 > A2
13 + A2

11A14.

(4.5)

5. Global stability at tumor-free steady state E1

In this section, we will analyze the global stability around
E1 in order to investigate the behavior of the system (2.1)
far away from the equilibrium point E1. Let us define a
Lyapunov function for the model (2.1) at E1 as:

V(t) =
[
I − I1 − I1 ln

I
I1

]
+ T +

[
N − N1 − N1 ln

N
N1

]
+

[
C −C1 −C1 ln

C
C1

]
.

(5.1)

Differentiating V(t) with respect to t, we get

dV
dt

=
(
1 −

I1

I

)dI
dt

+
dT
dt

+
(
1 −

N1

N

)dN
dt

+
(
1 −

C1

C

)dC
dt

=
(
1 −

I1

I

)[
s +

ρIT
σ + T

− c1IT − d1I − a1(1 − η)CI
]

+
[
r1T (1 − b1T ) − c2IT − c3T N − a2CT

]
+

(
1 −

N1

N

)[
r2N(1 − N) − c4T N − a3(1 − η)CN

]
+

(
1 −

C1

C

)
(u − d2C − kTC)

=
(
1 −

I1

I

)[ ρIT
σ + T

− c1IT − d1(I − I1) − a1(1 − η)CI

+ a1(1 − η)C1I1

]
+ (r1T − r1b1T 2 − c2IT − c3T N − a2TC)

+
(
1 −

N1

N

)[
r2(N − N1) − r2(N2 − N2

1 ) − c4T N

− a3(1 − η)N(C −C1) − a3(1 − η)C1(N − N1)
]

+
(
1 −

C1

C

)[
− d2(C −C1) − kTC

]
=(I − I1)

[ ρT
σ + T

− c1T −
d1

I
(I − I1) − a1(1 − η)(C −C1)

+
a1

I
(1 − η)C1(I − I1)

]
+ (r1 − r1b1T − c2I − c3N − a2C)T

+ (N − N1)
[
r2(N − N1) − c4T − a3(1 − η)(C −C1)

]
+ (C −C1)

(
−

d2

C
(C −C1) − kT

)
=(I − I1)2

[
−

d1

I
+

a1

I
(1 − η)C1

]
+ (−c1 +

ρ

σ + T
)(I − I1)T

− a1(1 − η)(I − I1)(C −C1) − r1b1T 2 − c2T (I − I1)

− c3T (N − N1) − a2T (C −C1) + r2(N − N1)2

− c4T (N − N1) − a3(1 − η)(N − N1)(C −C1) −
d2

c
(C −C1)

− kT (C −C1) + (r1 − c2I1 − c3N1 − a2C1)T

= − PtRP − QtP,

where,

R =


( d1

I −
a1
I (1 − η)C1) 1

2 (c1 + c2 −
ρ

(σ+T ) ) 0 a1
2 (1 − η)

1
2 (c1 + c2 −

ρ

(σ+T ) ) r1b1
1
2 (c3 + c4) 1

2 (a2 + k)
0 1

2 (c3 + c4) r2
1
2 a3(1 − η)

0 1
2 (a2 + k) 1

2 a3(1 − η) d2
C

, (5.2)

P = [I − I1,T,N − N1,C −C1] and
Q = [0,−r1 + c2I1 + c3N1 + a2C1, 0, 0].

By noting the second component of the vector Q, we must
have,

−r1 + c2I1 + c3N1 + a2C1 > 0 =⇒ c2I1 + c3N1 + a2C1 > r1

(5.3)
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so that QtP ≥ 0.
Furthermore, by considering the values of parameters

from Table1, if I = s
d1
,T = 1

b1
and C = u

d2
, then all minors

are positive in the matrix R (all eigenvalues of R are also
positive), and so PtRP > 0. Hence, it is clear that dV

dt < 0.
Therefore, the tumor-free equilibrium E1 satisfies local

stability conditions, making the point globally stable. In
biological terms, it means that targeted chemotherapy will
kill the tumor cells if

c2I1 + c3N1 + a2C1 > r1, I =
s

d1
,T =

1
b1
,C =

u
d2
, (5.4)

must hold.

6. Numerical simulation

Analytical studies can only be completed with numerical
verification of the derived results. In this section, we
verified our analytical results of the considered system
(2.1) graphically using MATHEMATICA, which is very
important from a practical point of view. All the simulations
have been carried out using the parameter values of Table
1 [14, 18]. We take the units of the parameter values to be
arbitrary.

Table 1. Parameter values for the simulation.

Parameters Definition Values
s constant popualtion of

effector cells present in the body
0.05

ρ maximum recruitment of
effector cells by tumor cells

1

σ half saturation constant for
the proliferation term

0.4

d1 effector cells’ natural death rate 0.2

r1 intrinsic growth rate of tumor cells 0.4

r2 normal cells’ growth rate 0.35
1
b1

maximum carrying capacity of tumor cells 1
1.5

d2 decay rate of targeted chemo-drug 0.05

a1 kill rate of effector cell
by targeted chemo-drug

0.2

a2 kill rate of tumor cell
by targeted chemo-drug

0.5

a3 kill rate of normal cell
by targeted chemo-drug

0.25

c1 effector cells’ growth rate due to tumor cells 0.2

c2 tumor cells’ decay rate due to immune cells 0.3

c3 tumor cells’ decay rate due to normal cells 0.2

c4 normal cells’ decay rate due to tumor cells 0.25

η effectiveness of the targeted chemo-drug 0.01

k rate of attachments of targeted
chemo-drugs with tumor cells

0.01

To investigate the effects of drugs on effector cells,
tumor cells, and normal cells, we considered three
cases: (a) u = 0.019, (b) u = 0.020 and (c)
u = 0.021. For u = 0.019, there exist only
co-axial equilibrium E∗ = (0.198, 0.0101, 0.725, 0.379).
The eigenvalues correspond to coaxial equilibrium E∗

are (−0.254,−0.248,−0.0504,−0.0096), implies that E∗

is stable. Further, for u = 0.020, only the co-axial
equilibrium E∗ = (0.184, 0.0032, 0.715, 0.3997) exist and
(−0.270326,−0.250733,−0.0501065,−0.00282614) are the
eigenvalues correspond to it. Hence, E∗ is stable for this case
also. Thus, for the cases: (a) u = 0.019 (b)u = 0.020, only
the co-axial equilibria exist, and tumor cells are present at
this equilibrium; the drug dose could not be able to eradicate
the tumor cells from the body, and hence there is a chance
of the rebirth of abnormal cells. However, for the case of
u = 0.021, there exist only tumor-free equilibrium E1 =

(0.177, 0, 0.703, 0.42). Corresponding to the equilibrium E1,
the eigenvalues are −0.283,−0.246,−0.05,−0.0037; which
indicates that E1 is a stable point. Therefore, for u = 0.021,
no tumor cells are present in the body, and the patient
recovers from the disease.

The above scenarios can be justified in Figure 1. We
observe that the density of fast proliferation tumor cells
gets suppressed quickly as the amount of drugs increases
from u = 0.019, u = 0.020 to u = 0.021 (see Figure 1)
and gets stable at zero for u = 0.021, suggesting targeted
chemotherapy’s success. So, the prescribed drugs quickly
affected the tumor cells, which is clinically reliable.
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Figure 1. Density of tumor cell for I(0) =

0.6,T (0) = 0.4,N(0) = 0.9 and C(0) = 0.1 when
(a) u = 0.019 (red) (b) u = 0.020 (blue) and (c)
u = 0.021 (green).
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In Figure 2, we observe that the density of effector
cells decreases slowly (compared to tumor cells) while the
amount of applied drug doses increases and gets stable at a
required level.
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Figure 2. Density of effector cell for I(0) =

0.6,T (0) = 0.4,N(0) = 0.9 and C(0) = 0.1 when
(a) u = 0.019 (red) (b) u = 0.020 (blue) and (c)
u = 0.021 (green).

In Figure 3, the density of normal cells is reduced more
slowly (compared to tumor cells) while the amount of drugs
increases. Also, the normal cells become stable at the
desired level.

Figure 3. Density of normal cell for I(0) =

0.6,T (0) = 0.4,N(0) = 0.9 and C(0) = 0.1 when
(a) u = 0.019 (red) (b) u = 0.020 (blue) and (c)
u = 0.021 (green).

The time series diagrams of tumor cells for different
tumor growth rates, r1 with drug dose u = 0.021, have been
presented in Figure 4.

0 50 100 150 200 250 300
0.0

0.1

0.2

0.3

0.4

0.5

Time

D
if
fe
re
n
t
T
u
m
o
r
G
ro
w
th
R
a
te

Figure 4. Density of tumor cell for I(0) =

0.6,T (0) = 0.4,N(0) = 0.9 and C(0) = 0.1 when
tumor growth rate (a) r1 = 0.4 (red) (b) r1 = 0.42
(blue) and (c) r1 = 0.44 (green) and u = 0.021.

After investigating the effect of drugs on the cell
population, we are now interested in examining the
interaction of tumor growth and drug administration. To
examine this, we fixed the drug parameter u = 0.021 (as at
this level, the tumor cells can be eradicated) and varied the
tumor growth rate r1. Also, we considered tumor growth
rate as r1 = 0.4, 0.42, 0.44 along with the parameter Table 1.
For r1 = 0.4, there exist only tumor-free equilibrium
E1 = (0.177, 0, 0.703, 0.42) corresponding to the
eigenvalues (−0.283,−0.246,−0.05,−0.0037); indicating
E1 is stable. Further, for r1 = 0.42 and r1 = 0.44, only
the co-axial equilibrium E∗ = (0.205, 0.0175, 0.691, 0.419)
and E∗ = (0.240, 0.0355, 0.680, 0.417) exist
respectively. The respective eigenvalues are
(−0.239 + 0.001i,−0.239 − 0.001i,−0.0508,−0.0178)
and (−0.241,−0.181,−0.0553,−0.0422); hence, E∗ is
stable for both cases. Biologically, the above results can be
explained that the prescribed drugs eradicate the density of
tumor cells if the tumor growth rate r1 is low. From Figure
4, it can be concluded that the increase in the tumor growth
rate decreases the tumor-reducing capability of the system.

Next, we fixed the value of treatment parameter u =

0.0205 and tumor growth rate, r1 = 0.4, to examine
the optimal effects of drugs on the cell population. In
this case, the system (2.1) exhibits one biologically valid
equilibrium point and this E1 = (0.178, 0, 0.710, 0.41),
which is tumor-free. The eigenvalues corresponds to E1

are −0.28118,−0.248475,−0.05,−0.0004, which indicates
that E1 is asymptotically stable node. From Figure 5, it
can be observed that the tumor cells die off over a long
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period, where as the normal and immune cells are stable
at their required level. Also, it is noticed that the system
could reduce the density of tumor cells if tumor growth rate,
r1 = 0.4 and drug dose, u = 0.0205.

Figure 5. Numerical simulations of the model
(2.1) showing the time variation in the size of
all relative populations of the model. For these
simulations, we used the following initial values:
I(0) = 0.6,T (0) = 0.4,N(0) = 0.9 with tumor
growth rate, r1 = 0.4 and drug dose, u1 = 0.0205.
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Figure 6. Parametric plot of the system (2.1) at E1

equilibrium point by using the parameter values in
Table:1 and initial values are I(0) = 0.6,T (0) =

0.4,N(0) = 0.9 and C(0) = 0.1 with u = 0.0205
and r1 = 0.4.

In Figure 6, it is seen that the trajectory converges to the
tumor-free steady state E1 with the basin of attraction in the
treatment case, indicating that it is a globally stable point for
the system. The steady-state E1 is a stable node, implying
that the cell population incorporated with the treatment
can suppress the cancer growth to zero with time increase.
Biologically, this indicates that the body is recovering from
the tumor regardless of the initial condition, which includes
tumor growth.

Overall, we observe that if the size of the tumor is small,
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i.e., the growth rate of tumor r1 is tiny, then it is quite
possible to eradicate the tumor from the body using a smaller
amount of drugs with less harm to the other healthy cells. If
not, we require a high drug dose that can increase the side
effects of the drugs.

7. Conclusions

We have investigated a modified ODE mathematical
model for tumor growth, considering the effector-tumor-
normal cells’ interaction under targeted chemotherapy. We
established the basic characteristics, such as positivity and
boundedness of the solutions of the model. To explore the
dynamic behavior of the model, we performed a stability
analysis of the considered system. We found that the tumor-
free steady state is globally stable under the conditions:
c2I1 +c3N1 +a2C1 > r1, I = s

d1
,T = 1

b1
,C = u

d2
, provided it is

locally stable; which suggests that the prescribed treatment
can eradicate tumor cells from the body for a threshold value
of tumor growth rate. Numerically, it is also observed that
the prescribed treatment can eradicate tumor cells from the
body without much effect on other healthy cells if the tumor
size is small. However, one limitation in our model is that
if the tumor size is large, it requires a high amount of drugs
and a long period of time, which can harm the patient’s body.
So, in this regard, we must need an optimum period and drug
dose for which the tumor is eradicated [18, 19]; and it will
be carried out in our future study.
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