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Abstract: This paper deals with three-dimensional differential system of nonlinear fractional order problem

Dα
0+υ(%) = f (%, ω(%), ω′(%), ω′′(%), ..., ω(n−1)(%)), % ∈ (0, 1),

Dβ

0+ν(%) = g(%, υ(%), υ′(%), υ′′(%), ..., υ(n−1)(%)), % ∈ (0, 1),

Dγ

0+ω(%) = h(%, ν(%), ν′(%), ν′′(%), ..., ν(n−1)(%)), % ∈ (0, 1),

with the boundary conditions,

υ(0) = υ′(0) = ... = υ(n−2)(0) = 0, υ(n−1)(0) = υ(n−1)(1),

ν(0) = ν′(0) = ... = ν(n−2)(0) = 0, ν(n−1)(0) = ν(n−1)(1),

ω(0) = ω′(0) = ... = ω(n−2)(0) = 0, ω(n−1)(0) = ω(n−1)(1),

where Dα
0+ ,D

β

0+ ,D
γ

0+ are the standard Caputo fractional derivative, n − 1 < α, β, γ ≤ n, n ≥ 2 and we derive sufficient conditions
for the existence of solutions to the fraction order three-dimensional differential system with boundary value problems via Mawhin’s
coincidence degree theory, and some new existence results are obtained. Finally, an illustrative example is presented.

Keywords: fractional differential equation; coincidence degree theory; resonance

1. Introduction

In the recent years, the glorious developments have been
envisaged in the field of fractional differential equations
due to their applications being used in various fields such
as blood flow phenomena, electro Chemistry of corrosion,
industrial robotics, probability and Statistics and so on,
refer [1–7]. In particular, the fractional derivative has been
used in lot of physical applications such as propagation of

fractional diffusive waves in viscoelastic solids [8], charge
transmit-time dispersion amorphous semi-conductor [9] and
a non-Markovian diffusion process with memory [10].

Although fixed point theorems like the Banach
contraction principle and the Schauder fixed point theorem
are used to establish the existence of solutions, stronger
conditions on the nonlinear functions involved limit their
application to a limited number of problems. We employ
Mawhin’s topological degree theory method to include
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additional types of boundary value problems (BVP’s) and
apply fewer restricted conditions.

In the field of fractional systems, many results have been
obtained through assured extensions of existing results given
only to integer systems. Despite the enormous amount of
published work on fractional differential systems, there are
still many difficult open problems. Indeed, the theory and
applications of these systems are still very active areas of
research.

Recently, two-point BVP’s for fractional differential
equations have been studied in some papers (see [11, 12]).
The existence of solutions to coupled systems of fractional
differential equations has been given in papers [13–16].
Moreover, some authors discussed the existence of solutions
for nonlinear fractional multi-point BVP’s; for instance,
refer [17–21], and the references cited therein. There are few
papers which deals with the BVP’s for fractional differential
equations at nonresonance. Meanwhile, fractional BVP’s
at resonance have been intensively explored, as shown by
references to several recent works on the subject [22–27].

Hu and Zhang [28] investigated the existence, uniqueness
of solutions to integer higher-order nonlinear coupled
fractional differential equations at resonance by the
coincidence degree theory. Hu [29] discussed the
solution of a higher-order coupled system of nonlinear
fractional differential equations with infinite-point boundary
conditions by coincidence degree theory.

Motivated by the results mentioned above, the two point
BVP’s of system of higher-order fractional differential
equations have been studied by some authors, to the best
of our knowledge, no work has been done on the BVP
of system involving three-dimensional differential system
higher-order fractional differential equations with Caputo
fractional derivative. Inspired by the aforementioned
studies, in this manuscript, we establish sufficient conditions
for the existence of solutions to the nonlinear fractional
order three-dimensional differential system with BVP’s of
the form.

Dα
0+υ(%) = f (%, ω(%), ω′(%), ω′′(%), · · · , ω(n−1)(%)), (1.1)

Dβ
0+ν(%) = g(%, υ(%), υ′(%), υ′′(%), · · · , υ(n−1)(%)), (1.2)

Dγ
0+ω(%) = h(%, ν(%), ν′(%), ν′′(%), · · · , ν(n−1)(%)), (1.3)

% ∈ (0, 1), with the boundary conditions,

υ(0) = υ′(0) = · · · = υ(n−2)(0) = 0, υ(n−1)(0) = υ(n−1)(1),
(1.4)

ν(0) = ν′(0) = · · · = ν(n−2)(0) = 0, ν(n−1)(0) = ν(n−1)(1),
(1.5)

ω(0) = ω′(0) = · · · = ω(n−2)(0) = 0, ω(n−1)(0) = ω(n−1)(1),
(1.6)

where Dα
0+ ,D

β
0+ and Dγ

0+ denote the standard Caputo
fractional derivative, n − 1 < α, β, γ ≤ n, n ≥ 2. Boundary
value problems being at resonance means that the associated
linear homogeneous equation Dα

0+υ(%) = 0 has a nontrivial
solution υ(%) = ctn−1, where 0 < % < 1, c ∈ R.

Our main aim of this paper is to establish some new
criteria for the existence of solutions of (1.1) and (1.4).
By using Mawhin’s coincidence degree theory, some new
existence results are obtained. This paper presents a new
existence result which is a generalization of some known
results in the existing literature.

This paper is organized in the following fashion: In
Section 2, we shall present some notations, definitions and
some properties of the fractional calculus. In Section 3, we
investigate the existence of solutions of equation (1.1) and
(1.4) by the Mawhin’s coincidence degree theory [30]. In
Section 4, we illustrate the main result further by providing
an example.

2. Preliminaries

This section starts with a quick review of the fractional
calculus concepts that will be used in this work. So let’s
start with the Riemann–Liouville fractional integrals and
derivatives definitions.

Definition 2.1. [15] The Riemann-Liouville fractional

integral of order α > 0 of a function f : R+ → R on the

half-axis R+ is given by

(Iα0+ f )(%) :=
1

Γ(α)

∫ %

0
(% − ν)α−1 f (ν)dv for % > 0

provided the right hand side is pointwise defined on R+.

Definition 2.2. [15] The Riemann-Liouville fractional

derivative of order α > 0 on continuous function f : R+ → R
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is given by

(Dα
0+ f )(%) :=

1
Γ(n − α)

∫ %

0
(% − ν)n−α−1 f n(ν)dv for % > 0,

(2.1)

where n − 1 < α ≤ n and Γ is the gamma function, such that

the integral is pointwise defined on R+.

Definition 2.3. [12] Assume that f is (n − 1)-times

absolutely continuous function, the Caputo fractional

derivative of order α > 0 of f is given by

(Dα
0+ f )(%) := In−α

0+

dn f (%)
d%n

=
1

Γ(n − α)

∫ %

0
(% − ν)n−α−1 f n(ν)dv for % > 0,

(2.2)

where n is the smallest integer greater than or equal to α,

provided that the right side integral is pointwise defined on

(0,+∞).

Lemma 2.4. [12] Assume that n−1 < α ≤ n, x̃ ∈ C(0, 1)∩
L1(0, 1), then

Iα0+ Dα
0+ x̃(%) := x̃(%) + c0 + c1% + c2%

2 + ... + cn−1%
n−1

where ci = −
x̃(i)(0)

i!
∈ R, (i = 0, 1, 2, · · · , n − 1) and n ≥ α,

n is the smallest integer.

Lemma 2.5. [12] Let β > 0, α + β > 0, then

Iα0+ Iβ0+ f (x̃) := Iα+β
0+ f (x̃)

is satisfied for continuous function f.

Lemma 2.6. [20] Let L : domL ⊂ X → Z be a Fredholm

operator with index zero and N be L-compact on Ω. Assume

that the following relations hold.

(1) Lx , λNx for every (x̃, λ) ∈ [(domL \ KerL) ∩ ∂Ω] ×
(0, 1);

(2) Nx < ImL for every x̃ ∈ KerL ∩ ∂Ω;

(3) For some isomorphism J : ImQ → KerL, we have

deg(JQN |KerL,KerL ∩ Ω, 0) , 0, where Q : Z → Z is

a continuous projection such that ImL=KerQ. Then the

operator equation Lx = Nx has at least one solution in

domL ∩Ω.

3. Main results

Our main result is as follows.
Let X = Cn−1[0, 1] with the norm ‖X‖X =

max
{
‖X‖∞ ,

∥∥∥X
′
∥∥∥
∞
, · · · ,

∥∥∥Xn−1
∥∥∥
∞

}
and Z = C[0, 1] with the

norm ‖̃z‖Z = ‖̃z‖∞, where ‖X‖∞ = max%∈[0,1] |X(%)| and
‖̃z‖∞ = max%∈[0,1] |̃z(%)|. Then we indicate X = X×X×X with
the norm ‖(υ, ν, ω)‖X = max {‖υ‖X , ‖ν‖X , ‖ω‖X} and Z =

Z×Z×Z with the norm ‖(x̃, ỹ, z̃)‖Z = max
{
‖x̃‖Z , ‖̃y‖Z , ‖̃z‖Z

}
.

Obviously, X and Z are Banach spaces.
Define Li : domL ⊂ X → Z, (i=1,2,3) by

L1υ = Dα
0+υ, L2ν = Dβ

0+ν and L3ω = Dγ
0+ω,

where

domL1 =
{
υ ∈ X| Dα

0+υ(%) ∈ Z, υ( j)(0) = 0,

υ(n−1)(0) = υ(n−1)(1), j = 0, 1, ..., n − 2
}
,

domL2 =
{
ν ∈ X| Dβ

0+ν(%) ∈ Z, ν( j)(0) = 0,

ν(n−1)(0) = ν(n−1)(1), j = 0, 1, ..., n − 2
}
,

domL3 =
{
ω ∈ X| Dγ

0+ω(%) ∈ Z, ω( j)(0) = 0,

ω(n−1)(0) = ω(n−1)(1), j = 0, 1, ..., n − 2
}
.

Define L : domL ⊂ X → Z as

L(υ, ν, ω) = (L1υ, L2ν, L3ω), (3.1)

where

domL =
{
(υ, ν, ω) ∈ X| υ ∈ domL1, ν ∈ domL2, ω ∈ domL3

}
.

Define the operator (Nemytski) N : X → Z as

N(υ, ν, ω) = (N1ω,N2υ,N3ν),

where Ni : X → Z, (i=1,2,3) as follows:

N1ω(%) = f (%, ω(%), ω′(%), ..., ω(n−1)(%)),

N2υ(%) = g(%, υ(%), υ′(%), ..., υ(n−1)(%)),

N3ν(%) = h(%, ν(%), ν′(%), ..., ν(n−1)(%)).

The operator equation is then equivalent to the BVP’s (1.1)
and (1.4).

L(υ, ν, ω) = N(υ, ν, ω), (υ, ν, ω) ∈ domL.
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Lemma 3.1. Let the operator L be defined by (3.1). Then

kerL = (KerL1,KerL2,KerL3)

=
{
(υ, ν, ω) ∈ x̃|(υ, ν, ω)

= (m1%
n−1,m2%

n−1,m3%
n−1),m1,m2,m3 ∈ R

}
, (3.2)

and

ImL = (ImL1, ImL2, ImL3)

=

{
(x̃, ỹ, z̃) ∈ Z|

∫ 1

0
(1 − κ)α−n x̃(κ)dκ = 0,∫ 1

0
(1 − κ)β−nỹ(κ)dκ = 0,

∫ 1

0
(1 − κ)γ−ñz(κ)dκ = 0

}
.

(3.3)

Proof. By Lemma 2.1, L1υ = Dα
0+υ(%) = 0 has the solution

υ(%) = c0 + c1% + ... + cn−1%
n−1.

Using the boundary condition, we have

KerL1 =
{
υ ∈ X|υ = m1%

n−1,m1 ∈ R
}
.

For (x̃, ỹ, z̃) ∈ ImL, there exists (υ, ν, ω) ∈ domL such that
(x̃, ỹ, z̃) = L(υ, ν, ω). Again, by Lemma 2.1, we get

υ(%) = Iα0+ x̃(%) + a0 + a1% + ... + an−1%
n−1,

ν(%) = Iβ0+ ỹ(%) + b0 + b1% + ... + bn−1%
n−1,

ω(%) = Iγ0+ z̃(%) + c0 + c1% + ... + cn−1%
n−1.

By definition of domL, we have a j = b j = c j = 0, j =

0, 1, 2, · · · , n − 2. We can get

υ(%) = Iα0+ x̃(%) + an−1%
n−1,

ν(%) = Iβ0+ ỹ(%) + bn−1%
n−1,

ω(%) = Iγ0+ z̃(%) + cn−1%
n−1.

From Lemma 2.2, we have

υ(n−1)(%) = Iα−n+1
0+ x̃(%) + an−1(n − 1)!,

ν(n−1)(%) = Iβ−n+1
0+ ỹ(%) + bn−1(n − 1)!,

ω(n−1)(%) = Iγ−n+1
0+ z̃(%) + cn−1(n − 1)!.

By using the boundary conditions, we obtain

∫ 1

0
(1 − κ)α−n x̃(κ)dκ = 0,∫ 1

0
(1 − κ)β−nỹ(κ)dκ = 0,∫ 1

0
(1 − κ)γ−ñz(κ)dκ = 0.

Further, suppose (x̃, ỹ, z̃) ∈ Z) and satisfies above conditions.
Let υ(%) = Iα0+ x̃(%), ν(%) = Iβ0+ ỹ(%), ω(%) = Iγ0+ z̃(%)

then (υ, ν, ω) ∈ domL and Dα
0+υ(%) = x̃(%), Dβ

0+ν(%) =

ỹ(%), Dγ
0+ω(%) = z̃(%). Hence, (x̃, ỹ, z̃) ∈ ImL. Then we

get

ImL1 =

{
x̃ ∈ Z|

∫ 1

0
(1 − κ)α−n x̃(κ)dκ = 0

}
.

Similarly, we get that

KerL2 =
{
ν ∈ X |ν = m2%

n−1,m2 ∈ R
}
,

ImL2 =

{̃
y ∈ Z |

∫ 1

0
(1 − κ)β−nỹ(κ)dκ = 0

}
,

KerL3 =
{
ω ∈ X |ω = m3%

n−1,m3 ∈ R
}
,

ImL3 =

{̃
z ∈ Z |

∫ 1

0
(1 − κ)γ−ñz(κ)dκ = 0

}
.

�

Lemma 3.2. Let L be defined by L(υ, ν, ω) =

(L1υ, L2ν, L3ω). Then L is a Fredholm operator of

index zero, the linear continuous projector operators

P : X → X and Q : Z → Z can be defined as

P(υ, ν, ω) = (P1υ, P2ν, P3ω),

where 

P1υ =
υ(n−1)(0)
(n − 1)!

%n−1,

P2ν =
ν(n−1)(0)
(n − 1)!

%n−1,

P3ω =
ω(n−1)(0)
(n − 1)!

%n−1.

(3.4)

and

Q(x̃, ỹ, z̃) = (Q1 x̃,Q2ỹ,Q3̃z),

where
Q1 x̃(%) = (α − n + 1)

∫ 1
0 (1 − κ)α−n x̃(κ)dκ,

Q2ỹ(%) = (β − n + 1)
∫ 1

0 (1 − κ)β−nỹ(κ)dκ,

Q3̃z(%) = (γ − n + 1)
∫ 1

0 (1 − κ)γ−ñz(κ)dκ.

(3.5)
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Furthermore, the operator KP : ImL → domL ∩ KerP can

be written by KP(x̃, ỹ, z̃) = (Iα0+ x̃, Iβ0+ ỹ, Iγ0+ z̃), that is, KP =

(L |domL∩KerP)−1.

Proof. Define Pi : X → X, (i = 1, 2, 3) and P : (υ, ν, ω) →
(P1υ, P2ν, P3ω), from (3.4) we get

P2
1υ(%) =

(P1υ)(n−1)(0)
(n − 1)!

%n−1

=
1

(n − 1)!

(
dn−1

dtn−1

υ(n−1)(0)
(n − 1)!

%n−1
)
|%=0%

n−1

=
an−1

(n − 1)!

(
dn−1

dtn−1 %
n−1

)
|%=0%

n−1 = an−1%
n−1 = P1υ(%).

Clearly, P2
2 = P2, P2

3 = P3.
Obviously, ImP = KerL and P2(υ, ν, ω) = P(υ, ν, ω).

Note that KerP =
{
(υ, ν, ω)|υ(n−1)(0) = 0, ν(n−1)(0) = 0,

ω(n−1)(0) = 0
}
. Since (υ, ν, ω) = ((υ, ν, ω) − P(υ, ν, ω)) +

P(υ, ν, ω). It is clear that X = KerP + KerL. Furthermore,
by the definition of KerP, we can get that KerL ∩ KerP =

{(0, 0, 0)}. Then we get X = KerP ⊕ KerL.

Clearly, we have Q(x̃, ỹ, z̃) = (Q1 x̃,Q2ỹ,Q3̃z). By the
definition of Q1, we have

Q2
1 x̃(%) = Q1(Q1 x̃(%))

= Q1 x̃(%).(α − n + 1)
∫ 1

0
(1 − κ)α−ndκ = Q1 x̃(%).

Similarly, we can show that Q2
2ỹ = Q2ỹ and Q2

3̃z = Q3̃z. This
gives Q2(x̃, ỹ, z̃) = Q(x̃, ỹ, z̃). It follows from

(x̃, ỹ, z̃) = ((x̃, ỹ, z̃) − Q(x̃, ỹ, z̃)) + Q(x̃, ỹ, z̃),

where (x̃, ỹ, z̃) − Q(x̃, ỹ, z̃) ∈ KerQ, Q(x̃, ỹ, z̃) ∈ ImQ that
Z = ImL+ ImQ. Let x̃ ∈ ImQ1∩ ImL1 and set x̃(%) = m1%

n−1

to obtain that

0 = (α − n + 1)
∫ 1

0
(1 − κ)α−n x̃(κ)dκ

= (α − n + 1)m1

∫ 1

0
(1 − κ)α−nκn−1dκ

=
Γ(n)Γ(α − n + 2)

Γ(α + 1)
m1

which implies that m1 = 0. Similarly, ỹ ∈ ImQ2 ∩ ImL2

implies that m2 = 0, also z̃ ∈ ImQ3∩ ImL3 implies that m3 =

0. Moreover, by KerQ = ImL and Q2(x̃, ỹ, z̃) = Q(x̃, ỹ, z̃),
we obtain ImQ ∩ ImL = {(0, 0, 0)}. Hence, we get

Z = ImL ⊕ ImQ.

Thus

dimKerL = dimImQ = codimImL.

This shows that L is a Fredholm operator of index zero.
In fact, (x̃, ỹ, z̃) ∈ ImL, we have

LKP(x̃, ỹ, z̃) = (Dα
0+ (Iα0+ x̃),Dβ

0+ (Iβ0+ ỹ),Dγ
0+ (Iγ0+ z̃)) = (x̃, ỹ, z̃).

(3.6)

On the other hand, for (υ, ν, ω) ∈ domL ∩ KerP, we have

Iα0+ L1υ(%) = Iα0+ Dα
0+υ(%) = υ(%) + a0 + a1% + ... + an−1%

n−1,

Iβ0+ L2ν(%) = Iβ0+ Dβ
0+ν(%) = ν(%) + b0 + b1% + ... + bn−1%

n−1,

Iγ0+ L3ω(%) = Iγ0+ Dγ
0+ω(%) = ω(%) + c0 + c1% + ... + cn−1%

n−1.

By the definitions of domL and KerP, we have υ( j)(0) =

ν( j)(0) = ω( j)(0) = 0, j = 0, 1, 2, ..., n − 1 in the above
expressions are all coefficients equal to zero. Thus, we
obtain

KPL(x̃, ỹ, z̃) = (Iα0+ Dα
0+ x̃(%), Iβ0+ Dβ

0+ ỹ(%), Iγ0+ Dγ
0+ z̃(%))

= (x̃, ỹ, z̃). (3.7)

Combining (3.6) and (3.7), we get KP = (L|domL∩KerP)−1. �

Setting d1 =
1

Γ(α − n + 2)
, d2 =

1
Γ(β − n + 2)

, d3 =

1
Γ(γ − n + 2)

.

Again, for every (x̃, ỹ, z̃) ∈ ImL,

||KP(x̃, ỹ, z̃)||X = ||(Iα0+ X, Iβ0+ ỹ, Iγ0+ z̃)||X
= max

{∥∥∥Iα0+ x̃
∥∥∥

X , ||I
β
0+ ỹ||X , ||I

γ
0+ z̃||X

}
= max

{
1

Γ(α − n + 2)
||x̃||∞,

1
Γ(β − n + 2)

||̃y||∞,

1
Γ(γ − n + 2)

||̃z||∞

}
≤ max

{
d1 ‖x̃‖∞ ; d2 ‖̃y‖∞ ; d3 ‖̃z‖∞

}
. (3.8)

Lemma 3.3. Assume Ω ⊂ X is an open bounded subset such

that domL ∩Ω , φ, then N is L-compact on Ω.

Proof. Since the functions f , g and h are continuous, we get
QN(Ω) is bounded and by the definition of operators Q and
KP on the interval [0,1], we can get that KP(I − Q)N(Ω) is

Mathematical Modelling and Control Volume 3, Issue 2, 127–138



132

bounded. On the other hand, there exist constants ri > 0, i =

1, 2, 3, such that for all (υ, ν, ω) ∈ Ω, % ∈ [0, 1], then

|(I − Q1)N1ω| ≤ r1, |(I − Q2)N2υ| ≤ r2, |(I − Q3)N3ν| ≤ r3.

Next, denote KP,Q = KP(I − Q)N and for 0 ≤ %1 < %2 ≤ 1,
we get∣∣∣∣KP,Q(υ, ν, ω)(%2) − KP,Q(υ, ν, ω)(%1)

∣∣∣∣
=

∣∣∣∣KP(I − Q)(N1ω(%2),N2υ(%2),N3ν(%2))

− KP(I − Q)(N1ω(%1),N2υ(%1),N3ν(%1))
∣∣∣∣

=
∣∣∣∣Iα0+ (I − Q1)N1ω(%2) − Iα0+ (I − Q1)N1ω(%1),

Iβ0+ (I − Q2)N2υ(%2) − Iβ0+ (I − Q2)N2υ(%1),

Iγ0+ (I − Q3)N3ν(%2) − Iγ0+ (I − Q3)N3ν(%1)
∣∣∣∣.

Here,∣∣∣Iα0+ (I − Q1)N1ω(%2) − Iα0+ (I − Q1)N1ω(%1)
∣∣∣

≤
1

Γ(α)

∣∣∣∣ ∫ %2

0
(%2 − κ)α−1(I − Q1)N1ω(κ)dκ

−

∫ %1

0
(%1 − κ)α−1(I − Q1)N1ω(κ)dκ

∣∣∣∣
≤

r1

Γ(α)

[∫ %1

0
((%2 − κ)α−1 − (%1 − κ)α−1)dκ +

∫ %2

%1

(%2 − κ)α−1dκ
]

=
r1

Γ(α + 1)
(%α2 − %

α
1 ).

Furthermore, we have∣∣∣∣(Iα0+ (I − Q1)N1ω)( j)(%2) − (Iα0+ (I − Q1)N1ω)( j)(%1)
∣∣∣∣

≤
1

Γ(α − j)

∣∣∣∣ ∫ %2

0
(%2 − κ)α− j−1(I − Q1)N1ω(κ)dκ

−

∫ %1

0
(%1 − κ)α− j−1(I − Q1)N1ω(κ)dκ

∣∣∣∣
≤

r1

Γ(α − j)

[∫ %1

0
((%2 − κ)α− j−1 − (%1 − κ)α− j−1)dκ

+

∫ %2

%1

(%2 − κ)α− j−1dκ
]

=
r1

Γ(α − j + 1)
(%α− j

2 − %
α− j
1 ),

where j = 0, 1, 2, ..., n − 1. Thus,∣∣∣(Iα0+ (I − Q1)N1ω)( j)(%2) − (Iα0+ (I − Q1)N1ω)( j)(%1)
∣∣∣→ 0

uniformly as %2 → %1. Similarly, we can show that∣∣∣∣Iβ0+ (I − Q2)N2υ(%2) − Iβ0+ (I − Q2)N2υ(%1)
∣∣∣∣

≤
r2

Γ(β + 1)
(%β2 − %

β
1),∣∣∣∣(Iβ0+ (I − Q2)N2υ) j(%2) − (Iβ0+ (I − Q2)N2υ) j(%1)

∣∣∣∣
≤

r2

Γ(β − j + 1)
(%β− j

2 − %
β− j
1 ),∣∣∣Iγ0+ (I − Q3)N3ν(%2) − Iγ0+ (I − Q3)N3ν(%1)

∣∣∣
≤

r3

Γ(γ + 1)
(%γ2 − %

γ
1),∣∣∣(Iγ0+ (I − Q3)N3ν)

′

(%2) − (Iγ0+ (I − Q3)N3ν)
′

(%1)
∣∣∣

≤
r3

Γ(γ − j + 1)
(%γ− j

2 − %
γ− j
1 ).

Since %α, %α− j, %β, %β− j, %γ and %γ− j are uniformly
continuous on [0,1], we can get that KP,Q(Ω) ⊂

C[0, 1], K( j)
P,Q(Ω) ⊂ C[0, 1], j = 1, 2, ..., n − 1 are

equicontinuous. By the Arzela-Ascoli theorem, we can
obtain KP(I − Q)N is completely continuous. Hence N is
L-compact on Ω. �

Theorem 3.4. Let f , g, h : [0, 1]×R(n−1) → R be continuous.

Assume that

(B1) There exist positive constants δi, ρi, τi ∈ [0, 1], i =

1, 2, ...n, such that for all (̃y1, ỹ2, ..., ỹn) ∈ Rn and % ∈ [0, 1],

| f (%, ỹ1, ỹ2, ..., ỹn)| ≤ ρ0 + ρ1 |̃y1| + ρ2 |̃y2| + ... + ρn |̃yn| ,

|g(%, ỹ1, ỹ2, ..., ỹn)| ≤ δ0 + δ1 |̃y1| + δ2 |̃y2| + ... + δn |̃yn| ,

|h(%, ỹ1, ỹ2, ..., ỹn)| ≤ τ0 + τ1 |̃y1| + τ2 |̃y2| + ... + τn |̃yn| .

(B2) There exists a positive constant D such that for any

m1,m2,m3 ∈ R, if min {|m1|, |m2|, |m3|} > D, one has either

m1N1(m2%
n−1) > 0, m2N2(m3%

n−1) > 0, m3N3(m1%
n−1) > 0

or

m1N1(m2%
n−1) < 0, m2N2(m3%

n−1) < 0, m3N3(m1%
n−1) < 0.

(B3) max
{
2d1

∑n
j=1 ρ j, 2d2

∑n
j=1 δ j, 2d3

∑n
j=1 τ j, d1

∑n
j=1 ρ j +

d2
∑n

j=1 δ j, d2
∑n

j=1 δ j +d3
∑n

j=1 τ j, d1
∑n

j=1 ρ j +d3
∑n

j=1 τ j

}
<

1.

Then the system (1.1) and (1.4) has at least one solution.

Lemma 3.5. Assume that (B1) − (B3) hold, then the set

Ω1 = {(υ, ν, ω) ∈ domL \ KerL | L(υ, ν, ω) = λN(υ, ν, ω), λ ∈ (0, 1)}

is bounded.
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Proof. For (υ, ν, ω) ∈ Ω1, λ , 0, then L(υ, ν, ω) =

λN(υ, ν, ω) ∈ ImL = KerQ, that is, QN(υ, ν, ω) = 0. By
(3.3), we have

λ(α − n + 1)
∫ 1

0
(1 − κ)α−n f (κ, ω(κ), ω

′

(κ), ..., ω(n−1)(κ))dκ = 0,

λ(β − n + 1)
∫ 1

0
(1 − κ)β−ng(κ, υ(κ), υ

′

(κ), ..., υ(n−1)(κ))dκ = 0,

λ(γ − n + 1)
∫ 1

0
(1 − κ)γ−nh(κ, ν(κ), ν

′

(κ), ..., ν(n−1)(κ))dκ = 0.

Applying integral mean value theorem, there exist constants
%0, %1, %2 ∈ [0, 1] such that

f (%0, ω(%0), ω
′

(%0), ..., ω(n−1)(%0)) = 0,

g(%1, υ(%1), υ
′

(%1), ..., υ(n−1)(%1)) = 0,

h(%2, ν(%2), ν
′

(%2), ..., ν(n−1)(%2)) = 0.

From (B2), we can get |ν(n−1)(%2)| ≤ K, |υ(n−1)(%1)| ≤ K and
|ω(n−1)(%0)| ≤ K.
By L2ν = λN2υ, we have

ν(%) =
1

Γ(β)

∫ %

0
(% − κ)β−1g(κ, υ(κ), ..., υ(n−1)(κ)) dκ

− ν(0) − ν′(0) − ... −
ν(n−1)(0)
(n − 1)!

%n−1.

Furthermore, we have that,

ν(n−1)(%) =
1

Γ(β − n + 1)

∫ %

0
(% − κ)β−ng(κ, υ(κ), ..., υ(n−1)(κ))dκ

− ν(n−1)(0).

Substituting % = %2 in the above equation, we can get

ν(n−1)(%2) =
1

Γ(β − n + 1)

×

∫ %2

0
(%2 − κ)β−ng(κ, υ(κ), ..., υ(n−1)(κ))dκ

− ν(n−1)(0).

Together with |ν(n−1)(%2)| ≤ K, we have

|ν(n−1)(0)| ≤
∣∣∣ 1
Γ(β − n + 1)

×

∫ %2

0
(%2 − κ)β−ng(κ, υ(κ), ..., υ(n−1)(κ))dκ

∣∣∣
+ |ν(n−1)(%2)|

≤ K +
1

Γ(β − n + 1)

×

∫ %2

0
(%2 − κ)β−n|g(κ, υ(κ), ..., υ(n−1)(κ))|dκ

≤ K +
1

Γ(β − n + 1)

×

∫ %2

0
(%2 − κ)β−n

δ0 +

n∑
j=1

δ j

∣∣∣υ j

∣∣∣ dκ

≤ K +
1

Γ(β − n + 1)

δ0 +

n∑
j=1

δ j

∥∥∥υ j

∥∥∥
∞


×

∫ %2

0
(%2 − κ)β−ndκ

≤ K + d2δ0 + d2

n∑
j=1

δ j

∥∥∥υ j

∥∥∥
∞
. (3.9)

Using similar argument, we get

|υ(n−1)(0)| ≤ K + d1ρ0 + d1

n∑
j=1

ρ j

∥∥∥ω j

∥∥∥
∞
, (3.10)

|ω(n−1)(0)| ≤ K + d3τ0 + d3

n∑
j=1

τ j

∥∥∥ν j

∥∥∥
∞
. (3.11)

For every (υ, ν, ω) ∈ X,

‖P(υ, ν, ω)‖X = ‖(P1υ, P2ν, P3ω)‖X
= max {‖P1υ‖X , ‖P2ν‖X , ‖P3ω‖X}

= max
{
|υ(n−1)(0)|
(n − 1)!

∥∥∥%n−1
∥∥∥

X ,
|ν(n−1)(0)|
(n − 1)!

∥∥∥%n−1
∥∥∥

X ,

|ω(n−1)(0)|
(n − 1)!

∥∥∥%n−1
∥∥∥

X

}
≤ max

{
|υ(n−1)(0)|; |ν(n−1)(0)|; |ω(n−1)(0)|

}
.

(3.12)

Again, for (υ, ν, ω) ∈ Ω1, (υ, ν, ω) ∈ domL \ KerL, then
(I − P)(υ, ν, ω) ∈ domL ∩ KerP and LP(υ, ν, ω) = (0, 0, 0).
Thus, from (3.5), we have

‖(I − P)(υ, ν, ω)‖X = ‖KPL(I − P)(υ, ν, ω)‖X
= ‖KP(L1υ, L2ν, L3ω)‖X
≤ max {d1 ‖N1ω‖∞ ; d2 ‖N2υ‖∞ ; d3||N3ν||∞} .

(3.13)

From (3.12) and (3.13), we get

‖(υ, ν, ω)‖X = ‖P(υ, ν, ω) + (I − P)(υ, ν, ω)‖X
≤ ‖P(υ, ν, ω)‖X + ‖(I − P)(υ, ν, ω)‖X
≤ max

{
|υ(n−1)(0)|; |ν(n−1)(0)|; |ω(n−1)(0)|

}
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+ max {d1 ‖N1ω‖∞ ; d2 ‖N2υ‖∞ ; d3 ‖N3ν‖∞}

≤ max
{
|υ(n−1)(0)| + d1 ‖N1ω‖∞ , |υ

(n−1)(0)| + d2 ‖N2υ‖∞ ,

|υ(n−1)(0)| + d3 ‖N3ν‖∞ , |ν
(n−1)(0)| + d1 ‖N1ω‖∞ ,

|ν(n−1)(0)| + d2 ‖N2υ‖∞ , |ν
(n−1)(0)| + d3 ‖N3ν‖∞ ,

|ω(n−1)(0)| + d1 ‖N1ω‖∞ , |ω
(n−1)(0)| + d2||N2υ||∞,

|ω(n−1)(0)| + d3 ‖N3ν‖∞

}
. (3.14)

The proof is divided into nine cases as follows.

Case 1. ‖(υ, ν, ω)‖X ≤ |υ
(n−1)(0)| + d1 ‖N1ω‖∞.

By (3.10), and (B1), we have

‖(υ, ν, ω)‖X ≤ K + d1ρ0 + d1

n∑
j=1

ρ j

∥∥∥ω j

∥∥∥
∞

+ d1ρ0 + d1

n∑
j=1

ρ j

∥∥∥ω j

∥∥∥
∞

≤ K + 2d1ρ0 + 2d1

n∑
j=1

ρ j

∥∥∥ω j

∥∥∥
∞

(3.15)

According to (B3) and the definition of ‖(υ, ν, ω)‖X , we
can get ‖ω‖X are bounded. Therefore Ω1 is bounded.

Case 2. ‖(υ, ν, ω)‖X ≤ |υ
(n−1)(0)| + d2 ‖N2υ‖∞. By (3.10), and

(B1), we have

‖(υ, ν, ω)‖X ≤ K + d1ρ0 + d1

n∑
j=1

ρ j

∥∥∥υ j

∥∥∥
∞

+ d2δ0 + d2

n∑
j=1

δ j

∥∥∥υ j

∥∥∥
∞

(3.16)

By (B3), ‖(υ, ν, ω)‖X is bounded. Therefore Ω1 is
bounded.

Case 3. ‖(υ, ν, ω)‖X ≤ |υ
(n−1)(0)| + d3 ‖N3ν‖∞. By (3.11), and

(B1), we have

‖(υ, ν, ω)‖X ≤ K + d1ρ0 + d1

n∑
j=1

ρ j

∥∥∥ν j

∥∥∥
∞

+ d3τ0 + d3

n∑
j=1

τ j

∥∥∥ν j

∥∥∥
∞

(3.17)

By (B3), ‖(υ, ν, ω)‖X is bounded. Therefore Ω1 is
bounded.

Case 4. ‖(υ, ν, ω)‖X ≤ |ν
(n−1)(0)| + d1 ‖N1ω‖∞. The proof is

similar to that of Case 2, hence the details are omitted.

Case 5. ‖(υ, ν, ω)‖X ≤ |ν
(n−1)(0)| + d2 ‖N2υ‖∞. The proof is

similar to Case 1, hence the details are omitted.

Case 6. ‖(υ, ν, ω)‖X ≤ |ν
(n−1)(0)|+ d3 ‖N3ν‖∞.By (3.9), and (B1),

we have

‖(υ, ν, ω)‖X ≤ K + d2δ0 + d2

n∑
j=1

δ j

∥∥∥υ j

∥∥∥
∞

+ d3τ0 + d3

n∑
j=1

τ j

∥∥∥ν j

∥∥∥
∞

(3.18)

By (B3), ‖(υ, ν, ω)‖X is bounded. Therefore Ω1 is
bounded.

Case 7. ‖(υ, ν, ω)‖X ≤ |ω
(n−1)(0)| + d1 ‖N1ω‖∞. The proof is

similar to Case 3, hence the details are omitted.

Case 8. ‖(υ, ν, ω)‖X ≤ |ω
(n−1)(0)| + d2 ‖N2υ‖∞. The proof is

similar to Case 6, hence the details are omitted.

Case 9. ‖(υ, ν, ω)‖X ≤ |ω
(n−1)(0)| + d3 ‖N3ν‖∞. The proof is

similar to Case 5, hence the details are omitted.

Ω1 is bounded, according to the preceding arguments. �

Lemma 3.6.

Ω2 =
{
(υ, ν, ω)| (υ, ν, ω) ∈ KerL,N(υ, ν, ω) ∈ ImL

}
is bounded.

Proof. For (υ, ν, ω) ∈ Ω2, so we have (υ, ν, ω) =

(m1%
n−1,m2%

n−1,m3%
n−1), m1,m2,

m3 ∈ R. Then from N(υ, ν, ω) ∈ ImL = KerQ, we have
Q1(N1ω) = 0,Q2(N2υ) = 0,Q3(N3ν) = 0, that is,∫ 1

0
(1 − κ)α−n f (%,m3%

n−1, (n − 1)m3%
n−2, ...,m3(n − 1)!)dt = 0,∫ 1

0
(1 − κ)β−ng(%,m1%

n−1, (n − 1)m1%
n−2, ...,m1(n − 1)!)dt = 0,∫ 1

0
(1 − κ)γ−nh(%,m2%

n−1, (n − 1)m2%
n−2, ...,m2(n − 1)!)dt = 0.

By integral mean value theorem, there exist constants
%0, %1, %2 ∈ [0, 1] such that

f (%0,m3%
n−1
0 , (n − 1)m3%

n−2
0 , ...,m3(n − 1)!) = 0,

g(%1,m1%
n−1
1 , (n − 1)m1%

n−2
1 , ...,m1(n − 1)!) = 0,

h(%2,m2%
n−1
2 , (n − 1)m2%

n−2
2 , ...,m2(n − 1)!) = 0.

By (B2) imply that |m1| , |m2| , |m3| ≤
D

(n − 1)!
. Therefore Ω2

is bounded. �
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Lemma 3.7.

Ω3 =
{
(υ, ν, ω) ∈ KerL |

λ(υ, ν, ω) + (1 − λ)QN(υ, ν, ω) = (0, 0, 0), λ ∈ (0, 1)
}

is bounded.

Proof. For (υ, ν, ω) ∈ Ω3, so we have

(υ, ν, ω) = (m1%
n−1,m2%

n−1,m3%
n−1),

m1,m2,m3 ∈ R and

λm1%
n−1 + (1 − λ)(α − n + 1)

×

∫ 1

0
(1 − κ)α−n f (%,m3%

n−1, ...,m3(n − 1)!)dt = 0,

(3.19)

λm2%
n−1 + (1 − λ)(β − n + 1)

×

∫ 1

0
(1 − κ)β−ng(%,m1%

n−1, ...,m1(n − 1)!)dt = 0,

(3.20)

λm3%
n−1 + (1 − λ)(γ − n + 1)

×

∫ 1

0
(1 − κ)γ−nh(%,m2%

n−1, ...,m2(n − 1)!)dt = 0.

(3.21)

If λ = 0, then by (B2), we get |m1| , |m2| , |m3| ≤
D

(n − 1)!
. For

λ ∈ (0, 1], we obtain |m1| , |m2| , |m3| ≤
D

(n − 1)!
. Otherwise,

if |mi| >
D

(n − 1)!
, i = 1, 2, 3, from (B2), one has

λm2
1%

n−1 + (1 − λ)(α − n + 1)

×

∫ 1

0
(1 − κ)α−nm1 f (%,m3%

n−1, ...,m3(n − 1)!)dt > 0,

λm2
2%

n−1 + (1 − λ)(β − n + 1)

×

∫ 1

0
(1 − κ)β−nm2g(%,m1%

n−1, ...,m1(n − 1)!)dt > 0,

λm2
3%

n−1 + (1 − λ)(γ − n + 1)

×

∫ 1

0
(1 − κ)γ−nm3h(%,m2%

n−1, ...,m2(n − 1)!)dt > 0.

which contradict to (3.19) or (3.20) or (3.21). Hence, Ω3 is
bounded. �

Remark 3.8. Suppose the second part of (H3) holds, then

the set

Ω′3 =
{
(υ, ν, ω) ∈ KerL | − λ(υ, ν, ω)

+ (1 − λ)QN(υ, ν, ω) = (0, 0, 0), λ ∈ (0, 1)
}

is bounded.

Proof of the Theorem 3.1: Suppose ∪3
i=1Ω ⊂ Ω be a

bounded open subset of X. From the Lemma 3.2 and Lemma
3.3, we get L is a Fredholm operator of index zero and N is
L-compact on Ω. By Lemma 3.4 and Lemma 3.5, we get
(1) L(υ, ν, ω) , λN(υ, ν, ω) for every ((υ, ν, ω), λ) ∈ [(domL\

KerL) ∩ ∂Ω] × (0, 1);
(2) Nx < ImL for every (υ, ν, ω) ∈ KerL ∩ ∂Ω. Choose

H((υ, ν, ω), λ) = ±λ(υ, ν, ω) + (1 − λ)QN(υ, ν, ω).

By Lemma 3.6 (or Remark 3.1), we get H((υ, ν, ω), λ) , 0
for (υ, ν, ω) ∈ KerL ∩ ∂Ω. By the homotopic property of
degree, we have

deg(JQN |KerL,KerL ∩Ω, 0) = deg(H(., 0),KerL ∩Ω, 0)

= deg(H(., 1),KerL ∩Ω, 0)

= deg(±I,KerL ∩Ω, 0) , 0.

Thus, the condition (3) of Lemma 3.3 is satisfied. By
Lemma 3.3, we obtain L(υ, ν, ω) = N(υ, ν, ω) has at least
one solution in domL∩Ω. Hence BVP (1.1) and (1.4) has at
least one solution. This completes the proof.

4. Example

Consider the BVP of fractional differential equation of the
form

D2.25
0+ υ(%) =

%
8 +

%3

4 esinω(%) + 1
4 (1 + ω

′

(%))−
1
3

+%5 sec(ω
′′

(%)), % ∈ (0, 1),

D2.5
0+ ν(%) =

%4

5 + 1
5 eυ(%) cos υ(%) +

%
10 log(1 + υ

′

(%))
+ 1

10 arctan υ
′′

(%), % ∈ (0, 1),

D2.75
0+ ω(%) =

%2

7 + %5 cos ν(%) +
%8

7 e−|ν
′
(%)|

+ 1
14 (1 + ν

′′

(%))−2, % ∈ (0, 1)

(4.1)

and 
υ(0) = υ

′

(0) = 0, υ
′′

(0) = υ
′′

(1),
ν(0) = ν

′

(0) = 0, ν
′′

(0) = ν
′′

(1),
ω(0) = ω

′

(0) = 0, ω
′′

(0) = ω
′′

(1),

(4.2)
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Here α = 2.25, β = 2.5, γ = 2.75, n = 3. Moreover,

f (%, ω(%), ω
′

(%)) =
%

8
+
%3

4
esinω(%) +

1
4

(1 + ω
′

(%))−
1
3

+ %5sec(ω
′′

(%)),

g(%, υ(%), υ
′

(%)) =
%4

5
+

1
5

eυ(%) cos υ(%) +
%

10
log(1 + υ

′

(%))

+
1
10

arctan υ
′′

(%),

h(%, ν(%), ν
′

(%)) =
%2

7
+ %5 cos ν(%) +

%8

7
e−|ν

′
(%)|

+
1
14

(1 + ν
′′

(%))−2.

Now let us compute ρ0, ρ1, ρ2, ρ3 from f (%, ω(%), ω
′

(%)).

f (%, ω(%), ω
′

(%)) =
%

8
+
%3

4
(1 + ω(%) +

ω2(%)
2
− ...)

+
1
4

(1 −
1
3
ω
′

(%) +
4

18
ω
′2 − ...)

+ %5(1 +
ω
′′2(%)
2

+ ...)∣∣∣ f (%, ω(%), ω
′

(%))
∣∣∣ ≤ 13

8
+

1
4
|ω(%)| +

1
12

∣∣∣ω′ (%)
∣∣∣

From the above inequality, we get ρ0 = 13
8 , ρ1 = 1

4 , ρ2 = 1
12 ,

ρ3 = 0. Also,

g(%, υ(%), υ
′

(%)) =
%4

5
+

1
5

(1 + υ(%) −
υ3(%)

3
+ ...)

+
%

10
(υ
′

(%) −
υ
′2(%)
2

+ ...)

+
1

10
(υ
′′

(%) −
υ
′′3(%)
3

+ ...)∣∣∣g(%, υ(%), υ
′

(%))
∣∣∣ ≤2

5
+

1
5
|υ(%)| +

1
10

∣∣∣υ′ (%)
∣∣∣ +

1
10

∣∣∣υ′′ (%)
∣∣∣ .

Here, δ0 = 2
5 , δ1 = 1

5 , δ2 = 1
10 , δ3 = 1

10 . Similarly,

h(%, ν(%), ν
′

(%)) =
%2

7
+ %5

(
1 −

ν2(%)
2!

+ ...

)
ν(%)

+
%8

7

(
1 − |ν

′

(%)| +
|ν
′

(%)|2

2!
− ...

)
+

1
14

(
1 − 2ν

′′

(%) + 3ν
′′2(%) − ...

)
∣∣∣h(%, ν(%), ν

′

(%))
∣∣∣ ≤ 19

14
+

1
7

∣∣∣ν′ (%)
∣∣∣ +

2
14
ν
′′

(%).

Here, τ0 = 19
14 , τ1 = 0, τ2 = 1

7 , τ3 = 1
7 .

We get, d1 = 1
Γ(α−n+2) ≈ 1.1033, d2 = 1

Γ(β−n+2) ≈

1.1284, d3 = 1
Γ(γ−n+2) ≈ 1.0881. Also, to compute

∑3
j=1 ρ j =

1
3 ,

∑3
j=1 δ j = 2

5 ,
∑3

j=1 τ j = 2
7

max
{
2d1

n∑
j=1

ρ j, 2d2

n∑
j=1

δ j, 2d3

n∑
j=1

τ j, d1

n∑
j=1

ρ j + d2

n∑
j=1

δ j,

d2

n∑
j=1

δ j + d3

n∑
j=1

τ j, d1

n∑
j=1

ρ j + d3

n∑
j=1

τ j

}
≈ max

{
0.7355, 0.9027, 0.6218, 0.8191, 0.7622, 0.6786

}
< 1.

Hence all the conditions of Theorem 3.1 are satisfied.
Therefore, BVP’s (4.1), (4.2) has atleast one solution.

5. Conclusions

To provide sufficient conditions for the existence of
solutions to the fraction order three-dimensional differential
system with boundary value problems in order to ensure
that the existence of solutions for the BVP’s of fractional
differential equation of the form (1.1) and (1.4). By using
Mawhin’s coincidence degree method we proved that the
problem has atleast one solution. This paper provides an
example to further illustrate the main result.
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