Electro-hydraulic servo system (EHSS) plays an important role in many industrial and military applications. However, its high-performance tracking control is still a challenging mission due to its nonlinear system dynamics and model uncertainties. In this paper, a novel adaptive robust integral method of the sign of the error (ARISE) with extended state observer (ESO) is proposed. Firstly, the nonlinear mathematical model of typical EHSS with modeling uncurtains and uncertain nonlinear is established. Then, ESO is used to estimate the state and lumped disturbance, of which the unknown parameter estimations can be updated by the novel adaptive law. Results shows that the novel controller achieves better tracking performance in maximum tracking error, average tracking error and standard deviation of the tracking error.
Citation: Xiaohan Yang, Yinghao Cui, Zhanhang Yuan, Jie Hang. RISE-based adaptive control of electro-hydraulic servo system with uncertain compensation[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 9288-9304. doi: 10.3934/mbe.2023407
Electro-hydraulic servo system (EHSS) plays an important role in many industrial and military applications. However, its high-performance tracking control is still a challenging mission due to its nonlinear system dynamics and model uncertainties. In this paper, a novel adaptive robust integral method of the sign of the error (ARISE) with extended state observer (ESO) is proposed. Firstly, the nonlinear mathematical model of typical EHSS with modeling uncurtains and uncertain nonlinear is established. Then, ESO is used to estimate the state and lumped disturbance, of which the unknown parameter estimations can be updated by the novel adaptive law. Results shows that the novel controller achieves better tracking performance in maximum tracking error, average tracking error and standard deviation of the tracking error.
[1] | Z. X. Jiao, J. X. Gao, Q. Hua, S. P. Wang, The velocity synchronizing control on the electro-hydraulic load simulator, Chin. J. Aeronaut., 17 (2004), 39–46. https://doi.org/10.1016/s1000-9361(11)60201-x doi: 10.1016/s1000-9361(11)60201-x |
[2] | J. Koivumäki, J. Mattila, Stability-guaranteed impedance control of hydraulic robotic manipulators, IEEE-ASME Trans. Mech., 22 (2017), 601–612. https://doi.org/10.1109/tmech.2016.2618912 doi: 10.1109/tmech.2016.2618912 |
[3] | Y. H. Li, Z. L. Wang, Exact linearzization control for the displacement type of actuator with electrical and compound adjustment, Chin. J. Mech., 40 (2004), 21–25. https://doi.org/10.3321/j.issn:0577-6686.2004.11.005 doi: 10.3321/j.issn:0577-6686.2004.11.005 |
[4] | J. M. Ma, Y. L. Fu, J. Li, B. Gao, Design simulation and analysis of integrated electrical hydrostatic actuator, Acta Aeronaut. Astronaut. Sin., 26 (2005), 79–83. |
[5] | W. C. Sun, H. H. Pan, H. J. Gao, Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators, IEEE Trans. Veh. Technol., 65 (2016), 4619–4626. https://doi.org/10.1109/TVT.2015.2437455 doi: 10.1109/TVT.2015.2437455 |
[6] | M. Law, M. Wabner, A. Colditz, M. Kolouch, S. Noack, S. Ihlenfeldt, Active vibration isolation of machine tools using an electro-hydraulic actuator, CIRP J. Manuf. Sci. Technol., 10 (2015), 36–48. https://doi.org/10.1016/j.cirpj.2015.05.005 doi: 10.1016/j.cirpj.2015.05.005 |
[7] | H. E. Merritt, Hydraulic Control Systems, New York: Wiley, 1967 |
[8] | B. Xian, D. M. Damson, M. S. de Queiroz, J. Chen, A continuous asymptotic tracking control strategy for uncertain nonlinear systems, IEEE Trans. Autom. Control., 49 (2004), 1206–1211. https://doi.org/10.1109/TAC.2004.831148 doi: 10.1109/TAC.2004.831148 |
[9] | J. Y. Yao, Z. X. Jiao, D. W. Ma, L. Yan, High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties, IEEE-ASME Trans. Mech., 19 (2014), 633–641. https://doi.org/10.1109/tmech.2013.2252360 doi: 10.1109/tmech.2013.2252360 |
[10] | P. M. Patre, W. MacKunis, C. Makkar, W. E. Dixon, Asymptotic tracking for systems with structured and unstructured uncertainties, in Proceedings of the 45th IEEE Conference on Decision and Control, (2006), 441–446. https://doi.org/10.1109/cdc.2006.377377 |
[11] | B. Yao, F. Bu, J. Reedy, G. T. C. Chiu, Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments, IEEE-ASME Trans. Mech., 5 (2000), 79–91. https://doi.org/10.1109/3516.828592 doi: 10.1109/3516.828592 |
[12] | A. Mohanty, B. Yao, Indirect adaptive robust control of hydraulic manipulators with accurate parameter estimates, IEEE Trans. Control Syst. Technol., 19 (2011), 567–575. https://doi.org/10.1109/tcst.2010.2048569 doi: 10.1109/tcst.2010.2048569 |
[13] | J. Yang, J. Y. Su, S. H. Li, X. H. Yu, High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach, IEEE Trans. Ind. Inf., 10 (2014), 604–614. https://doi.org/10.1109/tii.2013.2279232 doi: 10.1109/tii.2013.2279232 |
[14] | D. Won, W. Kim, M. Tomizuka, High gain observer based integral sliding mode control for position tracking of electro-hydraulic servo systems, IEEE-ASME Trans. Mech., 22 (2017), 2695–2704. https://doi.org/10.1109/tmech.2017.2764110 doi: 10.1109/tmech.2017.2764110 |
[15] | J. Y. Yao, Z. X. Jiao, D. W. Ma, Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping, IEEE Trans. Ind. Electron., 61 (2014), 6285–6293. https://doi.org/10.1109/TIE.2014.2304912 doi: 10.1109/TIE.2014.2304912 |
[16] | W. Sun, H. J. Gao, O. Kaynak, Adaptive backstepping control for active suspension systems with hard constraints, IEEE-ASME Trans. Mech., 18 (2013), 1072–1079. https://doi.org/10.1109/tmech.2012.2204765 doi: 10.1109/tmech.2012.2204765 |
[17] | X. Yue, J. Y. Yao, Adaptive integral robust control of electro-hydraulic load simulator, Chin. Hydraul. Pneumatics, 12 (2016), 25–30. https://doi.org/10.11832 /j.issn.1000-4858.2016.12.004 doi: 10.11832/j.issn.1000-4858.2016.12.004 |
[18] | X. Yue, J. Y. Yao, Integral robust based asymptotic tracking control of electro-hydraulic load simulator, Acta Aeronaut. Astronaut. Sin., 38 (2017), 294–303. https://doi.org/10.7527/S1000-6893.2016.0152 doi: 10.7527/S1000-6893.2016.0152 |
[19] | J. Y. Yao, W. X. Deng, Z. X. Jiao, RISE-based adaptive control of hydraulic systems with asymptotic tracking, IEEE Trans. Autom. Sci. Eng., 14 (2017), 1524–1531. https://doi.org/10.1109/TASE.2015.2434393 doi: 10.1109/TASE.2015.2434393 |
[20] | S. B. Wang, J. Na, X. M. Ren, RISE-based adaptive asymptotic prescribed performance tracking control of nonlinear servo mechanisms, IEEE Trans. Syst. Man Cybern. Syst., 48 (2018), 2359–2370. https://doi.org/10.1109/TSMC.2017.2769683 doi: 10.1109/TSMC.2017.2769683 |
[21] | W. Bu, T. Li, J. Yang, Y. Yi, Disturbance observer-based event-triggered tracking control of networked robot manipulator, Meas. Control., 3 (2020), 1–7. https://doi.org/10.1177/0020294020911084 doi: 10.1177/0020294020911084 |
[22] | H. Rojas-Cubides, J. Cortés-Romero, J. Arcos-Legarda, Data-driven disturbance observer-based control: an active disturbance rejection approach, Control. Theory Technol., 19 (2021), 80–93. https://doi.org/10.1007/s11768-021-00039-x doi: 10.1007/s11768-021-00039-x |
[23] | H. F. Li, Y. C. Wang, H. G. Zhang, Data-driven-based event-triggered tracking control for non-linear systems with unknown disturbance, IET Control. Theory Appl., 14 (2019), 2197–2206. https://doi.org/10.1049/iet-cta.2019.0051 doi: 10.1049/iet-cta.2019.0051 |
[24] | S. Li, H. Ren, C. Lu, Event-triggered adaptive fault-tolerant control for multi-agent systems with unknown disturbances, Discrete Contin. Dyn. A, 8 (2021): 1941–1956. https://doi.org/10.3934/dcdss.2020379 doi: 10.3934/dcdss.2020379 |
[25] | X. M. Yao, J. H. Park, L. G. Wu, L. Guo, Disturbance-observer-based composite hierarchical antidisturbance control for singular Markovian jump systems, IEEE Trans. Autom. Control, 64 (2019), 2875–2882. https://doi.org/10.1109/TAC.2018.2867607 doi: 10.1109/TAC.2018.2867607 |
[26] | X. M. Yao, L. Guo, Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer, Automatica, 49 (2013), 2538–2545. https://doi.org/10.1016/j.automatica.2013.05.002 doi: 10.1016/j.automatica.2013.05.002 |
[27] | J. Q. Han, From PID technique to active disturbances rejection control technique, Control Eng. China, 9 (2002), 13–18. https://doi.org/10.14107/j.cnki.kzgc.2002.03.003 doi: 10.14107/j.cnki.kzgc.2002.03.003 |
[28] | X. F. Zeng, X. H. Wang, J. Zhang, G. Z. Shen, Disturbance compensated terminal sliding mode control for hypersonic vehicles, J. Beijing Univ. Aeronaut. Astronaut., 38 (2012), 1454–1458. https://doi.org/10.13700/j.bh.1001-5965.2012.11.007 doi: 10.13700/j.bh.1001-5965.2012.11.007 |
[29] | Z. J. Kang, X. Chen, Z. L. Cui, H. G. Yu, Bus voltage control method of DC distribution network based on ESO and terminal sliding mode control, Proc. CSEE, 38 (2012), 3235–3243. https://doi.org/10.13334/j.0258-8013.pcsee.171197 doi: 10.13334/j.0258-8013.pcsee.171197 |
[30] | L. Jin, S. J. Xu, Extended state observer based fault detection and recovery for flywheels, J. Beijing Univ. Aeronaut. Astronaut., 34 (2008), 1272–1275. https://doi.org/10.13700/j.bh.1001-5965.2008.11.013 doi: 10.13700/j.bh.1001-5965.2008.11.013 |
[31] | C. L. Xia, J. H. Liu, W. Yu, Z. Q. Li, Variable structure control of BLDCM based on extended state observer, in IEEE International Conference Mechatronics and Automation, 2 (2005), 568–571. https://doi.org/10.1109/icma.2005.1626612 |
[32] | H. Hang, Y. H. Li, L. M, Yang, A novel low pressure-difference fluctuation electro-hydraulic large flowrate control valve for fuel flowrate control of aeroengine afterburner system, Chin. J. Aeronaut., 11 (2021), 363–376. https://doi.org/10.1016/j.cja.2021.07.002 doi: 10.1016/j.cja.2021.07.002 |