Research article Special Issues

Data-driven trajectory tracking control for autonomous underwater vehicle based on iterative extended state observer


  • Received: 11 October 2021 Revised: 22 December 2021 Accepted: 09 January 2022 Published: 18 January 2022
  • In this study, we explore the precise trajectory tracking control problem of autonomous underwater vehicle (AUV) under the disturbance of the underwater environment. First, a model-free adaptive control (MFAC) is designed based on data-driven ideology and a full-form dynamic linearization (FFDL) method is utilized to online estimate time-varying parameter pseudo gradient (PG) to establish an equivalent data model of AUV motion. Second, the iterative extended state observer (IESO) scheme is designed to combine with FFDL-MFAC. Because the proposed novel controller is able to learn from repeated iterations, the proposed novel controller can estimate and compensate the model approximation error produced by external environmental unknown disturbance. Third, three-dimensional motion is decoupled into horizontal and vertical and a multi closed-loop control structure is designed that exhibits faster convergence rate and reduces sensitivity to parameter jumps than single closed-loop system. Finally, two simulation scenarios are designed featuring non external disturbance and Gaussian noise of signal-to-noise ratio of 90 dB. The simulation results reveal the superiority of FFDL. Furthermore, we adpot the technical parameters data of T-SEA I AUV to conduct numerical simulation, aunderwater trajectory as the tracking scenario and set waves to 0.5 m and current to 0.2 m/s to simulate Lv.2 ocean conditions of "International Ocean State Standard". The simulation results demonstrate the effectiveness and robustness of the proposed tracking control algorithm.

    Citation: Chengxi Wu, Yuewei Dai, Liang Shan, Zhiyu Zhu, Zhengtian Wu. Data-driven trajectory tracking control for autonomous underwater vehicle based on iterative extended state observer[J]. Mathematical Biosciences and Engineering, 2022, 19(3): 3036-3055. doi: 10.3934/mbe.2022140

    Related Papers:

  • In this study, we explore the precise trajectory tracking control problem of autonomous underwater vehicle (AUV) under the disturbance of the underwater environment. First, a model-free adaptive control (MFAC) is designed based on data-driven ideology and a full-form dynamic linearization (FFDL) method is utilized to online estimate time-varying parameter pseudo gradient (PG) to establish an equivalent data model of AUV motion. Second, the iterative extended state observer (IESO) scheme is designed to combine with FFDL-MFAC. Because the proposed novel controller is able to learn from repeated iterations, the proposed novel controller can estimate and compensate the model approximation error produced by external environmental unknown disturbance. Third, three-dimensional motion is decoupled into horizontal and vertical and a multi closed-loop control structure is designed that exhibits faster convergence rate and reduces sensitivity to parameter jumps than single closed-loop system. Finally, two simulation scenarios are designed featuring non external disturbance and Gaussian noise of signal-to-noise ratio of 90 dB. The simulation results reveal the superiority of FFDL. Furthermore, we adpot the technical parameters data of T-SEA I AUV to conduct numerical simulation, aunderwater trajectory as the tracking scenario and set waves to 0.5 m and current to 0.2 m/s to simulate Lv.2 ocean conditions of "International Ocean State Standard". The simulation results demonstrate the effectiveness and robustness of the proposed tracking control algorithm.



    加载中


    [1] A. Tonacci, G. Lacava, M. A. Lippa, L. Lupi, M. Cocco, C. Domenici, Electronic nose and AUV: A novel perspective in marine pollution monitoring, Mar. Technol. Soc. J., 49 (2015), 18–24. https://doi.org/10.4031/MTSJ.49.5.4 doi: 10.4031/MTSJ.49.5.4
    [2] B. Christ, J. Klara, 2016, A new approach to wide area survey multiple AUV application, in OCEANS 2016 MTS/IEEE Monterey, IEEE, Monterey, CA, USA, (2016), 1–6. https://doi.org/10.1109/OCEANS.2016.7761449
    [3] X. Cao, H. Sun, L. Guo, Potential field hierarchical reinforcement learning approach for target search by multi-AUV in 3-d underwater environments, Int. J. Control, 93 (2020), 1677–1683. https://doi.org/10.1080/00207179.2018.1526414 doi: 10.1080/00207179.2018.1526414
    [4] A. Sultan, M. L. Ricardo, T. Thomas, H. Ibrahim, M. K. Omar, Optimal 3D time-energy trajectory planning for AUVs using ocean general circulation models, Ocean Eng., 218 (2020), 108057. https://doi.org/10.1016/j.oceaneng.2020.108057 doi: 10.1016/j.oceaneng.2020.108057
    [5] K. Teo, E. An, P. P. J. Beaujean, A robust fuzzy autonomous underwater vehicle (AUV) docking approach for unknown current disturbances, IEEE J. Ocean. Eng., 37 (2), 143–155. https: //doi.org/10.1109/JOE.2011.2180058
    [6] C. Samson, Path following and time-varying feedback stabilization of a wheeled mobile robot, in International Conference on Advanced Robotics and Computer Vision, Singapore, 13 (1992).
    [7] Z. Chu, D. Zhu, S. X. Yang, Observer-based adaptive neural network trajectory tracking control for remotely operate dvehicle, IEEE Trans. Neural. Netw. Learn. Syst., 28 (2017), 1633–1645. https://doi.org/10.1109/TNNLS.2016.2544786 doi: 10.1109/TNNLS.2016.2544786
    [8] R. Da Silva Tchilian, E. Rafikova, S. A. Gafurov, M. Rafikov, Optimal control of an underwater glider vehicle, Procedia Eng., 176 (2017), 732–740. https://doi.org/10.1016/j.proeng.2017.02.322 doi: 10.1016/j.proeng.2017.02.322
    [9] T. I. Fossen, S. I. Sagatun, Adaptive control of nonlinear systems: A case study of underwater robotic systems, J. Robot. Syst., 8 (1991), 393–412. https://doi.org/10.1002/rob.4620080307 doi: 10.1002/rob.4620080307
    [10] T. Elmokadem, M. Zribi, K. Youcef-Toumi, Terminal sliding mode control for the trajectory tracking of under actuated autonomous underwater vehicles, Ocean Eng., 129 (2017), 613–625. https://doi.org/10.1016/j.oceaneng.2016.10.032 doi: 10.1016/j.oceaneng.2016.10.032
    [11] Y. Zhang, X. Liu, M. Luo, C. Yang, MPC-based 3-D trajectory tracking for an autonomous underwater vehicle with constraints in complex ocean environments, Ocean Eng., 189 (2019), 106309. https://doi.org/10.1016/j.oceaneng.2019.106309 doi: 10.1016/j.oceaneng.2019.106309
    [12] A. A. R. Al Makdah, N. Daher, D. Asmar, E. Shammas, Three-dimensional trajectory tracking of a hybrid autonomous underwater vehicle in the presence of underwater current, Ocean Eng., 185 (2019), 115–132. https://doi.org/10.1016/j.oceaneng.2019.05.030 doi: 10.1016/j.oceaneng.2019.05.030
    [13] Z. S. Hou, The Parameter Identification, Adaptive Control and Model Free Learning Adaptive Control for Nonlinear Systems, Ph.D thesis, Northeastern University, China, 1994.
    [14] Z. Hou, R. Chi, H. Gao, An overview of dynamic-linearizationbased data-driven control and applications, IEEE Trans. Ind. Electron., 64 (2016), 4076–4090. https://doi.org/10.1109/TIE.2016.2636126 doi: 10.1109/TIE.2016.2636126
    [15] Z. Peng, J. Hu, B. K. Ghosh, Data-driven containment control of discrete-time multi-agent systems via value iteration, Sci. China Inf. Sci., 63 (2020), 1–3. https://doi.org/10.1007/s11432-018-9671-2 doi: 10.1007/s11432-018-9671-2
    [16] Z. Peng, R. Luo, J. Hu, K. Shi, S. K. Nguang, B. K. Ghosh, Optimal tracking control of nonlinear multiagent systems using internal reinforce Q-learning, IEEE Trans. Neural. Netw. Learn. Syst., 2021. https://doi.org/10.1109/TNNLS.2021.3055761 doi: 10.1109/TNNLS.2021.3055761
    [17] Y. Liao, T. Du, Q. Jiang, Model-free adaptive control method with variable forgetting factor for unmanned surface vehicle control, Appl. Ocean Res., 93 (2019), 101945. https://doi.org/10.1016/j.apor.2019.101945 doi: 10.1016/j.apor.2019.101945
    [18] Y. Jiang, X. Xu, L. Zhang, Heading tracking of 6WID/4WIS unmanned ground vehicles with variable wheel base based on model free adaptive control, Mech. Syst. Signal Process., 159 (2021), 107715. https://doi.org/10.1016/j.ymssp.2021.107715 doi: 10.1016/j.ymssp.2021.107715
    [19] C. Zhu, B. Huang, B. Zhou, Y. Su, E. Zhang, Adaptive model-parameter-free fault-tolerant trajectory tracking control for autonomous underwater vehicles, ISA Trans., 114 (2021), 57–71. https://doi.org/10.1016/j.isatra.2020.12.059 doi: 10.1016/j.isatra.2020.12.059
    [20] B. Chen, J. Hu, Y. Zhao, B. K. Ghosh, Finite-time velocity-free observer-based consensus tracking for heterogeneous uncertain AUVs via adaptive sliding mode control, Ocean Eng., 237 (2021), 109565. https://doi.org/10.1016/j.oceaneng.2021.109565 doi: 10.1016/j.oceaneng.2021.109565
    [21] X. Li, C. Ren, S. Ma, X. Zhu, Compensated model-free adaptive tracking control scheme for autonomous underwater vehicles via extended state observer, Ocean Eng., 217 (2020), 107976. https://doi.org/10.1016/j.oceaneng.2020.107976 doi: 10.1016/j.oceaneng.2020.107976
    [22] L. Hou, P. He, W. Wang, X. Yan, N. Tu, Research on model-free adaptive sliding mode control for PMSM based on ESO, Control Eng., 2021. http://doi.org/10.14107/j.cnki.kzgc.20200590 doi: 10.14107/j.cnki.kzgc.20200590
    [23] A. Saleki, M. M. Fateh, Model-free control of electrically driven robot manipulators using an extended state observer, Comput. Electr. Eng., 87 (2020), 106768. https://doi.org/10.1016/j.compeleceng.2020.106768 doi: 10.1016/j.compeleceng.2020.106768
    [24] Z. S. Hou, S. D. Liu, T. Tian, Lazy-learning-based data driven model-free adaptive predictive control for a class of discrete-time nonlinear systems, IEEE Trans. Neural. Netw. Learn. Syst., 28 (2017), 1914–1928. https://doi.org/10.1109/TNNLS.2016.2561702 doi: 10.1109/TNNLS.2016.2561702
    [25] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley & Sons, New York, 2011. https://doi.org/10.1002/9781119994138
    [26] Z. S. Hou, S. T. Jin, A novel data-driven control approach for a class of discrete-time nonlinear systems, IEEE Trans. Control Syst. Technol., 19 (2011), 1549–1558. https://doi.org/10.1109/TCST.2010.2093136 doi: 10.1109/TCST.2010.2093136
    [27] Z. Hou, S. Jin, Model Free Adaptive Control: Theory and Application, Science Press, Beijing, 2013. https://doi.org/10.1201/b15752
    [28] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York, 1976.
    [29] Z. S. Hou, S. T. Jin, Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems, IEEE Trans. Neural. Netw., 22 (2011), 2173–2188. https://doi.org/10.1109/TNN.2011.2176141 doi: 10.1109/TNN.2011.2176141
    [30] Q. Zhou, Research on Dynamic Positioning Methods of Autonomous of Docking and Recovery Technology, Mast.D. thesis, Jiangsu University of Science and Technology, China, 2019.
    [31] L. Jia, Research on Attitude Control of Autonomous of Docking and Recovery Technology, Mast.D. thesis, Jiangsu University of Science and Technology, China, 2021.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2838) PDF downloads(264) Cited by(5)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog