
The nonlinear behavior of reinforced fly ash concrete (RFAC) beams until the ultimate failure is highly a multifaceted phenomenon due to the contention of heterogeneous material properties and the cracking behavior of concrete. This paper represents an exploration of nonlinear finite element analysis of reinforced concrete beams with the inclusion of fly ash under flexural loading. Finite element modelling of RFAC beams is carried out using a distinct reinforcement modelling method. The capability of the model to capture the critical crack regions, loads and deflections for various loadings in RFAC beams has been evaluated. Comparison is made between experimental results and finite element modelling with respect to crack formation and the ultimate capacity for flexural loading and mid-span deflection. The achieved results in the present study indicate acceptable approximation with those in the previous investigations.
Citation: Kong Fah Tee, Sayedali Mostofizadeh. Numerical and experimental investigation of concrete with various dosages of fly ash[J]. AIMS Materials Science, 2021, 8(4): 587-607. doi: 10.3934/matersci.2021036
[1] | Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015 |
[2] | Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463 |
[3] | Murat A. Sultanov, Vladimir E. Misilov, Makhmud A. Sadybekov . Numerical method for solving the subdiffusion differential equation with nonlocal boundary conditions. AIMS Mathematics, 2024, 9(12): 36385-36404. doi: 10.3934/math.20241726 |
[4] | Naimi Abdellouahab, Keltum Bouhali, Loay Alkhalifa, Khaled Zennir . Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions. AIMS Mathematics, 2025, 10(3): 6805-6826. doi: 10.3934/math.2025312 |
[5] | Xinwei Su, Shuqin Zhang, Lixin Zhang . Periodic boundary value problem involving sequential fractional derivatives in Banach space. AIMS Mathematics, 2020, 5(6): 7510-7530. doi: 10.3934/math.2020481 |
[6] | Ayub Samadi, Chaiyod Kamthorncharoen, Sotiris K. Ntouyas, Jessada Tariboon . Mixed Erdélyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions. AIMS Mathematics, 2024, 9(11): 32904-32920. doi: 10.3934/math.20241574 |
[7] | Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani . Existence and uniqueness results for sequential ψ-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477 |
[8] | Nichaphat Patanarapeelert, Thanin Sitthiwiratthame . On nonlocal fractional symmetric Hanh integral boundary value problems for fractional symmetric Hahn integrodifference equation. AIMS Mathematics, 2020, 5(4): 3556-3572. doi: 10.3934/math.2020231 |
[9] | Abdelkader Amara . Existence results for hybrid fractional differential equations with three-point boundary conditions. AIMS Mathematics, 2020, 5(2): 1074-1088. doi: 10.3934/math.2020075 |
[10] | Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang . Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type. AIMS Mathematics, 2020, 5(1): 557-567. doi: 10.3934/math.2020037 |
The nonlinear behavior of reinforced fly ash concrete (RFAC) beams until the ultimate failure is highly a multifaceted phenomenon due to the contention of heterogeneous material properties and the cracking behavior of concrete. This paper represents an exploration of nonlinear finite element analysis of reinforced concrete beams with the inclusion of fly ash under flexural loading. Finite element modelling of RFAC beams is carried out using a distinct reinforcement modelling method. The capability of the model to capture the critical crack regions, loads and deflections for various loadings in RFAC beams has been evaluated. Comparison is made between experimental results and finite element modelling with respect to crack formation and the ultimate capacity for flexural loading and mid-span deflection. The achieved results in the present study indicate acceptable approximation with those in the previous investigations.
In graph theory, graph labeling is an assignment of labels or weights to the vertices and edges of a graph. Graph labeling plays an important role in many fields such as computer science, coding theory and physics [32]. Baca et al. [10] have introduced the definition of an edge irregular total ℓ-labeling of any graph as a labeling L:V∪E→{1,2,3,…,ℓ} in which every two distinct edges fh and f∗h∗ of a graph G have distinct weights, this means that wL(fh)≠wL(f∗h∗) where wL(fh)=L(f)+L(h)+L(fh). They have deduced inequality which gives a lower bound of tes(G) for a graph G,
tes(G)≥max{⌈|E(G)|+23⌉,⌈Δ+12⌉} | (1) |
Also, they have introduced the exact value of TEIS, tes(G) for some families of graphs like fan graph Fn and wheel graph Wn,
tes(Fn)=⌈3n+23⌉, |
tes(Wn)=⌈2n+23⌉. |
In [15] authors have proved that for any tree T
tes(T)=max{⌈k+13⌉,⌈Δ+12⌉}, |
where Δ is maximum degree on k vertices. In addition, Salama [26] investigated the exact value of TEIS for a polar grid graph,
tes(Pm,n)=⌈2mn+23⌉. |
Authors in [1] determined TEIS for zigzag graphs. Also, the exact value of TEIS of the generalized web graph Wn,m and some families has been determined, see [14]. Tilukay et al. [31] have investigated total irregularity strength for a wheel graph, a fan graph, a triangular Book graph and a friendship graph. On the other hand, in [2,3,8,17,20,24,29] the total edge irregularity strengths for hexagonal grid graphs, centralized uniform theta graphs, generalized helm graph, series parallel graphs, disjoint union of isomorphic copies of generalized Petersen graph, disjoint union of wheel graphs, subdivision of star Sn and categorical product of two cycles have been investigated. For more details, see [4,5,6,7,9,11,12,13,16,18,19,21,23,25,27,28,30].
A generalized theta graph θ(t1,t2,…,tn) is a pair of n internal disjoint paths with lengths at least two joined by end vertices where the end vertices are named south pole S and north pole N and ti is the number of vertices in the nth path. Uniform theta graph θ(t,m) is a generalized theta graph in which all paths have the same numbers of internal vertices, for more details see [22].
In this paper, we have defined a new type of family of graph called uniform theta snake graph, θn(t,m). Also, the exact value of TEIS for some special types of the new family has been determined.
In the following, we define a new type of graph which is called uniform theta snake graph.
Definition 1. If we replace each edge of a path Pn by a uniform theta graph θ(t,m), we have a uniform theta snake graph θn(t,m). See Figure 1.
It is clear that for a uniform theta snake graph |E(θn(t,m))|=t(m+1)n and |V(θn(t,m))|=(tm+1)n+1. In this section, we determine the exact value of TEIS for uniform theta snake graph θn(3,3), θn(3,m), θn(t,3), θn(4,m), and θn(t,4).
Theorem 1. For a uniform theta snake graph θn(3,3) with 10n+1 vertices and 12n edges, we have
tes(θn(3,3))=4n+1. |
Proof. Since a uniform theta snake graph θn(3,3) has 12n edges and (θn(3,3))=6, then from (1) we have:
tes(θn(3,3))≥4n+1. |
To prove the invers inequality, we show that ħ− labeling is an edge irregular total for θn(3,3), see Figure 2, and ħ=4n+1. Let ħ=4n+1 and a total ħ− labeling α:V(θn(3,3))∪E(θn(3,3))→{1,2,3,…,ħ} is defined as:
α(c0)=1, |
α(cs)=4sfor1≤s≤n−1 |
α(cn)=ħ, |
α(xi,j)={jfor1≤j≤3j+1for4≤j≤6....j+n−1for3n−2≤j≤3n−1,i=1,2,3, |
α(xi,3n)=ħ−1fori=1,2,3 |
α(c0xi,1)=ifori=i1,2,3 |
α(cSxi,3S)=4S+ifor1≤S≤n−1,i=1,2,3 |
α(cSxi,3S+1)=4S+i+1for1≤S≤n−1,i=1,2,3 |
α(cnxi,3n)={ħ−2fori=1ħ−1fori=2ħfori=3, |
α(xi,jxi,j+1i)={j+i+1for1≤j≤2j+i+2for4≤j≤5....j+i+n−I1for3n−5≤j≤3n−4ħ+i−3for3n−2≤j≤3n−1,i=1,2,3. |
It is clear that ħ is the greatest used label. The weights of edges of θn(3,3) are given by:
wα(c0xi,1)=i+2fori=1,2,3, |
wα(cSxi,3S)=12S+i−1for1≤S≤n−1,i=1,2,3 |
wα(cSxi,3S+1)=12S+i+2for1≤S≤n−1,i=1,2,3, |
wα(cnxi,3n)={3(ħ−1)fori=13ħ−2fori=23ħ−1fori=3, |
wα(xi,jxi,j+1)={3j+i+2for1≤j≤23j+i+5for4≤j≤5....3j+i+3n−4for3n−5≤j≤3n−43ħ+i−10forj=3n−23ħ+i−7forj=3n−1,i=1,2,3 |
Obviously, the weights of edges are distinct. So α is an edge irregular total ħ− labeling. Hence
tes(θn(3,3))=4n+1. |
Theorem 2. For θn(3,m),m>3 be a uniform theta snake graph. Then
tes(θn(3,m))=(m+1)n+1. |
Proof. Since |E(θn(3,m))|=3(m+1)n and Δ(θn(3,m))=6. Substituting in (1), we find
tes(θn(3,m))≥(m+1)n+1. |
The existence of an edge irregular total ƛ− labeling for θn(3,m), See Figure 3, m>3 will be shown, with ƛ=(m+1)n+1. Define a total ƛ− labeling β:V(θn(3,m))∪E(θn(3,m))→{1,2,3,…,ƛ} for θn(3,m) as:
β(c0)=1, |
β(cs)=(m+1)sfor1≤s≤n−1, |
β(cn)=ƛ |
β(xi,j)={jfor1≤j≤mj+1form+1≤j≤2m....j+n−1form(n−1)+1≤j≤mn−1, |
β(xi,mn)=ƛ−1fori=1,2,3 |
β(c0xi,1)=1fori=1,2,3 |
β(cSxi,mS)=(m+1)S+ifor1≤S≤n−1,i=1,2,3 |
β(cSxi,mS+1)=(m+1)S+i+1for1≤S≤n−1,i=1,2,3 |
β(cnxi,mn)={ƛ−2fori=1ƛ−1fori=2ƛfori=3, |
β(xi,jxi,j+1)={j+i+1for1≤j≤m−1j+i+2form+1≤j≤2m−1....j+i+nform(n−1)+1≤j≤mn−2j+i+n−1forj=mn−1. |
Clearly, ƛ is the most label of edges and vertices. The edges weights are given as follows:
wβ(c0xi,1)=i+2fori=1,2,3, |
wβ(cSxi,mS)=3(m+1)S+i−1for1≤S≤n−1,i=1,2,3 |
wβ(cSxi,mS+1)=3(m+1)S+i+2for1≤S≤n−1,i=1,2,3, |
wβ(cnxi,mn)={3ƛ−3fori=13ƛ−2fori=23ƛ−1fori=3, |
wβ(xi,jxi,j+1)={3j+i+2for1≤j≤m−13j+i+5form+1≤j≤2m−1....3jI+i+3n−1form(n−1)+1≤j≤mn−23ƛ+i−7forj=mn−1, |
It is obvious that the weights of edges are different, thus β is an edge irregular total ƛ− labeling of θn(3,m). Hence
tes(θn(3,m))=(m+1)n+1. |
Theorem 3. Let θn(t,3) be a theta snake graph for t>3. Then
tes(θn(t,3))=⌈4tn+23⌉. |
Proof. A size of the graph θn(t,3) equals 4tn and Δ(θn(t,3))=2t, then from (1) we have
tes(θn(t,3))≥⌈4tn+23⌉. |
We define an edge irregular total ħ− labeling for θn(t,3) to get upper bound. So, let ħ=⌈4tn+23⌉ and a total ħ− labeling γ:V(θn(t,3))∪E(θn(t,3))→{1,2,3,…,ħ} is defined in the following three cases:
Case 1. 4tn+2≡0(mod3)
γ is defined as:
γ(c0)=1, |
γ(cS)=(t+1)Sfor1≤S≤n−1, |
γ(cn)=ħ |
γ(xi,j)I={ifor1≤j≤3,i=1,2,…,ti+t+1for4≤j≤6,i=1,2,…,ti+2(t+1)for7≤j≤9,i=1,2,…,t......i+(n−1)(t+1)for3n−5≤j≤3n−3,i=1,2,…,tħ−1for3n−2≤j≤3n,i=1ħfor3n−2≤j≤3n,i=2,3,…,t, |
γ(c0xi,1)=1fori=1,2,…,t |
γ(cSxi,3S)=2St−2S+3for1≤S≤n−1,i=1,2,…,t |
γ(cnxi,3n)={ħ−t+2fori=1ħ−t+ifori=2,3,…,t, |
γ(cSxi,3S+1)=2St−2S+2for1≤S≤n−1,i=1,2,…,t |
γ(cn−1xi,3n−2)={{(t+2)n−t−5fori=1(t+2)n−t+i−7fori=2,3,…,t,n=2,3{(t+1)n−t−1fori=1(t+1)n−t+i−3fori=2,3,…,t,n≠2,3 |
γ(xi,jxi,j+1)={{t+jfor1≤j≤23t+j−5for4≤j≤55t+j−10for7≤j≤8......(2n−3)t+j−5(n−2)for3n−5≤j≤3n−4,i=1,2,…,tħ−3(t+n)+j+5for3n−2≤j≤3n−1,i=1ħ−3(t+n)+j+5+2(i−2)for3n−2≤j≤3n−1,i=2,3,…,t |
Obviously, ħ is the greatest label. The edges weights of θn(t,3) can be expressed as:
wγ(c0xi,1)=i+2fori=1,2,…,t |
wγ(cSxi,3S)=t(4S−1)+i+2for1≤S≤n−1,i=1,2,…,t |
wγ(cSxi,3S+1)=4St+i+2for1≤S≤n−1,i=1,2,…,t, |
wγ(cn−1xi,3n−2)={2nt+3n−2t+ħ+i−8forn=2,32nt+2n−2t+ħ+i−4forn≠2,3,i=1,2,…,t |
wγ(xi,jxi,j+1)={{t+j+2ifor1≤j≤25t+j+2i−4for4≤j≤59t+j+2i−6for7≤j≤8......(4n−5)t+j+2i−3n+8for3ni−5≤j≤3n−4,i=1,2,…,t3ħ−3(t+in)+j+3for3n−2≤j≤3n−1,i=13ħ−3(t+in)+j+2i+3for3n−2≤j≤3n−1,i=2,3,…,t |
It implies that the edges weights have distinct values. So γ is the desired edge irregular total ħ− labeling, ħ=⌈4tn+23⌉. Hence
tes(θn(t,3))=⌈4tn+23⌉. |
Case 2. 4tn+2≡1(mod3)
Defineγ as:
γ(c0)=1, |
γ(cS)=(t+1)Sfor1≤S≤n−1, |
γ(cn)=ħ |
γ(xi,j)={ifor1≤j≤3,i=1,2,…,ti+t+1for4≤j≤6,i=1,2,…,ti+2(t+1)for7≤j≤9,i=1,2,…,t......i+(n+1)(t+1)for3n−5≤j≤3n−3,i=1,2,…,tħ−1for3n−2≤j≤3n,i=1ħfor3n−2≤j≤3n,i=2,3,…,t, |
γ(c0xi,1)=1fori=1,2,…,t |
γ(cSxi,3S)=2St−2S+3for1≤S≤n−1,i=1,2,…,t |
γ(cnxi,3n)={ħ−tfori=1ħ−t+i−2fori=2,3,…,t, |
γ(cSxi,3S+1)=2St−2S+2for1≤IS≤n−1,i=1,2,…t |
γ(cn−1xi3n−2)={{(t+2)n−t−5fori=1(t+2)n−t+i−7fori=2,3,…,t,n=2,3{(t+1)n−t−1fori=1(It+I1)n−t+i−3fori=2,3,…,t,n≠2,3 |
γ(xi,jxi,j+1)={{t+jfor1≤j≤23t+j−5for4≤j≤55t+j−10for7≤j≤8......(2n−3)t+j−5(n−2)for3n−5≤j≤3n−4,i=1,2,…,tħ−3(t+n)+j+3for3n−2≤j≤3n−1,i=1ħ−3(t+n)+j+2(i−2)for3n−2≤j≤3n−1,i=2,3,…,t |
It is clear that the greatest label is ħ. We define the weights of edges of θn(t,3) as:
wγ(c0xi,1)=i+2fori=1,2,…,t |
wγ(cSxi,3S)=t(4S−1)+i+2for1≤S≤n−1,i=1,2,…,twγ(cnxi,3n)=3ħ−t+i−2for1≤S≤n−1,i=1,2,…,t |
wγ(cSxi,3S+1)=4St+i+2for1≤S≤n−1,i=1,2,…,t, |
wγ(cn−1xi,3n−2)={2nt+3n−2t+ħ+i−8forn=2,32nt+2n−2t+ħ+i−4forn≠2,3,i=1,2,…,t |
wγ(xi,jxi,j+1)={{t+j+2ifor1≤j≤25t+j+2i−4for4≤j≤59t+j+2i−6for7≤j≤8......(4n−5)t+j+2i−3n+8for3n−5≤j≤3n−4,i=1,2,…,t3ħ−3(t+n)+j+1for3n−2≤j≤3n−1,i=13ħ−3(t+n)+j+2(i−2)for3n−2≤j≤3n−1,i=2,3,…,t |
It is obvious that the edges weights are different. Then
tes(θn(t,3))=⌈4tn+23⌉. |
Case 3. 4tn+2≡2(mod3)
γ is defined as follows:
γ(c0)=1, |
γ(cS)=(t+1)Sfor1≤S≤n−1, |
γ(cn)=ħ |
γ(xi,j)={ifor1≤j≤3,i=1,2,…,ti+t+1for4≤j≤6,i=1,2,…,ti+2(t+1)for7≤j≤9,i=1,2,…,t......i+(n−1)(t+1)for3n−5≤j≤3n−3,i=1,2,…,tħ−1for3n−2≤j≤3n,i=1ħfor3n−2≤j≤3n,i=2,3,…,t, |
γ(c0xi,1)=1fori=1,2,…,t |
γ(cSxi,3S)=2St−2S+3for1≤S≤n−1,i=1,2,…,t |
γ(cnxi,3n)={ħ−t+1fori=1ħ−t+i−1fori=2,3,…,t, |
γ(cSxi,3S+1)=2St−2S+2for1≤S≤n−2,i=1,2,…,t |
γ(cn−1xi,3n−2)={{(t+2)n−t−5fori=1(t+2)n−t+i−7fori=2,3,…,t,n=2,3{(t+1)n−t−1fori=1(t+1)n−t+i−3fori=2,3,…,t,n≠2,3 |
γ(xi,jxi,j+1)={{t+jfor1≤j≤23t+j−5for4≤j≤55t+j−10for7≤j≤8......(2n−3)t+j−5(n−2)for3n−5≤j≤3n−4,i=1,2,…tħ−3(t+i)+j+4for3n−2≤j≤3ni−1,i=1ħ−3(t+n)+j+2ifor3n−2≤j≤3n−1,i=2,3,…,t |
We can see that ħ is the greatest label. For edges weights of θn(t,3), we have
wγ(c0xi,1)=i+2fori=1,2,…,t |
wγ(c0xi,3S)=t(4S−1)+i+2for1≤S≤n−1,i=1,2,…,twγ(cnxi,3n)=3ħ−t+i−1for1≤S≤n−1,i=1,2,…,t |
wγ(cSxi,3S+1)=4St+i+2for1≤S≤n−1,i=1,2,…,t, |
wγ(cnxi,3n−2)={2nt−3n−2t+ħ+i−8forn=2,32nt+2n−2t+ħ+i−4forn≠2,3,i=1,2,…,t |
wγ(xi,jxi,j+1)={{t+j+2ifor1≤j≤25t+j+2i−4for4≤j≤59t+j+2i−6for7≤j≤8......(4n−5)t+j+2i−3n+8for3n−5≤j≤3n−4,i=1,2,…,t3ħ−3(t+n)+j+2for3n−2≤j≤3n−1,i=13ħ−3(t+n)+j+2ifor3n−2≤j≤3n−1,i=2,3,…,t |
It clears that the edges weights are i distinct. So γ is the desired edge irregular total ħ− labeling, ħ=⌈4tn+23⌉. Hence
tes(θn(t,3))=⌈4tn+23⌉. |
Theorem 4. For θn(4,m) be a theta snake graph for t>3. Then
tes(θn(4,m))=⌈4(m+1)n+23⌉. |
Proof. Since |E(θn(4,m))|=4(m+1)n and Δ(θn(4,m))=8, then from (1) we have
tes(θn(4,m))≥⌈4(m+1)n+23⌉. |
The existence of an edge irregular total ƛ− labeling for θn(4,m), m>3 will be shown, with ƛ=⌈4(m+1)n+23⌉. Define a total ƛ− labeling β:V(θn(4,m))∪E(θn(4,m))→{1,2,3,…,ƛ} for θn(4,m) in the following three cases as:
Case 1. 4(m+1)n+2≡0(mod3), i=1,2,3,4
β is defined as:
β(cs)={1fors=0(m+1)sfor1≤s≤⌈n2⌉ƛ+s−nfor⌈n2⌉≤s≤n, |
β(xi,j)={jfor1≤j≤mj+1form+1≤j≤2m....j+⌈n2⌉−1ƛ−j+22ƛform(⌈n2⌉−1)+1≤j≤m⌈n2⌉+1form⌈n2⌉+2≤j≤m(n−1)form(n−1)+1≤j≤mn−1, |
β(c0xi,1)=1fori=1,2,3,4 |
β(cSxi,mS)={2cS+i−1for1≤S≤⌈n2⌉−1cS+i−4(m+1)for⌈n2⌉≤s≤n−1ƛ−4+ifors=n,i=1,2,3,4 |
β(cSxi,mS+1)={2cS+i+1for1≤S≤⌈n2⌉,i=1,2,3,4cS+i−4(m+1)+2for⌈n2⌉+1≤s≤n−1 |
β(cnxi,mn)={ƛ−3fori=1ƛ−2fori=2ƛ−1ƛfori=3fori=4, |
β(xi,jxi,j+1)={j+i+1for1≤j≤m−1j+i+2form+1≤j≤2m−1....j+i+⌈n2⌉forj=m(⌈n2⌉−1)+12j+i−2[nm(⌈n2⌉−1)+1]form(⌈n2⌉−1)+2≤j≤mn−1. |
It is clear that ƛ is the greatest used label. The weights of edges of θn(4,m) are given by:
wβ(c0xi,1)=i+2fori=1,2,3,4, |
wβ(cSxi,mS)={2ms+s+2cS+i−1for1≤S≤⌈n2⌉−1,cS+i+ƛ+(s−4)(m+1)−n+⌈n2⌉−1for⌈n2⌉≤s≤n−13ƛ−4+i+s−nfors=n,i=1,2,3,4 |
wβ(cSxi,mS+1)={(2m+1)s+2cS+i+1for1≤S≤⌈n2⌉,2ƛ+s−n+cS+i−4(m+1)+2for⌈n2⌉≤s≤n−1i=1,2,3,4, |
wβ(cnxi,mn)={3ƛ+s−n−3fori=13ƛ+s−n−2fori=23ƛ+s−n−13ƛ+s−nfori=3fori=4, |
wβ(xi,jxi,j+1)={3j+i+2for1≤j≤m−13j+i+4form+1≤j≤2m−1....3j+i+3⌈n2⌉−1forj=m(⌈n2⌉−1)+14j+2ƛ+45+i−2[nm(⌈n2⌉−1)+1]2j+2ƛ+i−2[nm(⌈n2⌉−1)+1]form⌈n2⌉+2≤j≤m(n−1)form(n−1)+1≤j≤mn−1, |
It is obvious that the weights of edges are different, thus β is an edge irregular total ƛ− labeling of θn(4,m). Hence
tes(θn(4,m))=⌈4(m+1)n+23⌉. |
Case 2. 4(m+1)n+2≡1(mod3), i=1,2,3,4
β is defined as:
β(cs)={1fors=0(m+1)sfor1≤s≤⌈n2⌉ƛ+s−nfor⌈n2⌉≤s≤n, |
β(xi,j)={jfor1≤j≤mj+1form+1≤j≤2m....j+⌈n2⌉−1ƛ−j+22ƛform(⌈n2⌉−1)+1≤j≤m⌈n2⌉form⌈n2⌉+1≤j≤m(n−1)form(n−1)+1≤j≤mn−1, |
β(c0xi,1)=1fori=1,2,3,4 |
β(cSxi,mS)={2cS+i−1for1≤S≤⌈n2⌉−1,ƛ−7+ifors=⌈n2⌉cS+i−4m−2for⌈n2⌉+1≤s≤n−1ƛ−6+ifors=n,i=1,2,3,4 |
β(cSxi,mS+1)={2cS+i+1for1≤S≤⌈n2⌉cS+i−4mfor⌈n2⌉≤s≤n−1,i=1,2,3,4 |
β(cnxi,mn)={ƛ−5fori=1ƛ−4fori=2ƛ−3ƛ−2fori=3fori=4, |
β(xi,jxi,j+1)={j+i+1for1≤j≤m−1j+i+2form+1≤j≤2m−1....j+i+⌈n2⌉forj=m(⌈n2⌉−1)+12j+i−2[nm(⌈n2⌉−1)+1]form(⌈n2⌉−1)+2≤j≤mn−1. |
It is clear that ƛ is the greatest used label. The weights of edges of θn(4,m) are given by:
wβ(c0xi,1)=i+2fori=1,2,3,4, |
wβ(cSxi,mS)={2ms+s+2cS+i−1for1≤S≤⌈n2⌉−1,2ƛ−m⌈n2⌉+(m+1)s+i+15fors=⌈n2⌉cS+i+ƛ+(s−4)(m+1)−n+⌈n2⌉−1for⌈n2⌉≤s≤n−13ƛ−4+i+s−nfors=n |
wβ(cSxi,mS+1)={(2m+1)s+2cS+i+1for1≤S≤⌈n2⌉,i=1,2,3,42ƛ+s−n+cS+i−4mfor⌈n2⌉≤s≤n−1i=1,2,3,4, |
wβ(cnxi,mn)={3ƛ+s−n−5fori=13ƛ+s−n−4fori=23ƛ+s−n−33ƛ+s−n−2fori=3fori=4, |
wβ(xi,jxi,j+1)={3j+i+2for1≤j≤m−13j+i+4form+1≤j≤2m−1....3j+i+3⌈n2⌉−1forj=m(⌈n2⌉−1)+14j+2ƛ+45+i−2[nm(⌈n2⌉−1)+1]2j+2ƛ+i−2[nm(⌈n2⌉−1)+1]form⌈n2⌉+2≤j≤m(n−1)form(n−1)+1≤j≤mn−1, |
It is obvious that the weights of edges are different, thus β is an edge irregular total ƛ− labeling of θn(4,m). Hence
tes(θn(4,m))=⌈4(m+1)n+23⌉. |
Case 3. 4(m+1)n+2≡2(mod3), i=1,2,3,4
β is defined as:
β(cs)={1fors=0(m+1)sfor1≤s≤⌈n2⌉ƛ+s−nfor⌈n2⌉≤s≤n, |
β(xi,j)={jfor1≤j≤mj+1form+1≤j≤2m....j+⌈n2⌉−1ƛ−j+22ƛform(⌈n2⌉−2)+1≤j≤m(⌈n2⌉−1)form(⌈n2⌉−1)+1≤j≤m(n−1)form(n−1)+1≤j≤mn−1, |
β(c0xi,1)=1fori=1,2,3,4 |
β(cSxi,mS)={2cS+i−1for1≤S≤⌈n2⌉−1,i=1,2,3,4ƛ−7+ifors=⌈n2⌉cS+i−4m−2for⌈n2⌉+1≤s≤n−1ƛ−5+ifors=n |
β(cSxi,mS+1)={2cS+i+1for1≤S≤⌈n2⌉−1,i=1,2,3,4cS+1+ifors=⌈n2⌉cS+i−4m+1for⌈n2⌉+1≤s≤n−1 |
β(cnxi,mn)={ƛ−4fori=1ƛ−3fori=2ƛ−2ƛ−1fori=3fori=4, |
β(xi,jxi,j+1)={j+i+1for1≤j≤m−1j+i+2form+1≤j≤2m−1....j+i+⌈n2⌉forj=m(⌈n2⌉−1)+12j+i−2[nm(⌈n2⌉−1)+1]+1form(⌈n2⌉−1)+2≤j≤mn−1. |
It is clear that ƛ is the greatest used label. The weights of edges of θn(4,m) are given by:
wβ(c0xi,1)=i+2fori=1,2,3,4, |
wβ(cSxi,mS)={2ms+s+2cS+i−1for1≤S≤⌈n2⌉−1,2ƛ−m⌈n2⌉+(m+1)s+i+15fors=⌈n2⌉cS+i+ƛ+(s−4)(m+1)−n+⌈n2⌉−1for⌈n2⌉≤s≤n−13ƛ−3+i+s−nfors=n |
wβ(cSxi,mS+1)={(2m+1)s+2cS+i+1for1≤S≤⌈n2⌉,i=1,2,3,42ƛ+s−n+cS+i−4m+1for⌈n2⌉≤s≤n−1, |
wβ(cnxi,mn)={3ƛ+s−n−3fori=13ƛ+s−n−2fori=23ƛ+s−n−13ƛ+s−nfori=3fori=4, |
wβ(xi,jxi,j+1)={3j+i+2for1≤j≤m−13j+i+4form+1≤j≤2m−1....3j+i+3⌈n2⌉−1forj=m(⌈n2⌉−1)+14j+2ƛ+45+i−2[nm(⌈n2⌉−1)+1]2j+2ƛ+i−2[nm(⌈n2⌉−1)+1]form⌈n2⌉+2≤j≤m(n−1)form(n−1)+1≤j≤mn−1, |
It is obvious that the weights of edges are different, thus β is an edge irregular total ƛ− labeling of θn(4,m). Hence
tes(θn(4,m))=⌈4(m+1)n+23⌉ |
Theorem 5. If θn(t,4) is theta snake graph for t>3. Then
tes(θn(t,4))=⌈5tn+23⌉. |
Proof. Since |E(θn(t,4))|=5tn and Δ(θn(t,4))=2t. Substituting in (1), we have
tes(θn(t,4))≥⌈5tn+23⌉. |
We define an edge irregular total ħ− labeling for θn(t,4) to get upper bound. Let ħ=⌈5tn+23⌉ and a total ħ− labeling γ:V(θn(t,4))∪E(θn(t,4))→{1,2,3,…,ħ} is defined in the following three cases:
Case 1. 5tn+2≡0(mod3)
Defineγ as:
γ(c0)=1, |
γ(cS)=(t+1)Sfor1≤S≤n−1, |
γ(cn)=ħ |
γ(xi,j)={ifor1≤j≤4,i=1,2,…,ti+t+1for5≤j≤8,i=1,2,…,ti+2(t+1)for9≤j≤12,i=1,2,…,t......i+(n−1)(t+1)for4n−7≤j≤4n−4,i=1,2,…,tħ−1for4n−3≤j≤4n,i=1ħfor4n−3≤j≤4n,i=2,3,…,t, |
γ(c0xi,1)=1fori=1,2,…,t |
γ(cSxi,4S)=3St−2S+3for1≤S≤n−1,i=1,2,…,t |
γ(cnxi,4n)={ħ−t+2fori=1ħ−t+ifori=2,3,…,t, |
γ(cSxi,4S+1)=3St−2S+2for1≤S≤n−1,i=1,2,…,t |
γ(cn−1xi,4n−3)={{(t+2)n−t−5fori=1(t+2)n−t+i−7fori=2,3,…,t,n=2,3(t+1)n−t+i−3fori=2,3,…,t,n≠2,3 |
γ(xi,jxi,j+1)={{t+jfor1≤j≤23t+j−5for4≤j≤55t+j−10for7≤j≤8......(2n−3)t+j−5(n−2)for4n−5≤j≤4n−4,i=1,2,…,tħ−3(t+n)+j+5for4n−2≤j≤4n,i=1ħ−3(t+n)+j+5+2(i−2)for4n−2≤j≤4n,i=2,3,…,t |
It is clear that, ħ is the greatest label. The edges weights of θn(t,4) can be expressed as:
wγ(c0xi,1)=i+2fori=1,2,…,t |
wγ(cSxi,4S)=t(5S−1)+i+2for1≤S≤n−1,i=1,2,…,twγ(cnxi,4n)=3ħ−t+ifori=1,2,…,t |
wγ(cSxi,4S+1)=5St+i+2for1≤S≤n−1,i=1,2,…,t, |
wγ(cn−1xi,4n−2)={2nt+3n−2t+ħ+i−8forn=2,32nt+2n−2t+ħ+i−6forn≠2,3,i=1,2,…,t |
wγ(xi,jxi,j+1)={{t+j+2ifor1≤j≤25t+j+2i−4for4≤j≤59t+j+2i−6for7≤j≤8......(4n−5)t+j+2i−3n+8for4n−5≤j≤4n−4,i=1,2,…,t3ħ−3(t+n)+j+3for4n−2≤j≤4n−1,i=13ħ−3(t+n)+j+2i+3for4n−2≤j≤4n−1,i=2,3,…,t |
It implies that the edges weights have distinct values. So γ is the desired edge irregular total ħ− labeling, ħ=⌈5tn+23⌉. Hence
tes(θn(t,4))=⌈5tn+23⌉. |
Case 2. 5tn+2≡1(mod3)
Defineγ as:
γ(c0)=1, |
γ(cS)=(t+1)Sfor1≤S≤n−1, |
γ(cn)=ħ |
γ(xi,j)={ifor1≤j≤4,i=1,2,…,ti+t+1for5≤j≤8,i=1,2,…,ti+2(t+1)for9≤j≤12,i=1,2,…,t......i+(n+1)(t+1)for4n−7≤j≤4n−4,i=1,2,…,tħ−1for4n−3≤j≤4n,i=1ħfor4n−3≤j≤4n,i=2,3,…,t, |
γ(c0xi,1)=1fori=1,2,…,t |
γ(cSxi,4S)=3St−2S+3for1≤S≤n−1,i=1,2,…,t |
γ(cnxi,4n)={ħ−tfori=1ħ−t+i−2fori=2,3,…,t, |
γ(cSxi,4S+1)=3St−2S+2 |
for1≤S≤n−1,i=1,2,…t |
γ(cn−1xi,4n−3)={{(t+2)n−t−5fori=1(t+2)n−t+i−7fori=2,3,…,t,n=2,3{(t+1)n−t−1fori=1(t+1)n−t+i−3fori=2,3,…,t,n≠2,3 |
γ(xi,jxi,j+1)={{t+jfor1≤j≤33t+j−5for5≤j≤75t+j−10for9≤j≤11......(2n−3)t+j−5(n−2)for4n−7≤j≤4n−5,i=1,2,…,tħ−4(t+n)+j+3for4n−3≤j≤4n−1,i=1ħ−4(t+n)+j+2(i−2)for4n−3≤j≤4n−1,i=2,3,…,t |
It is clear that the i greatest label is ħ. We define the weights of edges of θn(t,4) as:
wγ(c0xi,1)=i+2fori=1,2,…,t |
wγ(cSxi,4S)=t(5S−1)+i+2for1≤S≤n−1,i=1,2,…,twγ(cnxi,4n)=3ħ−t+i−2for1≤S≤n−1,i=1,2,…,t |
wγ(cSxi,4S+1)=5St+i+2for1≤S≤n−1,i=1,2,…,t, |
wγ(cn−1xi,4n−3)={3nt+3n−2t+ħ+i−8forn=2,33nt+2n−2t+ħ+i−6forn≠2,3,i=1,2,…,t |
wγ(xi,jxi,j+1)={{t+j+2ifor1≤j≤35t+j+2i−4fori5≤j≤79t+j+2i−6for9≤j≤11......(4n−5)t+j+2i−3n+8for4n−7≤j≤4n−5,i=1,2,…,t3ħ−4(t+n)+j+1for4n−3≤j≤4n−1,i=13ħ−4(t+n)+j+2(i−2)for4n−3≤j≤4n−1,i=2,3,…,t |
It is obvious that the edges weights are different. Then
tes(θn(t,4))=⌈5tn+23⌉. |
Case 3. 5tn+2≡2(mod3)
Defineγ as:
γ(c0)=1, |
γ(cS)=(t+1)Sfor1≤S≤n−1, |
γ(cn)=ħ |
γ(xi,j)={ifor1≤j≤4,i=1,2,…,ti+t+1for5≤j≤8,i=1,2,…,ti+2(t+1)for9≤j≤12,i=1,2,…,t......i+(in−1)(t+1)for4n−7≤j≤4n−4,i=1,2,…,tħ−1for4n−3≤j≤4n,i=1ħfor4n−3≤j≤4n,i=2,3,…,t, |
γ(c0xi,1)=1fori=1,2,…,t |
γ(cSxi,4S)=3St−2S+3for1≤S≤n−1,i=1,2,…,t |
γ(cnxi,4n)={ħ−t+1fori=1ħ−t+i−1fori=2,3,…,t, |
γ(cSxi,4S+1)=3St−2S+2for1≤S≤n−2,i=1,2,…,t |
γ(cn−1xi,4n−3)={{(t+2)n−t−5fori=1(t+2)n−t+i−7fori=2,3,…,t,n=2,3{(t+1)n−t−1fori=1(t+1)n−t+i−3fori=2,3,…,t,n≠2,3 |
γ(xi,jxi,j+1)={{t+jfor1≤j≤33t+j−5for5≤j≤75t+j−10for9≤j≤11......(2n−3)t+j−5(n−2)for4n−7≤j≤4n−5,i=1,2,…tħ−4(t+n)+j+4for4n−3≤j≤4n−1,i=1ħ−4(t+n)+j+2ifor4n−3≤j≤4n−1,i=2,3,…,t |
We can see that ħ is the greatest label. For edges weights of θn(t,4), we have:
wγ(c0xi,1)=i+2fori=1,2,…,t |
wγ(c0xi,4S)=t(5S−1)+i+2for1≤S≤n−1,i=1,2,…,twγ(cnxi,4n)=3ħ−t+i−1for1≤S≤in−1,i=1,2,…,t |
wγ(cSxi,4S+1)=5St+i+2for1≤S≤n−1,i=1,2,…,t, |
wγ(cnxi,4n−3)={2nt−3n−2t+ħ+i−8forn=2,32nt+2n−2t+ħ+i−6forn≠2,3,i=1,2,…,t |
wγ(xi,jxi,j+1)={{t+j+2ifor1≤j≤35t+j+2i−4for5≤j≤79t+j+2i−6for9≤j≤11......(4n−5)t+j+2i−3n+8for4n−7≤j≤4n−5,i=1,2,…,t3ħ−4(t+n)+j+2for4n−3≤j≤3n−1,i=13ħ−4(t+n)+j+2ifor4n−3≤j≤4n−1,i=2,3,…,t |
It is obvious that the edges weights are distinct. So γ is the desired edge irregular total ħ− labeling, ħ=⌈5tn+23⌉. Hence
tes(θn(t,4))=⌈5tn+23⌉. |
The previous results lead us to introduce the following conjecture for a general case of a uniform theta snake graph θn(t,m).
The previous results lead us to introduce the following conjecture for a general case of a uniform theta snake graph θn(t,m).
Conjecture. For uniform theta snake graph θn(t,m), n≥2,t≥3,andm≥3 we have
tes(θn(t,m))=⌈(m+1)tn+23⌉. |
In the current paper, we have defined a new type of a family of graph called uniform theta snake graph, θn(t,m). Also, the exact i value of TEISs for θn(3,3), θn(3,m) and θn(t,3) has been determined. Finally, we have generalized for t, m and found TEIS of a uniform theta snake graph θn(t,m) for m≥3, t≥3.
tes(θn(3,3))=4n+1. |
tes(θn(3,im))=(im+1)in+1. |
tes(θn(t,3))=⌈4tn+23⌉ |
tes(θn(t,m))=⌈(m+1)tn+23⌉. |
All authors declare no conflict of interest in this paper.
We are so grateful to the reviewer for his many valuable suggestions and comments that significantly improved the paper.
[1] |
Ismail AH, Kusbiantoro A, Chin SC, et al. (2020) Pozzolanic reactivity and strength activity index of mortar containing palm oil clinker pretreated with hydrochloric acid. J Clean Prod 242: 118565. doi: 10.1016/j.jclepro.2019.118565
![]() |
[2] |
Tee KF, Mostofizadeh S (2021) A mini review on properties of Portland cement concrete with geopolymer materials as partial or entire replacement. Infrastructures 6: 26. doi: 10.3390/infrastructures6020026
![]() |
[3] | Mostofizadeh S, Tee KF (2019) Evaluation of impact of fly ash on the improvement on type II concrete strength. Proceedings of the 39th Cement and Concrete Science Conference, 190-193. |
[4] | Gharehbaghi K, Tee KF, Gharehbaghi S (2021) Review of geopolymer concrete: A structural integrity evaluation. IJFE (in press). |
[5] | Samad AAA, Mohamad N, Ali AZM, et al. (2017) Trends and development of green concrete made from agricultural and construction waste, Advanced Concrete Technology and Green Materials, Johor: Penerbit UTHM. |
[6] |
Tee KF, Agba IF, Samad AAA (2019) Experimental and numerical study of green concrete. Int J Forensic Eng 4: 238-254. doi: 10.1504/IJFE.2019.106677
![]() |
[7] | Samad AAA, Hadipramana J, Mohamad N, et al. (2018) Development of green concrete from agricultural and construction waste, In: Sayigh A, Transition Towards 100% Renewable Energy, Springer, Cham, 399-410. |
[8] |
Golewski GL (2020) Changes in the fracture toughness under mode II loading of low calcium fly ash (LCFA) concrete depending on ages. Materials 13: 5241. doi: 10.3390/ma13225241
![]() |
[9] |
Golewski GL, Gil DM (2021) Studies of fracture toughness in concretes containing fly ash and silica fume in the first 28 Days of curing. Materials 14: 319. doi: 10.3390/ma14020319
![]() |
[10] |
Golewski GL (2021) The beneficial effect of the addition of fly ash on reduction of the size of microcracks in the ITZ of concrete composites under dynamic loading. Energies 14: 668. doi: 10.3390/en14030668
![]() |
[11] |
Lisantono A, Wigroho H, Purba R (2017) Shear behavior of high-volume fly ash concrete as replacement of Portland cement in RC beam. Procedia Eng 171: 80-87. doi: 10.1016/j.proeng.2017.01.312
![]() |
[12] | Annapurna D, Kishore R, Sree MU (2016) Comparative study of experimental and analytical results of geopolymer concrete. IJCIET 7: 211-219. |
[13] | Karnati V (2016) Flexural response of reinforced concrete beams using various cementitious materials [Master's Thesis]. University of Toledo. |
[14] |
Dahmani L, Khennane A, Kaci S (2010) Crack identification in reinforced concrete beams using ANSYS software. Strength Mater 42: 232-240. doi: 10.1007/s11223-010-9212-6
![]() |
[15] |
Vasudevan G, Kothandaraman S, Azhagarsamy S (2013) Study on non-linear flexural behavior of reinforced concrete beams using ANSYS by discrete reinforcement modeling. Strength Mater 45: 231-241. doi: 10.1007/s11223-013-9452-3
![]() |
[16] | Ansys Fluent 14.0: User's guide, 2011. Available from: https: //www.scribd.com/doc/140163383/Ansys-Fluent-14-0-Users-Guide. |
[17] |
Nguyen K, Ahn N, Le T, et al. (2016) Theoretical and experimental study on mechanical properties and flexural strength of fly ash-geopolymer concrete. Constr Build Mater 106: 65-77. doi: 10.1016/j.conbuildmat.2015.12.033
![]() |
[18] | Popovics S (1970) A review of stress-strain relationships for concrete. ACI J 67: 243-248. |
[19] |
Isojeh B, El-Zeghayar M, Vecchio F (2017) Simplified constitutive model for fatigue behavior of concrete in compression. J Mater Civil Eng 29: 04017028. doi: 10.1061/(ASCE)MT.1943-5533.0001863
![]() |
[20] | Buckhouse ER (1997) External flexural reinforcement of existing reinforced concrete beams using bolted steel channels [Master's Thesis]. Milwaukee: Marquette University. |
[21] |
Halahla A (2019) Identification of crack in reinforced concrete beam subjected to static load using non-linear finite element analysis. CEJ 5: 1631-1646. doi: 10.28991/cej-2019-03091359
![]() |
[22] | Kachlakev D, Miller TR, Yim S, et al. (2001) Finite element modeling of concrete structures strengthened with FRP laminates. FHWA-OR-RD-01-17, Oregon Department of Transportation Research Section |
[23] | Desai YM, Mufti AA, Tadros G (2002) User manual for FEM PUNCH, Version 2.0. ISIS Canada. |
[24] |
Dawari V, Vesmawala G (2013) Modal curvature and modal flexibility methods for honeycomb damage identification in reinforced concrete beams. Procedia Eng 51: 119-124. doi: 10.1016/j.proeng.2013.01.018
![]() |
[25] |
Chahrour A, Soudki K (2005) Flexural response of reinforced concrete beams strengthened with end-anchored partially bonded carbon fiber-reinforced polymer strips. J Compos Constr 9: 170-177. doi: 10.1061/(ASCE)1090-0268(2005)9:2(170)
![]() |
[26] |
Ramazanianpour A, Malhotra V (1995) Effect of curing on the compressive strength, resistance to Chloride-ion penetration and porosity of concrete incorporating slag, fly ash or silica fume. Cement Concrete Comp 17: 125-133. doi: 10.1016/0958-9465(95)00005-W
![]() |
[27] | British Standards (1983) Testing concrete—Part 116: method for determination of compressive strength of concrete cube, BS 1881-116. Available from: https://989me.vn/en/download/Other-Items/BS-1881-116-1983-Testing-concrete-Part-116-Method-for-determination-of-compressive-strength-of-concrete-cubes.html. |
[28] |
Getahun MA, Shitote SA, Gariy ZCA (2018) Experimental investigation on engineering properties of concrete incorporating reclaimed asphalt pavement and rice husk ash. Buildings 8: 115. doi: 10.3390/buildings8090115
![]() |
[29] |
Xie J, Kayali O (2016) Effect of superplasticizer on workability enhancement of class F and class C fly ash-based geopolymers. Constr Build Mater 122: 36-42. doi: 10.1016/j.conbuildmat.2016.06.067
![]() |
[30] |
Nematollahi B, Sanjayan J (2014) Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. Mater Design 57: 667-672. doi: 10.1016/j.matdes.2014.01.064
![]() |
[31] |
Alrefaei Y, Wang Y, Dai J (2019) The effectiveness of different superplasticizers in ambient cured one-part alkali activated pastes. Cement Concrete Compos 97: 166-174. doi: 10.1016/j.cemconcomp.2018.12.027
![]() |