Review Topical Sections

Micelle formation, structures, and metrology of functional metal nanoparticle compositions

  • Received: 15 March 2021 Accepted: 23 June 2021 Published: 15 July 2021
  • Micelles are self-assembled aggregates that are formed, in many different structures, from surfactants and have a wide range of applications. The critical micelle concentration (CMC) is the concentration of surfactant above which the micelle formation becomes appreciable. This paper reviews techniques that measure the CMC during the formation of micelles involving metal nanoparticles (NPs) with an emphasis on silver NPs. Specifically this review collects and compares such techniques in terms of their advantages and disadvantages. In doing that, this review identifies the useful experimental data on the CMC that each technique yields, but also points out the limitations of each technique. Furthermore, the authors propose an in situ method by using contact angle determination on a substrate/system to measure the CMC in real time. Thus, the goal of this review is to provide a comprehensive list of the most commonly used techniques for the CMC measurement so that future researchers may make informed decisions on what method(s) to use to best meet their needs.

    Citation: James M. Middleton, Ronald L. Siefert, Markie'Sha H. James, Amanda M. Schrand, Manoj K. Kolel-Veetil. Micelle formation, structures, and metrology of functional metal nanoparticle compositions[J]. AIMS Materials Science, 2021, 8(4): 560-586. doi: 10.3934/matersci.2021035

    Related Papers:

  • Micelles are self-assembled aggregates that are formed, in many different structures, from surfactants and have a wide range of applications. The critical micelle concentration (CMC) is the concentration of surfactant above which the micelle formation becomes appreciable. This paper reviews techniques that measure the CMC during the formation of micelles involving metal nanoparticles (NPs) with an emphasis on silver NPs. Specifically this review collects and compares such techniques in terms of their advantages and disadvantages. In doing that, this review identifies the useful experimental data on the CMC that each technique yields, but also points out the limitations of each technique. Furthermore, the authors propose an in situ method by using contact angle determination on a substrate/system to measure the CMC in real time. Thus, the goal of this review is to provide a comprehensive list of the most commonly used techniques for the CMC measurement so that future researchers may make informed decisions on what method(s) to use to best meet their needs.



    加载中


    [1] Tambe DE, Sharma MM (1994) The effect of colloidal particles on fluid-fluid interfacial properties and emulsion stability. Adv Colloid Interfac 52: 1-63. doi: 10.1016/0001-8686(94)80039-1
    [2] Salem JK, El-Nahhal IM, Najri BA, et al. (2016) Utilization of surface plasmon resonance band of silver nanoparticles for determination of critical micelle concentration of cationic surfactants. Chem Phys Lett 664: 154-158. doi: 10.1016/j.cplett.2016.10.025
    [3] Rosenholm JB (2020) Critical evaluation of models for self-assembly of short and medium chain-length surfactants in aqueous solutions. Adv Colloid Interfac 276: 102047. doi: 10.1016/j.cis.2019.102047
    [4] Nesmerak K, Nemcova I (2006) Determination of critical micelle concentration by electrochemical means. Anal Lett 39: 1023-1040. doi: 10.1080/00032710600620302
    [5] Perez-Rodriguez M, Prieto G, Rega C, et al. (1998) A comparative study of the determination of the critical micelle concentration by conductivity and dielectric constant measurements. Langmuir 14: 4422-4426. doi: 10.1021/la980296a
    [6] Phillips JN (1955) The energetics of micelle formation. Trans Farady Soc 51: 561-569. doi: 10.1039/tf9555100561
    [7] Hall DG, Pethica BA (1967) Thermodynamics of micelle formation, Nonionic Surfactants, New York: Marcel Dekker, 1: 516-557.
    [8] Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans II 72: 1525-1568. doi: 10.1039/f29767201525
    [9] Abuin EB, Lissi EA, Aspee A, et al. (1997) Fluorescence of 8-anilinonaphthalene-1-sulfonate and properties of sodium dodecyl sulfate micelles in water-urea mixtures. J Colloid Interfac 186: 332-338. doi: 10.1006/jcis.1996.4648
    [10] Ruso JM, Taboada P, Mosuera V, et al. (1999) Thermodynamics of micellization of n-alkyl sulfates in an alkaline medium at different temperatures. J Colloid Interfac 214: 292-296. doi: 10.1006/jcis.1999.6198
    [11] del Rio JM, Pombo C, Prieto G, et al. (1995) Effect of temperature and alkyl chain length on the micellar properties of n-alkyltrimenthylammonium bromides in low pH mediums. J Colloid Interfac 172: 137-141. doi: 10.1006/jcis.1995.1235
    [12] Chauhan MS, Kumari N, Pathania S, et al. (2007) A conductometric study of interactions between gelatin and sodium dodecyl sulfate (SDS) in aqueous-rich mixtures of dimethyl sulfoxide. Colloid Surface A 293: 157-161. doi: 10.1016/j.colsurfa.2006.07.020
    [13] Chauhan S, Syal VK, Chauhan MS, et al. (2007) Viscosity studies of some narcotic-analgesic drugs in aqueous-alcohol mixtures at 25 ℃. J Mol Liq 136: 161-164. doi: 10.1016/j.molliq.2007.02.010
    [14] Bhardwaj V, Sharma P, Chauhan MS, et al. (2016) Micellization, interaction and thermodynamic study of butydated hydroxyanisole (synthetic antioxidant) and sodium dodecyl sulfate in aqueous-ethanol solution at 25, 30, and 35 ℃. J Saudi Chem Soc 20: S109-S114. doi: 10.1016/j.jscs.2012.09.008
    [15] Asakura S, Oosawa F (1958) Interaction between particles suspended in solutions of macromolecules. J Polym Sci 33: 183-192. doi: 10.1002/pol.1958.1203312618
    [16] Feigin RI, Napper DH (1980) Stabilization of colloids by free polymer. J Colloid Interfac 74: 567-571. doi: 10.1016/0021-9797(80)90226-X
    [17] Lombardo D, Kiselev MA, Magazu S, et al. (2015) Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches. Adv Cond Matter Phys 2015: 151683.
    [18] Choi DG, Kim WJ, Yang SM (2000) Shear-induced microstructure and rheology of cetylpyridinium chloride/sodium salicylate micellar solutions. Korea-Aust Rheol J 12: 143-149.
    [19] Gupta VKN, Mehra A, Thaokar R (2012) Worm-like micelles as templates: formation of anisotrpic silver halide nanoparticles. Colloid Surface A 393: 73-80. doi: 10.1016/j.colsurfa.2011.11.003
    [20] Skoglund S, Blomberg E, Wallinder IO, et al. (2017) A novel explanation for the enhanced colloidal stability of silver nanoparticles in the presence of an oppositely charged surfactant. Phys Chem ChemPhys 19: 28037-28043. doi: 10.1039/C7CP04662F
    [21] Lugo D, Oberdisse J, Karg M, et al. (2009) Surface aggregate structure of nonionic surfactants on silica nanoparticles. Soft Matter 5: 2928-2936. doi: 10.1039/b903024g
    [22] Shah V, Bharatiya B, Mishra MK, et al. (2019) Molecular insights into sodium dodecyl sulphate mediated control of size for silver sanoparticles. J Mol Liq 273: 222-230. doi: 10.1016/j.molliq.2018.10.042
    [23] Yu YY, Chang SS, Lee CL, et al. (1997) Gold nanorods: Electrochemical synthesis and optical properties. J Phys Chem B 101: 6661-6664. doi: 10.1021/jp971656q
    [24] Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105: 4065-4067. doi: 10.1021/jp0107964
    [25] Saeki D, Kawada S, Matsuyama H (2018) Preparation of carboxylated silver nanoparticles via a reverse micelle method and covalent stacking onto porous substrates via amide bond formation. Colloid Surface A 552: 98-102. doi: 10.1016/j.colsurfa.2018.05.037
    [26] Garden AL, Scholz K, Schwass DR, et al. (2014) Optimized colloidal chemistry for micelle- templated synthesis and assembly of silver nanocomposite materials. Colloid Surface A 441: 367-377. doi: 10.1016/j.colsurfa.2013.09.012
    [27] Wang L, Yamauchi Y (2011) Synthesis of mesoporous Pt nanoparticles with uniform particle size from aqueous surfactant solutions toward highly active electrocatalysts. Chem-Eur J 17: 8810-8815. doi: 10.1002/chem.201100386
    [28] Naoe K, Kataoka M, Kawagoe M (2010) Preparation of water-soluble palladium nanocrystals by reverse micelle method: digestive ripening behavior of mercaptocarboxylic acids as stabilizing agent. Colloid Surface A 364: 116-122. doi: 10.1016/j.colsurfa.2010.05.004
    [29] Ban I, Drofenik M, Makovec D (2006) The synthesis of iron-nickel alloy nanoparticles using reverse micelle technique. J Magn Magn Mater 307: 250-256. doi: 10.1016/j.jmmm.2006.04.010
    [30] Pileni MP (1993) Reverse micelles as microreactors. J Phys Chem 97: 6961-6973. doi: 10.1021/j100129a008
    [31] Skoglund S, Lowe TA, Hedberg J et al. (2013) Effect of laundry surfactants on surface charge and colloidal stability of silver nanoparticles. Langmuir 29: 8882-8891. doi: 10.1021/la4012873
    [32] Zhang L, Jia L, Zhao Z, et al. (2020) Synthesis, physiochemical properties, and antimicrobial activities of a novel gemini surfactants with biphenyl and multiple amide groups. Colloid Surface A 593: 124628. doi: 10.1016/j.colsurfa.2020.124628
    [33] Sidorov SN, Bronstein LM, Valetsky PM, et al. (1999) Stabilization of metal nanoparticles in aqueous medium by polyethyleneoxide-polyethyleneimine block copolymers. J Colloid Interfac 212: 197-211. doi: 10.1006/jcis.1998.6035
    [34] Kim TW, Chung PW, Lin VSY (2010) Facile synthesis of monodispersed spherical MCM-48 mesoporous silica nanoparticles with controlled particle size. Chem Mater 22: 5093-5104. doi: 10.1021/cm1017344
    [35] Ranjbar M, Forootanfar H, Pardakhty A, et al. (2018) Cotrollable synthesis of Ag nanoparticles encapsulated in non-ionic surfactant-based vesicles for photodegradation of methylene blue. J Mater Sci-Mater El 29: 18249-18257. doi: 10.1007/s10854-018-9939-6
    [36] Yang J, Li Y, Jiang B, et al. (2018) Synthesis and mechanism study of the highly monodispersed extra-small silver nanoparticles in reverse micelles. J Nanophotonics 12: 036008. doi: 10.1117/1.JNP.12.036008
    [37] Huo Q, Liu J, Wang LQ, et al. (2006) A New class of silica cross-linked micellar core-shell nanoparticles. J Am Chem Soc 128: 6447-6453. doi: 10.1021/ja060367p
    [38] Kocak G, Butun V (2015) Synthesis and stabilization of Pt nanoparticles in core cross-linked micelles prepared from an amphiphilic diblock copolymer. Colloid Poly Sci 293: 3563-3572. doi: 10.1007/s00396-015-3727-0
    [39] Napper DH (1977) Steric stabilization. J Colloid Interfac 58: 390-407. doi: 10.1016/0021-9797(77)90150-3
    [40] Heller W, Pugh TL (1954) "Steric protection" of hydrophobic colloidal particles by adsorption of flexible macromolecules. J Chem Phys 22: 1778-1779. doi: 10.1063/1.1739899
    [41] Gratale MD, Still T, Matyas C, et al. (2016) Tunable depletion potentials driven by shape variation of surfactant micelles. Phys Rev E 93: 050601. doi: 10.1103/PhysRevE.93.050601
    [42] Vrij A (2009) Polymers at interfaces and the interactions in colloidal dispersions. Pure Appl Chem 48: 471-483.
    [43] Semenov AN, Shvests AA (2015) Theory of colloid depletion stabilization by unattached and absorbed polymers. Soft Matter 11: 8863-8873. doi: 10.1039/C5SM01365H
    [44] Fang X, Zhao X, Yu G, et al. (2020) Effect of molecular weight and pH on the self-assembly microstructural and emulsification of amphiphilic sodium alginate colloid particles. Food Hydrocolloid 103: 105593. doi: 10.1016/j.foodhyd.2019.105593
    [45] de Kruif CG, Zhulina EB (1996) k-casein as a polyelectrolyte brush on the surface of casein micelles. Colloid Surface A 117: 151-159. doi: 10.1016/0927-7757(96)03696-5
    [46] Lei D, Wang Q, Kong Y, et al. (2020) Triclosan-loaded pH-responsive copolymer to target bacteria and to have long bacteriostatic efficacy. Eur J Pharm Sci 148: 105320. doi: 10.1016/j.ejps.2020.105320
    [47] Li N, Zhong Q (2020) Casein core-polysaccharide shell nanocomplexes stable at pH 4.5 enabled by chelating and complexation properties of dextran sulfate. Food Hydrocolloid 103: 105723.
    [48] Bener S, Puglisi A, Yagci Y (2020) pH-responsive micelle-forming amphiphilic triblock copolymers. Macromol Chem Phys 221: 2000109. doi: 10.1002/macp.202000109
    [49] Francis MJ, Glover ZJ, Yu Q, et al. (2019) Acoustic characterization of pH dependent reversible micellar casein aggregation. Colloid Surface A 568: 259-265. doi: 10.1016/j.colsurfa.2019.02.026
    [50] Kang W, Hou X, Wang P, et al. (2019) Study on the effect of the organic acid structure on the rheological behavior and aggregate transformation of a pH-responsive wormlike micelle system. Soft Matter 15: 3160-3167. doi: 10.1039/C9SM00088G
    [51] Tuinier R, de Kruif CG (2002) Stability of casein micelles in milk. J Chem Phys 117: 1290-1295. doi: 10.1063/1.1484379
    [52] Li X, Wang J, Cui R, et al. (2020) Hypoxia/pH dual-responsive nitroimidazole-modified chitosan/rose bengal derivative nanoparticles for enhanced photodynamic anticancer therapy. Dyes Pigments 179: 108395. doi: 10.1016/j.dyepig.2020.108395
    [53] Li S, Zhao W, Liang N, et al. (2020) Multifunctional micelles self-assembled from hyaluronic acid conjugate for enhancing anti-tumor effect of paclitaxel. React Funct Polym 152: 104608. doi: 10.1016/j.reactfunctpolym.2020.104608
    [54] Bulavchenko AI, Popovetskiy PS (2014) Structure and adsoprtion layer of silver nanoparticles in sodium bis(2-ethylhexyl) sulfosuccinate solutions in n-decane as observed by photon- correlation spectroscopy and nonaqueous electrophoresis. Langmuir 30: 12729-12735. doi: 10.1021/la5004935
    [55] Singha D, Sahu DK, Sahu K (2019) Probing the interfacial transition of acetonitrile/AOT/n-heptane microemulsion through in situ silver colloid synthesis. Colloid Surface A 574: 171-177. doi: 10.1016/j.colsurfa.2019.04.079
    [56] Sahu DK, Pal T, Sahu K (2018) A new phase trasnfer strategy to convert protien-capped nanomaterials into uniform flourescent nanoclusters in reverse micellar phase. ChemPhysChem 19: 2153-2158. doi: 10.1002/cphc.201800191
    [57] Pofali P, Shirolikar S, Borde L, et al. (2018) Synthesis and antibacterial activity of water- dispersible silver nanoparticles via micellar nanoreactors. Mater Res Express 5: 054004. doi: 10.1088/2053-1591/aab62a
    [58] Perez-Coronado AM, Calvo L, Alonso-Morales N, et al. (2016) Multiple approaches to control and asses the size of Pd nanoparticles synthesized via water-in-oil microemulsion. Colloid Surface A 497: 28-34. doi: 10.1016/j.colsurfa.2016.02.012
    [59] Bera A, Bhattacharya A, Tiwari N, et al. (2018) Morphology, stability, and X-ray absorption spectroscopic study of iron oxide (hematite) nanoparticles prepared by micelle lithography. Surf Sci 669: 145-153. doi: 10.1016/j.susc.2017.11.022
    [60] Rosen MJ, Kunjappu JT (2012) Surfactants and Interfacial Phenomena, 4 Eds., Hoboken: John Wiley & Sons.
    [61] Karimi MA, Mozaheb MA, Hatefi-Mehrjardi A, et al. (2015) A new simple method for determining the critical micelle concentration of surfactants using surface plasmon resonance of silver nanoparticles. J Anal Sci Technol 6: 1-8. doi: 10.1186/s40543-014-0041-2
    [62] Shrestha YK, Yan F (2014) Determination of critical micelle concentration of cationic surfactants by surface-enhanced Raman scattering. RSC Adv 4: 37274-37277. doi: 10.1039/C4RA05516K
    [63] Frank HS, Evans MW (1945) Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J Chem Phys 13: 507-532.
    [64] Rub MA, Azum N, Kumar D, et al. (2014) Micellization and microstructural studies between amphiphilic drug ibuprofen with non-ionic surfactant in aqueous urea solution. J Chem Thermodyn 74: 91-102. doi: 10.1016/j.jct.2014.01.005
    [65] Salem JK, El-Nahhal IM, Salama SF (2019) Determination of critical micelle concentration by absorbance and fluorescence techniques using fluorescein probe. Chem Phys Lett 730: 445-450. doi: 10.1016/j.cplett.2019.06.038
    [66] Otulakowski L, Dworak A, Forys A, et al. (2020) Micellization of polystyrene-b-polyglycidol in dioxane and water/dioxane solutions. Polymers 12: 1-15. doi: 10.3390/polym12010200
    [67] Joshi T, Mata J, Bahadur P (2005) Micellization and interaction of anionic and nonionic mixed surfactant systems in water. Colloid Surface A 260: 209-215. doi: 10.1016/j.colsurfa.2005.03.009
    [68] Schnablegger H, Glatter O (1991) Optical sizing of small colloid particles: an optimized regularization technique. Appl Optics 30: 4889-4896. doi: 10.1364/AO.30.004889
    [69] Schnablegger H, Glatter O (1993) Simultaneous determination of size distribution and refractive index of colloid particles from static light-scattering experiments. J Colloid Interf Sci 158: 228-242. doi: 10.1006/jcis.1993.1250
    [70] Baxter-Hammond J, Powley CR, Cook KD, et al. (1980) Determination of critical micelle concentrations by bipolar pulse conductance. J Colloid Interf Sci 76: 434-438. doi: 10.1016/0021-9797(80)90384-7
    [71] Johnson DE, Enke CG (1970) Bipolar pulse technique for fast conductance measurements. Anal Chem 42: 329-335. doi: 10.1021/ac60285a015
    [72] Sandifer JR, Gross S (1987) Bipolar pulse conductivity measurements applied to ion-selective electrodes. Anal Chim Acta 192: 237-242. doi: 10.1016/S0003-2670(00)85708-6
    [73] Joshi JV, Aswal VK, Goyal PS (2007) Combined SANS and SAXS studies on alkali metal dodecyl sulphate micelles. J Phys-Condens Mat 19 196219.
    [74] Kumar S, Aswal VK (2011) Tuning of nanoparticle-surfactant interactions in aqueous system. J Phys-Condens Mat 23: 035101. doi: 10.1088/0953-8984/23/3/035101
    [75] Kumar S, Aswal VK, Kohlbrecher J (2012) Size-dependent interaction of silica nanoparticles with different surfactants in aqueous solution. Langmuir 28: 9288-9297. doi: 10.1021/la3019056
    [76] Eslahati M, Mehrabianfar P, Isari AA, et al. (2020) Experimental investigation of alfalfa natural surfactant and synergistic effect of Ca2+, Mg2+, SO42- ion for EOR applications: interfacial tension optimization, wettability alteration and imbibition studies. J Mol Liq 310: 113123. doi: 10.1016/j.molliq.2020.113123
    [77] Gao M, Wang XG, Lv WF, et al. (2020) Adsoprtion behaviors of branched cationic gemini surfactants and wettability in quartz-solution-air systems. Soft Matter 16: 5450-5457. doi: 10.1039/D0SM00689K
    [78] Aldhaleai A, Tsai PA (2020) Effect of cationic surfactant on droplet wetting on superhydrophobic surfaces. Langmuir 36: 4308-4316. doi: 10.1021/acs.langmuir.0c00288
    [79] Hussain S, Le TTY, Lin SY (2020) An interpretation for the breakpoint of the relaxation profiles of the advancing and receding contact angles. J Mol Liq 298: 112612. doi: 10.1016/j.molliq.2019.112162
    [80] Le TTY, Hussain S, Lin SY (2019) A study on the determination of the critical micelle concentration of surfactant solutions using contact angle data. J Mol Liq 294: 111582. doi: 10.1016/j.molliq.2019.111582
    [81] Chen H, Gizzatov A, Abdel-Fattah AI (2020) Molecular assembly of surfactant mixtures in oil-swollen micelles: implications for high salinity colloidal stability. J Phys Chem B 124: 568-576. doi: 10.1021/acs.jpcb.9b09929
    [82] Luo H, Jiang K, Liang X, et al. (2020) Small molecule-mediated self-assembly behaviors of pluronic block copolymers in aqueous solution: impact of hydrogen bonding on the morphological transition of pluronic micelles. Soft Matter 16: 142-151. doi: 10.1039/C9SM01644A
    [83] Pires JM, de Moura AF, Freitas LCG (2012) Investigating the spontaneous formation of SDS micelle in aqueous solution using a coarse-grained force field. Quim Nova 35: 978-981. doi: 10.1590/S0100-40422012000500021
    [84] Wang L, Sun N, Wang Z, et al. (2019) Self-assembly of mixed dodecylamine-dodecanol at the air/water interface based on large-scale molecular dynamics. J Mol Liq 276: 867-874. doi: 10.1016/j.molliq.2018.12.076
    [85] Kulkarni A, Garcia EJ, Damone A, et al. (2020) A force field for poly(oxymethylene) dimethyl ethers (OMEn). J Chem Theory Comput 16: 2517-2528. doi: 10.1021/acs.jctc.9b01106
    [86] Hamani AWS, Bazile JP, Hoang H, et al. (2020) Thermophysical properties of simple molecular liquid mixtures: on the limitations of some force fields. J Mol Liq 303: 112663. doi: 10.1016/j.molliq.2020.112663
    [87] Feria E, Algaba J, Miguez JM, et al. (2020) Vapour-liquid phase equilibria and interfacial properties of fatty acid methyl esters from molecular dynamics simulations. Phys Chem Chem Phys 22: 4974-4983. doi: 10.1039/C9CP06397H
    [88] Liu F, Liu D, Zhou W, et al. (2020) Weakening or losing of surfactant drag reduction ability: a coarse-grained molecular dynamics study. Chem Eng Sci 219: 115610. doi: 10.1016/j.ces.2020.115610
    [89] Yuan C, Li S, Zuo Q, et al. (2017) Multiscale simulations for understanding the evolution and mechanism of hierarchical peptide self-assembly. Phys Chem Chem Phys 19: 23614. doi: 10.1039/C7CP01923H
    [90] Campos-Villalobos G, Siperstein FR, Charles A, et al. (2020) Solvent-induced morphological transitions in methacrylate-based block-copolymer aggregates. J Colloid Interf Sci 572: 133-140. doi: 10.1016/j.jcis.2020.03.067
    [91] Chen S, Wang H, Zhang J, et al. (2020) Effect of side chain on the electrochemical performance of poly(ether ether ketone) based anion-exchange membrane: a molecular dynamics study. J Membrane Sci 605: 118105. doi: 10.1016/j.memsci.2020.118105
    [92] Sambasivam A, Dhakal S, Sureshkumar R (2018) Structure and rheology of self-assembled aqueous suspension of nanoparticles and wormlike micelles. Mol Simulat 44: 485-493. doi: 10.1080/08927022.2017.1387658
    [93] Jehser M, Likos CN (2020) Aggregation shapes of amphiphilic ring polymers: from spherical to toroidal micelles. Colloid Polym Sci 263: 1-11.
    [94] Kale KM, Cussler EL, Evans DF (1982) Surfactant ion electrode measurements of sodium alkylsulfate and alkyltrimethylammonium bromide micellar solutions. J Solution Chem 11: 581-592. doi: 10.1007/BF00649258
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8314) PDF downloads(598) Cited by(3)

Article outline

Figures and Tables

Figures(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog