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Abstract: Electro-hydraulic servo system (EHSS) plays an important role in many industrial and 
military applications. However, its high-performance tracking control is still a challenging mission due 
to its nonlinear system dynamics and model uncertainties. In this paper, a novel adaptive robust integral 
method of the sign of the error (ARISE) with extended state observer (ESO) is proposed. Firstly, the 
nonlinear mathematical model of typical EHSS with modeling uncurtains and uncertain nonlinear is 
established. Then, ESO is used to estimate the state and lumped disturbance, of which the unknown 
parameter estimations can be updated by the novel adaptive law. Results shows that the novel controller 
achieves better tracking performance in maximum tracking error, average tracking error and standard 
deviation of the tracking error. 
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Nomenclature 
Ap Ram area 
Ct Internal leakage coefficient 
P1, P2, Oil pressures inside the chambers of the actuator, respectively 
PL Load pressure 
Pr Return pressure 
Ps Supply pressure 
Q1, Q2 Oil flow in both chambers of the actuator 
V01, V02 Initial volume of oil inlet and outlet chamber, respectively 
V1, V2 Control volume of oil inlet and outlet chamber, respectively 
fv Damping coefficient 
g1, g2 Pressure difference of inlet and outlet 
k Spring stiffness 
k1, k2,k3, kr Positive gains 
kt Total gain of the servo valve 
mp Mass of load 
q1, q2 Model errors because of internal leakage 
u Control voltage 
xp Position of load 
β Gain 
βe1, βe2 Oil effective bulk modulus of the actuator, respectively 
ω Bandwidth of the extended state observer 
ARISE Adaptive robust integral of the sign of the error 
ESO Extended state observer 
RISE Robust integral of the sign of the error 

1. Introduction 

Electric hydraulic servo system (EHSS) is widely used in industry applications due to its high 
power ratio and fast response [1–6]. With the rapid development of technology, more severe control 
requirements are put forward for EHSS, and high-performance control becomes eagerly needed to 
address its behavioral nonlinearity and uncertainties, such as flow nonlinearity, pressure dynamic 
nonlinearity, uncertain parameters, unmolded nonlinearity, and external disturbances [7–10].  

Nowadays, many researchers focus on advanced control strategies such as robust adaptive 
control [11,12], sliding mode control [13,14], back-stepping control [15,16], robust integral of the 
sign of the error (RISE) [17,18] for EHSS. Yue and Yao [17] proposed an adaptive robust integral of 
the sign of the error control (ARISE), which can adjust the robust gain online through adaptive method 
to solve the potential high gain feedback of symbolic function. Yao et al. [19] designed a novel ARSE 
to address noise pollution in the acquisition of acceleration signal, which can compensate the error of 
friction model and other bounded disturbances [20]. The above literature shows that RISE/ARISE 
control greatly improves the trajectory tracking accuracy of EHSS. However, those controllers regard 
the parameter adaptive error, unmolded error, and external disturbance as lumped disturbance, which 
severely limits the control accuracy. Control strategy based on disturbance observer can compensate 
the influence of disturbance and uncurtains effectively, which has been used in the field of control 
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theory and engineering [21–26]. Especially, the extended state observer (ESO), which is the core of 
ADRC and has been widely used in disturbance estimation and suppression [27–32]. 

In this paper, the sign function is replaced with a modified arctangent function to smooth the 
nonlinearity of sign function. Then, the state and external disturbance can be estimated by ESO, 
respectively. Finally, the residual observation error is compensated to further enhance the tracking 
accuracy by ARISE. The Lyapunov theory proves the EHSS can achieve asymptotic s. Simulation 
results show the proposed controller has a better performance in maxi-mum tracking error, average 
tracking error and standard deviation of the tracking error. 

2. Dynamic model of electro-hydraulic servo system 

The typical working principle of EHSS is shown in Figure 1. The double rod symmetrical 
hydraulic cylinder is controlled by servo valve to drive the load. 

 

Figure 1. Model of valve controlled symmetrical cylinder system. 

In this paper, the force balance equation of EHSS can be given as 

 p p L p p v p p p, ,m x P A kx f x f x x t                            (1) 

where mp and xp represent mass and displacement of load respectively; PL is the pressure difference; 
Ap is the effective area of the piston; k is the spring stiffness; fv is the combined coefficient;  p p, ,f x x t  

indicates the lumped uncertain; Pressure dynamics of the two chambers are given by [15]. 

 
 

1 e1 1 1 p p t L 1

2 e2 2 p p t L 2 2

( )

( )

P V Q A x C P q t
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                      (4) 
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The pressure difference dynamics between the two chambers is expressed as follows 

       L 1 1 2 2 p 1 2 p t 1 2 L 1 1 2 21 1 1 1e t e e eP k g V g V u A V V x C V V P q V q V                (5) 

where βe1, βe2 are the effective elastic modulus in two chamber and βe1 = βe2 = βe; V1 = V01 + Ap; V2 = 
V02 – Ap·xp represents the control volume of return chamber; V01 and V02 are the initial volumes of the 
two chambers respectively; Ct is the internal leakage coefficient of the cylinder; Q1 (t) and Q2 (t) are 
the oil flowrate of the two chamber of the cylinder respectively; q1(t) and q2(t) are model errors because 
of internal leakage in the two chambers; g1 is the pressure difference at the oil inlet and g2 is the 
pressure difference at the oil outlet; Ps is the supplied pressure; Pr is the return pressure, kt is the total 
gain of the servo valve; u is the control voltage and s(u) is expressed as 

1 0
( ) 0 0

1 0

u
s u u

u

 
 

                              (6) 

To make it smooth and differentiable, the sign function s(u) is replaced by Eq (7). 

arctan ( ) 2arctan( ) /f u Ku                           (7) 

Thus, g1, g2 in Eq (4) can be rewritten as Eq (8). 

  

g
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'  (P

s
 P

t
 (P

s
 2P
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arctan
(u)) / 2
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t
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s
 2P

2
 P

t
)  f
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(u)) / 2




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                   (8) 

Substituting Eqs (2)–(5) into Eq (1), and thus 

     
 

2
p p p 1 1 2 2 p 1 2 p p t 1 2 L

p 1 1 2 2 p v p

1 1 1 1e t e e

e

m x A k g V g V u A V V x A C V V P

A q V q V kx f x f
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

      

   

 
 

       (9) 

Rewritten Eq (9), and thus, 

     
 

' ' 2
p p p 1 1 2 2 p 1 2 p p t 1 2 L

'
p 1 1 2 2 p v p

1 1 1 1e t e e

e
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A q V q V kx f x f f
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
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 
 

       (10) 

where 'f is the approximation error caused by using the continuously differentiable function farctan(u). 

According to Eq (1) 


P
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

m
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p

x
p
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k
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p

x
p

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v
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p
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p

                        (11) 

Substituting Eq (11) into Eq (10), thus 

        
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' ' 2
p p p 1 1 2 2 t 1 2 p p 1 2 v t 1 2 p

'
p t 1 2 v p t 1 2 p 1 1 2 2

1 1 1 1 1 1

1 1 1 1

e t e e e
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  
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  (12) 

Define state variables as 
x  x

1
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2
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3
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
 x

p
, x

p
, x

p
 



 and output variables as 1 py x x   , so the 

state space model of EHSS can be expressed as 
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

x
1
 x

2

x
2
 x

3

x
3


1
u 

2
x

1
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3
x

2


4
x

3
 









                       (13) 
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v
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V
f

V
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

 
  
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, ' 1 1

t p p
1 2 1 2

1 1
e e

q q
C f f f A m

V V V V
 
    

               
 . 

In practice, the parameters m, k, βe and Ct may not be known accurately, so it is necessary to 
consider the uncertainties of these parameters. Define vector as  1 2 3 4, , ,   θ  and improve the 

tracking performance of the system through the adaptive method. 
The purpose of the system controller is to design a bounded control input u so that y = x1 can track 

the desired trajectory yd(t) = x1d(t). Therefore, the following assumptions should be given. 
Assumption 1: The desired trajectory x1d is five times differentiable and each is bounded. In 

practice, the load pressure of hydraulic cylinder meets 0 < PL < Ps. 
Assumption 2: The range of parametric uncertainties is 

                                     (14) 

 min max:                                   (15) 

where  min 1min 4 min, ,
T    ,  max 1max 4 max, ,

T    are known. 

Assumption 3: The time-varying perturbation Δ (t) of Eq (10) is smooth enough so that 


 t   1

&  t    2
                             (16) 

where δ1, δ2 are known positive constants. 

3. Extend state observer design 

ESO can estimate the uncertainty disturbance comprehensively, so we use ESO to estimate the 
lumped disturbance and compensate it feed forward to achieve better tracking accuracy. 

Define x4 = Δ(t), 
x

4
  t  and the expanded state space can be written as 


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
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3
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4
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4
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











                    (17) 

Defining x  x  x̂ as the estimation error of x, where x̂ represents the estimated value of x.  
According to the expanded state space model, the ESO is designed as 



̂x
1
 x̂

2
 4

0
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1
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0
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1
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3
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1
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2
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1
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3
x

2
̂

3
x

3
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4
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0
3 x

1
 x̂

1 
̂x

4


0
4 x
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                  (18) 
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where ω0 is the bandwidth of the extended state observer, î  is the estimated value of the unknown 

parameters θi, I = 1, 2, 3, 4. 
The dynamic equation of observation error can be obtained by subtracting Eq (17) an Eq (18): 

1 2 0 1

2
2 3 0 1

3
3 4 1 0 1

4
4 0 1

4

6

4

x x x

x x x

x x x

x x







 



  


 


  
  

  
  
   
 

θ Φ
                           (19) 

where 1 2 3 4, , ,   


   
    θ ,  1 1 2 3 4, , , ,u x x x x

Φ . 

Let 


i 

x
i


0
i1

,i  1,2,3,4                             (20) 

Then Eq (17) can be written as 

 
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T
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       
       
               
       
   

 


 

   
 
 

   


 




A

              (21) 

0 1 22 3
0 0

  
 



 
 θ Φ

A + B B                           (22) 

Since matrix A is a Hurwitz matrix, and there is a positive definite symmetric matrix P which 
satisfies the following equation 

AP  PA  I                                 (23) 

The symmetric positive definite matrix P is: 

  

P 

17 8 1 2 11 8 1 2

1 2 11 8 1 2 17 8

11 8 1 2 17 8 1 2

1 2 17 8 1 2 91 8





















 

4. Projection mapping and parameter adaptation 

Considering Eq (14) and Eq (15), the discontinuous projection can be defined as [11]. 

max

ˆ min

ˆ0, 0 and
ˆProj ( ) 0, 0 and

, otherwise
i

i i i

i i i i

i



 
 

 
  

 


                           (24) 

where ̂ denote the estimate of   and   denote the estimate error, ˆ  = - , i =1, 2, 3, 4. 
Using the adaptation law as follow: 
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ˆ ˆˆ ˆProj ( ( )), (0)t                                    (25) 

where Γ is the diagonal positive definite adaptation rate matrix, τ is an adaptation function. For any 
adaption function τ, the adaptation Eq (25) satisfies follow [3]: 

 ˆ max min
ˆ ˆ ˆ:                                  (26) 

1
ˆ[ Pro ( ) ] 0,T j                                    (27) 

5. Design of adaptive robust integral of the sign of the error controller 

Defining the following error variables 

1 1 1d 2 1 1 1

3 2 2 2 3 3 3

,

,

z x x z z k z

z z k z r z k z

   
    


 

                           (28) 

where x1d is the given trajectory; k1 k2 k3 are the positive feedback gain and r is the auxiliary error 
signal. Because r contains the differentiation of acceleration, it is considered to be unmeasurable in 
practice and only used for auxiliary design. According to Eq (28), r has the following expansion: 

 
   

3 2
1 2 1d 3 1d 4 1d 1d 2 1 3 1 4 1 1

2 2
1 1 2 2 3 4 1 4 2 2 1 2 3 4 3

r u x x x x k k k z

k k k k k k z k k k z

      

   

           

       

  
              (29) 

Dividing Eq (29) by θ1, and thus 

 
     

3 2
1 1 1d 2 1d 3 1d 4 1d 1 2 1 3 1 1 4 1 1

2 2
1 1 2 1 2 3 4 1 4 2 2 1 2 3 1 4 3

r u x x x x k k k z

k k k k k k z k k k z

         

     

           

       

  
        (30) 

where 1 11  , 2 2 1   , 3 3 1   , 4 4 1   . 

The model-based controller is designed as follows: 

 

     
1 2 1 3 3

2 3 3 3 3 3

1 1d 2 1d 3 1d 4 1d 1 2 1

, ,

0 ( ) d

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ

a s s s s s

t

s r r ro

a

u u u u u u u k z

u k z k z k k z S z

u x x x x

   

      

     
        


        


   Φ

                (31) 

where  1 2 3 4
ˆ ˆ ˆ ˆ ˆ, , ,    
α =   represents the estimated value of  1 2 3 4, , ,    α  ; 0rk    is the gain of 

controller; 0   is the robust gain; au is the feedforward model compensation, us1 is the linear robust 

feedback term, us2 is the RISE control term,  2 1d 1d 1d 1d, , ,x x x x
Φ    . 

Substituting Eq (31) into Eq (30) and note that 1 1
ˆˆd        

       1 2 3 3 3 3 3 3 1 2 30 ( ) d
t

r r ro
r d k k z k z k k z S z Az Bz Cz               α Φ     (32) 

ˆ α = α α , Substitute Eq (25) into Eq (32), thus 

       ˆ1 2 2 3 3 1 1 2 2 3 3Proj ( )T
rr d k k C r S z Ak z A Bk z B Ck z               Φ α Φ     (33)

 

The overall structure of the designed control strategy is shown in Figure 2. 
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Figure 2. Overview of control diagram. 

Lemma 1: Define variable L(t) as 


L t   r d  sign z

3                               (34) 

Define auxiliary function as 


P t    z

3
0   z

3
0  d  L v 

0

t

 dv                        (35) 

According to [8], if the gain β satisfies the following inequality, then the auxiliary function P(t) 
is always positive definite. 

1 2
3

1

k
                                     (36) 

Theorem 1: Using the adaptive law Eq (25), and adaptive function 2r   Φ , and the robust gain 
β satisfies inequality Eq (36) as well as the feedback gains k1, k2, k3, kr are sufficient to ensure that the 
matrix Λ   defined below is positive definite, the adaptive robust integral of the sign of the error 
controller Eq (31) can make all signals bounded in the closed-loop system, and the system obtains 
asymptotic output tracking, i.e., 1 0z   as t   . 

1 5

2 6

3 67

5 6 7 4

1 1
0

2 2
1 1 1

2 2 2
1 1

0
2 2

1 1 1

2 2 2

k k

k k

k k

k k k k

   
 
    
 
  
 
 
   
 

Λ                          (37) 

where  4 2 2 3max rk k k C   Φ ΓΦ   , 5 1k Ak  ,  6 2k A Bk    ,  7 3k B Ck    ,  max    represents 

the maximum value of the matrix. 
Proof: see Appendix A. 
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6. Simulation validation 

The nominal value of the physical parameters of the valve controlled symmetrical hydraulic 
cylinder are shows in Table 1. The following controllers are compared by simulation to validate the 
effectiveness of the designed controller. 

Table 1. Physical parameters of the valve controlled symmetrical hydraulic cylinder. 

Parameter Value Unit Parameter Value Unit 

mp 0.76167 kg fv 100 N/(m/s) 

Ap 2.5 × 10–4 m2 V10 1 × 10–3 m3 

k 10900 N/m V20 1 × 10–3 m3 

βe 2 × 108 Pa kt 5.656 × 10–8 m3/(s·V·N1/2) 

Ct 1 × 10–13 m3/(Pa·s) q1 1 × 10–12 m3/s 

q2 1 × 10–12 m3/s Cd 0.7  

Cv 1 / Wp 5 e-3 

Δp 821,993 / α 69 ° 

K 1000     

(1) Controller I: ESO based ARISE This is the controller designed in this paper. The controller 
parameters are selected as: k1 = 200, k2 = 180, k3 = 0.08, kr = 0.012, β = 0.05, ω = 100. According to the 
nominal value of the parameters, the estimated boundary of unknown parameter α are given as: αmin = 
[5 × 10-5 0.03 2.5 8 × 10-3] and αmax = [7 × 10-5 0.07 3.5 20.2 × 10-3]. The initial estimates of α is set 

as ˆ(0) =[6.5×10-5 0.04 3 8.2×10-3] and Γ is set as diag[1 × 10-15 2 × 10-2 0.001 5 × 10-10]. 

(2) Controller II: ARISE without ESO. Compared to the controller II, there is no ESO 
compensation term and the other parameters are same to controller I. That is only uα in Eq (18) is 

replaced as: 1 1d 2 1d 3 1d 4 1d 2
ˆ ˆ ˆ ˆ ˆ

au x x x x         Φ     

(3) Controller III: PI controller. The parameters are set as kP = 410 and kI = 10, which are the 
optimal solutions after repeated debugging. 

(4) Controller IV: BP neutral network PID controller. The structure of the neutral network is 3-5-
3, and the learning rate 0.28  , inertia coefficient α = 0.3. 

The desired trajectories are designed as three cases: normal motion with the motion trajectory  
     d 10 arctan sin 1 0.7854tx t t e      mm, fast level motion with the motion trajectory 

     d 10arctan sin 4 1 0.7854tx t t e      mm and low-level motion with the motion trajectory 

     d 10 arctan sin 0.2 1 0.7854tx t t e      mm. The external disturbance is designed as 

     20arctan sin 0.8 1 0.7854tf t t e      N. 

To compare the tracking responses of each controller quantitatively, three performance indices 
including maximum absolute value of the tracking error Me, average tracking error e  , standard 
deviation of the tracking error σe, which were defined in are adopted to evaluate [20]. 

(1) Case I-normal level motion 
The four controllers are tested for a normal motion trajectory xd(t) = 10arctan[sin(πt)] [1-exp(-

t)]/0.7854 mm. The tracking performance are shown in Figures 4–6, the performance indices of the 
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four controllers is shown in Table 2. From the Figures 4–6 and Table 1, it is obviously that the valve 
controlled symmetrical cylinder has the best tracking performance under the controller designed in this 
paper than other controllers. From Table 2, the amplitudes of steady-state tracking error of the 
controller III and controller IV are both about 0.6 mm, while controller I is about 0.003 mm and 
controller II is about 0.01 mm, it shows that the ARISE can deal with nonlinear and uncertainties and 
disturbance well but PI controller just has some robustness. By comparing the performance indices in 
Table 2 and tracking error in Figure 6 of controller I and controller II, it can be seen that controller I is 
better than controller II in all indices obviously, which indicates that the parameter adaptation in Figure 
6 and ESO compensates for both parametric and uncertain lumped disturbance are effective. The 
control input u of controller I showed in Figure 3 is continuous and smooth, which makes it easy to 
implement in practice. 

 

Figure 3. Tracking performance of controller I for normal level motion. 

 

Figure 4. Tracking performance of controller I for normal level motion. 
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Figure 5. Tracking errors of four controllers I for normal level motion. 

 

Figure 6. Parameter adaptation of controller I. 

Table 2. Performance indices during the last two cycles for normal motion case. 

Indices Me (mm) μe (mm) σe (mm) 

controller I 0.00304985 0.000778897 0.00084379 

controller II 0.010971 0.00364635 0.00293964 

controller III 0.63097 0.299917 0.197092 

controller IV 0.630986 0.299916 0.197092 

(2) Case II-low level motion 
In this case, a low level reference trajectory xd(t) = 10arctan[sin(0.2πt)][1-exp(-t)]/0.7854 mm is 

tested. The results are shown in Figures 7–9 and the performance indices are listed in Table 3. From 
Figure 7 and Table 3, the amplitudes of steady-state tracking error of the controller III and controller 
IV are both about 0.076mm, while controller I and controller II both are about 9.5 × 10–5 mm, which 
shows that the ARISE can also deal with nonlinear and uncertainties and disturbance well in low level 
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reference trajectory. By comparing the performance indices of controller I and controller II in Table 3, 
it can be seen that the maximum absolute value of the tracking error Me of the two controllers almost 
the same, but the average tracking error μe, and standard deviation of the tracking error σe of controller 
I are 6.536 × 10–6 mm and 8.833 × 10–6 mm respectively which are better than that of 2.87371 × 10–5 

and 1.02822 × 10–5 of controller II obviously, which further validates the effectiveness of the desired 
parameter adaptation and ESO compensation. The parameter adaptation of controller I are omitted. 
The control input u of controller I showed in Figure 8 is continuous and there is slight high-frequency 
vibration. So the controller designed in this paper has the best tracking performance on low level 
reference trajectory than other controllers too. 

 

Figure 7. Tracking performance of controller I for low level motion. 

Table 3. Performance indices during the last two cycles for slow motion case. 

Indices Me(mm) μe(mm) σe(mm) 

controller I 9.508 × 10-5 6.536 × 10-6 8.833 × 10-6 

controller II 9.58784 × 10-5 2.87371 × 10-5 1.02822 × 10-5 

controller III 7.5716 × 10-2 3.14012 × 10-2 2.00589 × 10-2 

controller IV 7.57345 × 10-2 3.13926 × 10-2 2.00719 × 10-2 

 

Figure 8. Control input of controller I for normal level motion. 
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Figure 9. Tracking errors of four controllers I for low level motion. 

(3) Case III-fast level motion 
A faster level reference trajectory xd(t) = 10arctan[sin(4πt)][1-exp(-t)]/0.7854 mm is tested in this 

case. The results are shown in Figured 10–12 and the performance indices are listed in Table 4. From 
Figure 12 and Table 4, the amplitudes of steady-state tracking error of the controller III and controller 
IV are both about 1.24 mm, while controller I 1.34 × 10-2 mm and controller II 4.20256 × 10-2 mm, 
which shows that the ARISE can better deal with nonlinear and uncertainties and disturbance in fast 
level reference trajectory than PI controller too. In addition, comparing the performance indices of 
controller I and controller II in Table 4, it can be seen that the maximum absolute value of the average 
tracking error μe of the controller I is 4.14 × 10-3 mm and the controller II is 1.63032 × 10-2 mm, the 
standard deviation of the tracking error σe of controller I are 5.53 ×10-3 mm and the controller II is 
1.30355 × 10-2 mm. These further validate the effectiveness of the desired parameter adaptation and 
ESO compensation. The control input u of controller I showed in Figure 11 is continuous and smooth. 
The result verifies that the controller designed in this paper still has high tracking accuracy in tracking 
performance on fast level reference trajectory. 

 

Figure 10. Tracking performance of control-ler I for fast level motion. 
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Figure 11. Control input of controller I for normal level motion. 

 

Figure 12. Tracking errors of four controllers I for fast level motion. 

Table 4. Performance indices during the last two cycles for fast motion case. 

Indices Me(mm) μe(mm) σe(mm) 

controller I 1.34 × 10-2 4.14 × 10-3 5.53 × 10-3 

controller II 4.20256 × 10-2 1.63032 × 10-2 1.30355 × 10-2 

controller III 1.238558 0.598359 0.391225 

controller IV 1.238657 0.598359 0.391224 

7. Conclusions 

In this paper, an ARISE with ESO controller is proposed for EHSS to address parametric 
uncertainties, uncertainty nonlinearities and unmolded disturbances. The proposed ARISE can 
compensate the dynamics uncertainties, thus guaranteeing asymptotic tracking and improving the 
adaptability and safety of EHSS. ESO can effectively estimate the state and lumped uncurtains. 
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Simulation results shows that ARISE with ESO can obtain high tracking accuracy and better 
performance in tracking desired trajectory under all working conditions. 
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Appendix A 

Define a Lyapunov function 

2 2 2 2 1
1 2 3 1

1 1 1 1 1

2 2 2 2 2
V z z z r P        α Γ α            (A.1) 

It is Obvious that V is positive definite. The derivative of V is: 

1
1 1 2 2 3 3 1

ˆV z z z z z z rr P           α Γ α             (A.2) 

Substituting Eqs (25) and (28), L(t)and P(t), into Eq (A.2). 

     
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ˆ 3
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(A.3) 

where  1 2 3, , ,z z z r
η , λmin(Λ) is the minimum eigenvalue of matrix Λ, therefore V L  and 2W L , 

so z1, z2, z3 and r are bounded. According to the assumptions 1 and 2, all states of the system are 
bounded so the actual control input u is bounded. According to Eqs (28) and (33), the derivative of W 
is bounded, so W is uniformly continuous. According to Barbarat’s lemma, W→0 as t→∞, so the 
conclusion of the theorem 1 can be deduced, theorem 1 is proofed. 
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