Research article Special Issues

Robust adaptive neural network integrated fault-tolerant control for underactuated surface vessels with finite-time convergence and event-triggered inputs


  • Received: 29 August 2022 Revised: 30 September 2022 Accepted: 18 October 2022 Published: 15 November 2022
  • In this paper, we study the trajectory tracking control of underactuated surface vessels(USVs) subject to actuator faults, uncertain dynamics, unknown environmental disturbances, and communication resource constraints. Considering that the actuator is prone to bad faults, the uncertainties formed by the combination of fault factors, dynamic uncertainties and external disturbances are compensated by a single online updated adaptive parameter. In the compensation process, we combine the robust neural-damping technology with the minimum learning parameters (MLPs), which improves the compensation accuracy and reduces the computational complexity of the system. To further improve the steady-state performance and transient response of the system, finite-time control (FTC) theory is introduced into the design of the control scheme. At the same time, we adopt the event-triggered control (ETC) technology, which reduces the action frequency of the controller and effectively saves the remote communication resources of the system. The effectiveness of the proposed control scheme is verified by simulation. Simulation results show that the control scheme has high tracking accuracy and strong anti-interference ability. In addition, it can effectively compensate for the adverse influence of fault factors on the actuator, and save the remote communication resources of the system.

    Citation: Xiangfei Meng, Guichen Zhang, Qiang Zhang. Robust adaptive neural network integrated fault-tolerant control for underactuated surface vessels with finite-time convergence and event-triggered inputs[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 2131-2156. doi: 10.3934/mbe.2023099

    Related Papers:

  • In this paper, we study the trajectory tracking control of underactuated surface vessels(USVs) subject to actuator faults, uncertain dynamics, unknown environmental disturbances, and communication resource constraints. Considering that the actuator is prone to bad faults, the uncertainties formed by the combination of fault factors, dynamic uncertainties and external disturbances are compensated by a single online updated adaptive parameter. In the compensation process, we combine the robust neural-damping technology with the minimum learning parameters (MLPs), which improves the compensation accuracy and reduces the computational complexity of the system. To further improve the steady-state performance and transient response of the system, finite-time control (FTC) theory is introduced into the design of the control scheme. At the same time, we adopt the event-triggered control (ETC) technology, which reduces the action frequency of the controller and effectively saves the remote communication resources of the system. The effectiveness of the proposed control scheme is verified by simulation. Simulation results show that the control scheme has high tracking accuracy and strong anti-interference ability. In addition, it can effectively compensate for the adverse influence of fault factors on the actuator, and save the remote communication resources of the system.



    加载中


    [1] W. Wu, Z. Peng, D. Wang, L. Liu, Q. L. Han, Network-based line-of-sight path tracking of underactuated unmanned surface vehicles with experiment results, IEEE Trans. Cybern., 52 (2021), 10937–10947. https://doi.org/10.1109/TCYB.2021.3074396 doi: 10.1109/TCYB.2021.3074396
    [2] Y. Zhao, X. Qi, Y. Ma, Z. Li, R. Malekian, M. A. Sotelo, Path following optimization for an underactuated usv using smoothly-convergent deep reinforcement learning, IEEE Trans. Intell. Transp. Syst., 22 (2021), 6208–6220. https://doi.org/10.1109/TITS.2020.2989352 doi: 10.1109/TITS.2020.2989352
    [3] N. Wang, Y. Gao, H. Zhao, C. K. Ahn, Reinforcement learning-based optimal tracking control of an unknown unmanned surface vehicle, IEEE Trans. Neural Networks Learn. Syst., 32 (2020), 3034–3045. https://doi.org/10.1109/TNNLS.2020.3009214 doi: 10.1109/TNNLS.2020.3009214
    [4] M. Liu, F. Zhao, J. L. Yin, J. W. Niu, Y. Liu, Reinforcement-tracking: an effective trajectory tracking and navigation method for autonomous urban driving, IEEE Trans. Intell. Transp. Syst., 23 (2021), 6991–7007. https://doi.org/10.1109/TITS.2021.3066366 doi: 10.1109/TITS.2021.3066366
    [5] Z. P. Yan, H. Y. Yang, W. Zhang, F. T. Lin, Q. S. Gong, Y. Zhang, Bionic fish tail design and trajectory tracking control, Ocean Eng., 257 (2022), 111659. https://doi.org/10.1016/j.oceaneng.2022.111659 doi: 10.1016/j.oceaneng.2022.111659
    [6] X. X. Liu, W. Wang, X. L. Li, F. S. Liu, Z. H. He, Y. Z. Yao, et al., MPC-based high-speed trajectory tracking for 4WIS robot, ISA Trans., 123 (2022), 413–424. https://doi.org/10.1016/j.isatra.2021.05.018 doi: 10.1016/j.isatra.2021.05.018
    [7] K. Y. Pettersen, F. Mazenc, H. Nijmeijer, Global uniform asymptotic stabilization of an underactuated surface vessel: Experimental results, IEEE Trans. Control Syst. Technol., 12 (2004), 891–903. https://doi.org/10.1109/TCST.2004.833643 doi: 10.1109/TCST.2004.833643
    [8] K. D. Do, Practical control of underactuated ships, Ocean Eng., 37 (2010), 1111–1119. https://doi.org/10.1016/j.oceaneng.2010.04.007 doi: 10.1016/j.oceaneng.2010.04.007
    [9] G. Q. Zhang, J. Q. Li, X. Jin, C. Liu, Robust adaptive neural control for wing-sail-assisted vehicle via the multiport event-triggered approach, IEEE Trans. Cybern., 2021 (2021). https://doi.org/10.1109/TCYB.2021.3091580 doi: 10.1109/TCYB.2021.3091580
    [10] G. B. Zhu, M. Yong, S. L. Hu, Single-parameter-learning-based finite-time tracking control of underactuated MSVs under input saturation, Control Eng. Pract., 105 (2020), 104652. https://doi.org/10.1016/j.conengprac.2020.104652 doi: 10.1016/j.conengprac.2020.104652
    [11] G. B. Zhu, J. L. Du, Global robust adaptive trajectory tracking control for surface ships under input saturation, IEEE J. Ocean. Eng., 45 (2020), 442–450. https://doi.org/10.1109/JOE.2018.2877895 doi: 10.1109/JOE.2018.2877895
    [12] Z. W. Zheng, Y. T. Huang, L. H. Xie, B. Zhu, Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output, IEEE Trans. Control Syst. Technol., 26 (2018), 1851–1859. https://doi.org/10.1109/TCST.2017.2728518 doi: 10.1109/TCST.2017.2728518
    [13] B. Zhou, B. Huang, Y. M. Su, Y. X. Zheng, S. Zheng, Fixed-time neural network trajectory tracking control for underactuated surface vessels, Ocean Eng., 236 (2021), 109416. https://doi.org/10.1016/j.oceaneng.2021.109416 doi: 10.1016/j.oceaneng.2021.109416
    [14] L. H. Kong, W. He, C. G. Yang, G. Li, Z. Q. Zhang, Adaptive fuzzy control for a marine vessel with time-varying constraints, IET Control Theory Appl., 12 (2018), 1448–1455. https://doi.org/10.1049/iet-cta.2017.0757 doi: 10.1049/iet-cta.2017.0757
    [15] C. F. Huang, X. K. Zhang, G. Q. Zhang, Improved decentralized finite-time formation control of underactuated USVs via a novel disturbance observer, Ocean Eng., 174 (2019), 117–124. https://doi.org/10.1016/j.oceaneng.2019.01.043 doi: 10.1016/j.oceaneng.2019.01.043
    [16] Q. Zhang, G. B. Zhu, X Hu, R. M. Yang, Adaptive neural network auto-berthing control of marine ships, Ocean Eng., 17 (2019), 40–48. https://doi.org/10.1016/j.oceaneng.2019.02.031 doi: 10.1016/j.oceaneng.2019.02.031
    [17] Y. Ma, G. B. Zhu, Z. X. Li, Error-driven-based nonlinear feedback recursive design for adaptive NN trajectory tracking control of surface ships with input saturation, IEEE Intell. Transp. Syst. Mag., 11 (2019), 17–28. https://doi.org/10.1109/MITS.2019.2903517 doi: 10.1109/MITS.2019.2903517
    [18] J. P. Cai, C. Y. Wen, H. Y. Su, Z. T. Liu, Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems, IEEE Trans. Autom. Control., 58 (2013), 2388–2394. https://doi.org/10.1109/TAC.2013.2251795 doi: 10.1109/TAC.2013.2251795
    [19] X. D. Tang, G. Tao, S. M. Joshi, Adaptive output feedback actuator failure compensation for a class of non-linear systems, Int. J. Adapt. Control Signal Process., 19 (2005), 419–444. https://doi.org/10.1002/acs.843 doi: 10.1002/acs.843
    [20] Y. L. Wang, Q. L. Han, Network-based fault detection filter and controller coordinated design for unmanned surface vehicles in network environments, IEEE Trans. Ind. Inf., 12 (2016), 1753–1765. https://doi.org/10.1109/TII.2016.2526648 doi: 10.1109/TII.2016.2526648
    [21] Z. W. Zheng, L. Sun, L. H. Xie, Error-constrained LOS path following of a surface vessel with actuator saturation and faults, IEEE Trans. Syst. Man. Cybern Syst., 48 (2018), 1794–1805. https://doi.org/10.1109/TSMC.2017.2717850 doi: 10.1109/TSMC.2017.2717850
    [22] Y. J. Deng, X. K. Zhang, N. Im, G. Q. Zhang, Q. Zhang, Model-based event-triggered tracking control of underactuated surface vessels with minimum learning parameters, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 4001–4014. https://doi.org/10.1109/TNNLS.2019.2951709 doi: 10.1109/TNNLS.2019.2951709
    [23] S. L. Yu, J. S. Lu, G. B. Zhu, S. J. Yang, Event-triggered finite-time tracking control of underactuated MSVs based on neural network disturbance observer, Ocean Eng., 253 (2022), 111169. https://doi.org/10.1016/j.oceaneng.2022.111169 doi: 10.1016/j.oceaneng.2022.111169
    [24] Y. J. Deng, X. K. Zhang, Event-triggered composite adaptive fuzzy output-feedback control for path following of autonomous surface vessels, IEEE Trans. Fuzzy Syst., 29 (2021), 2701–2713. https://doi.org/10.1109/TFUZZ.2020.3006562 doi: 10.1109/TFUZZ.2020.3006562
    [25] L. T. Xing, C. Y. Wen, Z. T. Liu, H. Y. Su, J. P. Cai, Adaptive compensation for actuator failures with event-triggered input, Automatica, 85 (2017), 129–136. https://doi.org/10.1016/j.automatica.2017.07.061 doi: 10.1016/j.automatica.2017.07.061
    [26] G. Q. Zhang, S. Gao, J. Q. Li, W. D. Zhang, Adaptive neural fault-tolerant control for course tracking of unmanned surface vehicle with event-triggered input, Proc. Inst. Mech. Eng., Part Ⅰ: J. Syst. Control Eng., 235 (2021), 1594–1604. https://doi.org/10.1177/09596518211013155 doi: 10.1177/09596518211013155
    [27] G. B. Zhu, Y. Ma. Z. X. Li, R. Malekian, M. Sotelo, Event-triggered adaptive neural fault-tolerant control of underactuated MSVs with input saturation, IEEE Trans. Intell. Transp. Syst., 23 (2021), 7045–7057. https://doi.org/10.1109/TITS.2021.3066461 doi: 10.1109/TITS.2021.3066461
    [28] Y. P. Weng, N. Wang, Finite-time observer-based model-free time-varying sliding-mode control of disturbed surface vessels, Ocean Eng., 251 (2022), 110866. https://doi.org/10.1016/j.oceaneng.2022.110866 doi: 10.1016/j.oceaneng.2022.110866
    [29] N. Wang, Y. Gao, C. Yang, X. F. Zhang, Reinforcement learning-based finite-time tracking control of an unknown unmanned surface vehicle with input constraints, Neurocomputing, 484 (2022), 26–37. https://doi.org/10.1016/j.neucom.2021.04.133 doi: 10.1016/j.neucom.2021.04.133
    [30] Y. L. Yu, C. Guo, T. S. Li, Finite-time los path following of unmanned surface vessels with time-varying sideslip angles and input saturation, IEEE/ASME Trans. Mechatron., 27 (2022), 463–474. https://doi.org/10.1109/TMECH.2021.3066211 doi: 10.1109/TMECH.2021.3066211
    [31] N. Wang, H. K. He, Dynamics-level finite-time fuzzy monocular visual servo of an unmanned surface vehicle, IEEE Trans. Ind. Electron., 67 (2020), 9648–9658. https://doi.org/10.1109/TIE.2019.2952786 doi: 10.1109/TIE.2019.2952786
    [32] M. Y. Fu, L. L. Wang, Finite-time coordinated path following control of underactuated surface vehicles based on event-triggered mechanism, Ocean Eng., 246 (2022), 110530. https://10.1016/j.oceaneng.2022.110530 doi: 10.1016/j.oceaneng.2022.110530
    [33] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley & Sons, New York, NY, USA, 2011.
    [34] F. Wang, B. Chen, X. P. Liu, C. Lin. Finite-time adaptive fuzzy tracking control design for nonlinear systems, IEEE Trans. Fuzzy Syst., 26 (2018), 1207–1216. https://doi.org/10.1109/TFUZZ.2017.2717804 doi: 10.1109/TFUZZ.2017.2717804
    [35] Z. W. Zheng, M. Feroskhan, L. Sun, Adaptive fixed-time trajectory tracking control of a stratospheric airship, ISA Trans., 76 (2018), 134–144. https://doi.org/10.1016/j.isatra.2018.03.016 doi: 10.1016/j.isatra.2018.03.016
    [36] S. H. Yu, X. H. Yu, B. Shirinzadeh, Z. H. Man, Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica, 41 (2005), 1957–1964. https://doi.org/10.1016/j.automatica.2005.07.001 doi: 10.1016/j.automatica.2005.07.001
    [37] R. M. Sanner, J. J. E. Slotine, Gaussian networks for direct adaptive control, IEEE Trans. Neural Network Learn. Syst., 3 (1992), 837–863. https://doi.org/10.1109/72.165588 doi: 10.1109/72.165588
    [38] A. J. Kurdila, F. J. Narcowich, J. D. Ward, Persistency of excitation in identification using radial basis function approximants, SIAM J. Control Optim., 33 (1995), 625–642. https://doi.org/10.1137/S0363012992232555 doi: 10.1137/S0363012992232555
    [39] C. L. Wang, Y. Lin, Decentralized adaptive tracking control for a class of interconnected nonlinear time-varying systems, Automatica, 54 (2015), 16–24. https://doi.org/10.1016/j.automatica.2015.01.041 doi: 10.1016/j.automatica.2015.01.041
    [40] M. M. Polycarpon, Stable adaptive neural control scheme for nonlinear systems, IEEE Trans. Autom. Control, 41 (1996), 447–451. https://doi.org/10.1109/9.486648 doi: 10.1109/9.486648
    [41] B. S. Park, J. W. Kwon, H. Kim, Neural network-based output feedback control for reference tracking of underactuated surface vessels, Automatica, 77 (2017), 353–359. https://doi.org/10.1016/j.automatica.2016.11.024 doi: 10.1016/j.automatica.2016.11.024
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1635) PDF downloads(113) Cited by(9)

Article outline

Figures and Tables

Figures(20)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog