Research article Special Issues

Boundedness and stabilization of a predator-prey model with attraction- repulsion taxis in all dimensions


  • Received: 20 July 2022 Revised: 13 August 2022 Accepted: 22 August 2022 Published: 15 September 2022
  • This paper establishes the existence of globally bounded classical solutions to a predator-prey model with attraction-repulsion taxis in a smooth bounded domain of any dimensions with Neumann boundary conditions. Moreover, the global stabilization of solutions with convergence rates to constant steady states is obtained. Using the local time integrability of the $ L^2 $-norm of solutions, we build up the basic energy estimates and derive the global boundedness of solutions by the Moser iteration. The global stability of constant steady states is established based on the Lyapunov functional method.

    Citation: Wenbin Lyu. Boundedness and stabilization of a predator-prey model with attraction- repulsion taxis in all dimensions[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13458-13482. doi: 10.3934/mbe.2022629

    Related Papers:

  • This paper establishes the existence of globally bounded classical solutions to a predator-prey model with attraction-repulsion taxis in a smooth bounded domain of any dimensions with Neumann boundary conditions. Moreover, the global stabilization of solutions with convergence rates to constant steady states is obtained. Using the local time integrability of the $ L^2 $-norm of solutions, we build up the basic energy estimates and derive the global boundedness of solutions by the Moser iteration. The global stability of constant steady states is established based on the Lyapunov functional method.



    加载中


    [1] Y. V. Tyutyunov, L. I. Titova, I. N. Senina, Prey-taxis destabilizes homogeneous stationary state in spatial gause–kolmogorov-type model for predator–prey system, Ecol. Complexity, 31 (2017), 170–180. https://doi.org/10.1016/j.ecocom.2017.07.001 doi: 10.1016/j.ecocom.2017.07.001
    [2] P. Kareiva, G. Odell, Swarms of predators exhibit "prey-taxis" if individual predators use area-restricted search, Am. Nat., 130 (1987), 233–270. https://doi.org/10.1086/284707 doi: 10.1086/284707
    [3] D. Grünbaum, Using spatially explicit models to characterize foraging performance in heterogeneous landscapes, Am. Nat., 151 (1998), 97–113. https://doi.org/10.1086/286105 doi: 10.1086/286105
    [4] H. Y. Jin, Z. A. Wang, Global stability of prey-taxis systems, J. Differ. Equations, 262 (2017), 1257–1290. https://doi.org/10.1016/j.jde.2016.10.010 doi: 10.1016/j.jde.2016.10.010
    [5] H. Y. Jin, Z. A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, Eur. J. Appl. Math., 32 (2021), 652–682. https://doi.org/10.1017/S0956792520000248 doi: 10.1017/S0956792520000248
    [6] J. M. Lee, T. Hillen, M. A. Lewis, Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), 551–573. https://doi.org/10.1080/17513750802716112 doi: 10.1080/17513750802716112
    [7] W. W. Murdoch, J. Chesson, P. L. Chesson, Biological control in theory and practice, Am. Nat., 125 (1985), 344–366. https://doi.org/10.1086/284347 doi: 10.1086/284347
    [8] N. Sapoukhina, Y. Tyutyunov, R. Arditi, The role of prey taxis in biological control: a spatial theoretical model, Am. Nat., 162 (2003), 61–76. https://doi.org/10.1086/375297 doi: 10.1086/375297
    [9] Y. Tao, Global existence of classical solutions to a predator–prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056–2064. https://doi.org/10.1016/j.nonrwa.2009.05.005 doi: 10.1016/j.nonrwa.2009.05.005
    [10] J. Tian, P. Liu, Global dynamics of a modified leslie-gower predator-prey model with beddington-deangelis functional response and prey-taxis, Electron. Res. Arch., 30 (2022), 929–942. https://doi.org/10.3934/era.2022048 doi: 10.3934/era.2022048
    [11] J. P. Wang, M. X. Wang, Global solution of a diffusive predator–prey model with prey-taxis, Comput. Math. Appl., 77 (2019), 2676–2694. https://doi.org/10.1016/j.camwa.2018.12.042 doi: 10.1016/j.camwa.2018.12.042
    [12] S. Wu, J. Shi, B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differ. Equations, 260 (2016), 5847–5874. https://doi.org/10.1016/j.jde.2015.12.024 doi: 10.1016/j.jde.2015.12.024
    [13] H. Y. Jin, Z. A. Wang, L. Y. Wu, Global dynamics of a three-species spatial food chain model, J. Differ. Equations, 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007
    [14] Y. Mi, C. Song, Z. C. Wang, Boundedness and global stability of the predator–prey model with prey-taxis and competition, Nonlinear Anal. Real World Appl., 66 (2022), 103521. https://doi.org/10.1016/j.nonrwa.2022.103521 doi: 10.1016/j.nonrwa.2022.103521
    [15] Z. A. Wang, J. Xu, On the Lotka–Volterra competition system with dynamical resources and density-dependent diffusion, J. Math. Biol., 82 (2021), 1–37. https://doi.org/10.1007/s00285-021-01562-w doi: 10.1007/s00285-021-01562-w
    [16] M. Fuest, Global solutions near homogeneous steady states in a multidimensional population model with both predator-and prey-taxis, SIAM J. Math. Anal., 52 (2020), 5865–5891. https://doi.org/10.1137/20M1344536 doi: 10.1137/20M1344536
    [17] S. Wu, J. Wang, J. Shi, Dynamics and pattern formation of a diffusive predator–prey model with predator-taxis, Math. Models Methods Appl. Sci., 28 (2018), 2275–2312. https://doi.org/10.1142/S0218202518400158 doi: 10.1142/S0218202518400158
    [18] I. Ahn, C. Yoon, Global well-posedness and stability analysis of prey-predator model with indirect prey-taxis, J. Differ. Equations, 268 (2020), 4222–4255. https://doi.org/10.1016/j.jde.2019.10.019 doi: 10.1016/j.jde.2019.10.019
    [19] P. Mishra, D. Wrzosek, The role of indirect prey-taxis and interference among predators in pattern formation, Math. Methods Appl. Sci., 43 (2020), 10441–10461. https://doi.org/10.1002/mma.6426 doi: 10.1002/mma.6426
    [20] J. I. Tello, D. Wrzosek, Predator–prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129–2162. https://doi.org/10.1142/S0218202516400108 doi: 10.1142/S0218202516400108
    [21] J. Bell, E. C. Haskell, Attraction-repulsion taxis mechanisms in a predator-prey model, Partial Differ. Equations Appl., 2 (2021), 34. https://doi.org/10.1007/s42985-021-00080-0 doi: 10.1007/s42985-021-00080-0
    [22] M. Luca, A. Chavez-Ross, L. Edelstein-Keshet, A. Mogilner, Chemotactic signaling, microglia, and alzheimer's disease senile plaques: is there a connection? Bull. Math. Biol., 65 (2003), 693–730. https://doi.org/10.1016/S0092-8240(03)00030-2
    [23] Y. Chiyo, T. Yokota, Boundedness and finite-time blow-up in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system, Z. Angew. Math. Phys., 73 (2022), 1–27. https://doi.org/10.1007/s00033-022-01695-y doi: 10.1007/s00033-022-01695-y
    [24] H. Y. Jin, Z. A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst., 40 (2020), 3509–3527. https://doi.org/10.3934/dcds.2020027 doi: 10.3934/dcds.2020027
    [25] H. Y. Jin, Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differ. Equations, 260 (2016), 162–196. https://doi.org/10.1016/j.jde.2015.08.040 doi: 10.1016/j.jde.2015.08.040
    [26] P. Liu, J. Shi, Z. A. Wang, Pattern formation of the attraction–repulsion Keller–Segel system, Discrete Contin. Dyna. Syst. -B, 18 (2013), 2597–2625. https://doi.org/10.3934/dcdsb.2013.18.2597 doi: 10.3934/dcdsb.2013.18.2597
    [27] H. Amann, Dynamic theory of quasilinear parabolic systems, III. global existence, Math. Z., 202 (1989), 219–250. https://doi.org/10.1007/BF01215256 doi: 10.1007/BF01215256
    [28] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis, Teubner, Stuttgart, 133 (1993), 9–126. https://doi.org/10.1007/978-3-663-11336-2_1
    [29] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 68 (1988). https://doi.org/10.1007/978-1-4612-0645-3
    [30] J. Lankeit, Y. L. Wang, Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, Discrete Contin. Dyn. Syst., 37 (2017), 6099–6121. https://doi.org/10.3934/dcds.2017262 doi: 10.3934/dcds.2017262
    [31] H. Y. Jin, Y. J. Kim, Z. A. Wang, Boundedness, stabilization, and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., 78 (2018), 1632–1657. https://doi.org/10.1137/17M1144647 doi: 10.1137/17M1144647
    [32] R. Kowalczyk, Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379–398. https://doi.org/10.1016/j.jmaa.2008.01.005 doi: 10.1016/j.jmaa.2008.01.005
    [33] Z. A. Wang, On the parabolic-elliptic Keller-Segel system with signal-dependent motilities: a paradigm for global boundedness and steady states, Math. Methods Appl. Sci., 44 (2021), 10881–10898. https://doi.org/10.1002/mma.7455 doi: 10.1002/mma.7455
    [34] Y. S. Tao, Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1–36. https://doi.org/10.1142/S0218202512500443 doi: 10.1142/S0218202512500443
    [35] N. D. Alikakos, $L^{p}$ bounds of solutions of reaction-diffusion equations, Commun. Partial Differ. Equations, 4 (1979), 827–868. https://doi.org/10.1080/03605307908820113 doi: 10.1080/03605307908820113
    [36] M. M. Porzio, V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equations, 103 (1993), 146–178. https://doi.org/10.1006/jdeq.1993.1045 doi: 10.1006/jdeq.1993.1045
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1850) PDF downloads(145) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog