In this paper, we study the following initial-boundary value problem of a three species predator-prey system with prey-taxis which describes the indirect prey interactions through a shared predator, i.e.,
{ut=dΔu+u(1−u)−a1uw1+a2u+a3v,in Ω,t>0,vt=ηdΔv+rv(1−v)−a4vw1+a2u+a3v,in Ω,t>0,wt=∇⋅(∇w−χ1w∇u−χ2w∇v)−μw+a5uw1+a2u+a3v+a6vw1+a2u+a3v,in Ω,t>0,
under homogeneous Neumann boundary conditions in a bounded domain Ω⊂Rn(n⩾1) with smooth boundary, where the parameters d,η,r,μ,χ1,χ2,ai>0,i=1,…,6. We first establish the global existence and uniform-in-time boundedness of solutions in any dimensional bounded domain under certain conditions. Moreover, we prove the global stability of the prey-only state and coexistence steady state by using Lyapunov functionals and LaSalle's invariance principle.
Citation: Gurusamy Arumugam. Global existence and stability of three species predator-prey system with prey-taxis[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 8448-8475. doi: 10.3934/mbe.2023371
[1] | Tingfu Feng, Leyun Wu . Global dynamics and pattern formation for predator-prey system with density-dependent motion. Mathematical Biosciences and Engineering, 2023, 20(2): 2296-2320. doi: 10.3934/mbe.2023108 |
[2] | Yong Luo . Global existence and stability of the classical solution to a density-dependent prey-predator model with indirect prey-taxis. Mathematical Biosciences and Engineering, 2021, 18(5): 6672-6699. doi: 10.3934/mbe.2021331 |
[3] | Paulo Amorim, Bruno Telch, Luis M. Villada . A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing. Mathematical Biosciences and Engineering, 2019, 16(5): 5114-5145. doi: 10.3934/mbe.2019257 |
[4] | Yuxuan Zhang, Xinmiao Rong, Jimin Zhang . A diffusive predator-prey system with prey refuge and predator cannibalism. Mathematical Biosciences and Engineering, 2019, 16(3): 1445-1470. doi: 10.3934/mbe.2019070 |
[5] | Xue Xu, Yibo Wang, Yuwen Wang . Local bifurcation of a Ronsenzwing-MacArthur predator prey model with two prey-taxis. Mathematical Biosciences and Engineering, 2019, 16(4): 1786-1797. doi: 10.3934/mbe.2019086 |
[6] | Wenbin Lyu . Boundedness and stabilization of a predator-prey model with attraction- repulsion taxis in all dimensions. Mathematical Biosciences and Engineering, 2022, 19(12): 13458-13482. doi: 10.3934/mbe.2022629 |
[7] | Eric M. Takyi, Charles Ohanian, Margaret Cathcart, Nihal Kumar . Dynamical analysis of a predator-prey system with prey vigilance and hunting cooperation in predators. Mathematical Biosciences and Engineering, 2024, 21(2): 2768-2786. doi: 10.3934/mbe.2024123 |
[8] | Ilse Domínguez-Alemán, Itzel Domínguez-Alemán, Juan Carlos Hernández-Gómez, Francisco J. Ariza-Hernández . A predator-prey fractional model with disease in the prey species. Mathematical Biosciences and Engineering, 2024, 21(3): 3713-3741. doi: 10.3934/mbe.2024164 |
[9] | Lazarus Kalvein Beay, Agus Suryanto, Isnani Darti, Trisilowati . Hopf bifurcation and stability analysis of the Rosenzweig-MacArthur predator-prey model with stage-structure in prey. Mathematical Biosciences and Engineering, 2020, 17(4): 4080-4097. doi: 10.3934/mbe.2020226 |
[10] | Lisha Wang, Jiandong Zhao . A predator-prey model with genetic differentiation both in the predator and prey. Mathematical Biosciences and Engineering, 2020, 17(3): 2616-2635. doi: 10.3934/mbe.2020143 |
In this paper, we study the following initial-boundary value problem of a three species predator-prey system with prey-taxis which describes the indirect prey interactions through a shared predator, i.e.,
\begin{align*} \begin{cases} u_t = d\Delta u+u(1-u)- \frac{a_1uw}{1+a_2u+a_3v}, & \; \mbox{in}\ \ \Omega, t>0, \\ v_t = \eta d\Delta v+rv(1-v)- \frac{a_4vw}{1+a_2u+a_3v}, & \; \mbox{in}\ \ \Omega, t>0, \\ w_t = \nabla\cdot(\nabla w-\chi_1 w\nabla u-\chi_2 w\nabla v) -\mu w+ \frac{a_5uw}{1+a_2u+a_3v}+\frac{a_6vw}{1+a_2u+a_3v}, & \mbox{in}\ \ \Omega, t>0, \ \ \label{II} \end{cases} \end{align*}
under homogeneous Neumann boundary conditions in a bounded domain Ω⊂Rn(n⩾1) with smooth boundary, where the parameters d,η,r,μ,χ1,χ2,ai>0,i=1,…,6. We first establish the global existence and uniform-in-time boundedness of solutions in any dimensional bounded domain under certain conditions. Moreover, we prove the global stability of the prey-only state and coexistence steady state by using Lyapunov functionals and LaSalle's invariance principle.
Predator-prey models were developed to describe the dynamics of interactions between prey and predator species. The relationship between prey and predator has been explored in recent years due to its importance in ecology. In addition to the differential operators in the predator-prey system, predators also move toward the higher prey density, which is so-called the prey-taxis, and it plays an important role in pest control and biological control [1,2,3,4]. The first predator-prey model with prey-taxis was derived by Kareiva and Odell [5] to describe the predator aggregation phenomenon:
{ut=∇⋅(d(w)∇u)−∇⋅(uχ(w)∇w)+F(u,w),wt=dΔw+G(u,w), | (1.1) |
where u=u(x,t) and w=w(x,t) denote the predator and prey densities, respectively, and the term ∇⋅(d(w)∇u) denotes the diffusion of predators with diffusion coefficient d(w). The term −∇⋅(uχ(w)∇w) represents the prey-taxis with χ(w) as prey-taxis coefficient. The parameter d>0 is the diffusion coefficient of prey. The typical form of the functions F(u,w)=auf(w)+h(u) and G(u,w)=g(w)−buf(w), where f(w) represents the functional response, for numerous functional response functions (see [6,7,8]) and the parameters a,b∈R describe the inter-specific interactions between predator-preys. The intra-specific interactions of predators and prey are described by the functions h(u) and g(w), respectively. The results related to variants of the above prey-taxis system have been studied by many authors, as one can refer to [9,10,11,12,13,14,15,16,17,18], and nonlinear prey-taxis [19,20,21,22,23,24]. Moreover, the predator-prey system with prey-taxis and liquid surroundings was considered in [25], and proved global existence and large time behavior of solutions by using Lp estimates and Lyapunov functionals, respectively.
In this paper, we consider a PDE model of indirect interactions between two prey species and a shared predator with homogeneous Neumann boundary conditions:
{ut=d1Δu+α1u(1−uKu)−c1uw1+c1T1u+c2T2v,in Ω,t>0,vt=d2Δv+α2v(1−vKv)−c2vw1+c1T1u+c2T2v,in Ω,t>0,wt=∇⋅(d3∇w−χ1w∇u−χ2w∇v)−dw+c1γ1uw1+c1T1u+c2T2v+c2γ2vw1+c1T1u+c2T2v,in Ω,t>0,∂νu=∂νv=∂νw=0,x∈∂Ω,t>0,u(x,0)=u0(x), v(x,0)=v0(x) and w(x,0)=w0(x),x∈Ω. | (1.2) |
Where, Ω⊂Rn(n⩾1) is a bounded domain with smooth boundary ∂Ω and ∂∂ν represents the derivative with respect to outer normal of ∂Ω, u is the native prey, v denotes the invasive prey and w is the predator species. The parameters d1,d2 denote the random diffusion rates of prey, and d3 and d4 denote the random diffusion rate of predators and the chemical concentration, respectively. Ku and Kv are the carrying capacities for these prey species. The constants α1and α2 are intrinsic growth rate parameters. The parameters T1 and T2 usually represent the handling time required for catching and consuming a unit of prey type u and v, respectively. The constants c1 and c2 are capture rates per unit prey density while the predator is searching. In particular, c1 is the capture rate of prey u and c2 is the capture rate of prey v. In addition, d is an intrinsic growth (death) rate for the predator and η is a self-limiting or crowding coefficient for the predator. κ is the production rate of chemical signal per individual prey u and ξ is the decay rate of the chemical signal. The positive constants γ1 and γ2 denote the transformation rates of the predator.
The terms −∇⋅(χ1w∇u) and −∇⋅(χ2w∇v) denote the tendency of predators moves towards the high density of prey. The parameters χ1 and χ2 are the prey-taxis coefficients. The functions c1u1+c1T1u+c2T2v and c2v1+c1T1u+c2T2v these represent Holling type Ⅱ functional responses for two preys that are consumed in a single habitat, so that handling one prey reduces the time available to capture the other.
Let ˜u=uKu,˜v=vKv,˜w=dw, d=d1d3,η=d2d1, L=√d3α1,T=L2d3=1α1, ˜t=tT,˜x=xL,˜y=yL,r=α2Ta1=c1Td, a2=c1T1Ku,a3=c2T2Kv,a4=c2dT,a5=c1γ1Kud,a6=c2γ2Kvd. Then, substituting these parameters into system (1.2) and dropping the tilde notation, we get a nondimensional system as follows:
{ut=dΔu+u(1−u)−a1uw1+a2u+a3v,in Ω,t>0,vt=ηdΔv+rv(1−v)−a4vw1+a2u+a3v,in Ω,t>0,wt=∇⋅(∇w−χ1w∇u−χ2w∇v)−μw+a5uw1+a2u+a3v+a6vw1+a2u+a3v,in Ω,t>0,∂νu=∂νv=∂νw=0,x∈∂Ω,t>0,u(x,0)=u0(x), v(x,0)=v0(x) and w(x,0)=w0(x),x∈Ω. | (1.3) |
Let us recall some existing works on three species predator-prey systems with prey-taxis. Very recently, Haskel and Bell [26] proved the existence of positive classical solutions for the two-prey one-predator system with prey competitions and prey taxis. In addition, they also established the pattern formation by using bifurcation analysis. Further, they also studied the bifurcation analysis of two competing prey with one shared predator model by using the theories of Crandall-Rabinowitz and Hopf bifurcation in [27]. The steady-state bifurcation analysis of the two-prey one-predator model with two prey taxis was studied by Xu et al. [28]. Jin et al. [29] considered the three-species food chain model in a two-dimensional bounded domain, and they also proved the global existence of classical solutions and global stability of constant steady states. The traveling wave solutions for a nonlocal dispersal predator-prey system with one predator and two prey was studied in [30]. Amorim et al. [31] studied the boundedness and global well-posedness of the spatio-temporal evolution of two competitive prey, and one predator model with the intra-specific competition. The global existence and boundedness of classical solutions for the two-predators and one-prey with competition in a bounded domain with Neumann boundary conditions were proved by Min et al. in [32]. Recently, the global existence of weak solutions to the two-prey one-predator system with prey-taxis, and competition between prey was proved in any dimension in [33]. For the similar mathematical structure of (1.3), we refer to [34,35,36]. Throughout this paper, we assume the system parameters are positive. To the best of author's knowledge, there is no article that discusses the well-posedness of the considered system (1.3). The main purpose of this article is to discuss the global dynamics of the system (1.3) in any dimension (n⩾1). In particular, we first prove the global existence of a classical solution in all dimensions, and then we investigate the global stability of steady states. Our main result regarding the global existence of classical solutions with uniform-in-time bound is stated below.
Theorem 1.1. (Global existence) Let Ω⊂Rn,n⩾1 be a bounded domain with smooth boundary and let d,η>0,h1,h2>1,k⩾2,ai>0,i=1,…,6,μ>0,K0=max{1,‖u0‖L∞} and K1=max{1,‖v0‖L∞}. For any (u0,v0,w0)∈[W1,p(Ω)]3 with p>n and u0,v0,w0⩾0(≢0), if d>max{5kK0,5kK1η} and χ1 satisfies
χ1⩽min{d5kK0(d+1),d5kK0−1,d5kK0(d+1)√h2,2(ηd+1)√dK1K0(d+1)√5kηh2} | (1.4) |
and χ2 satisfies
χ2⩽min{ηd5kK1√h1(ηd+1),2η(d+1)√dK0√5kh1(ηd+1)K1,ηd5kK1(ηd+1),ηd5kK1−1}, | (1.5) |
then there exists a unique global classical solution (u,v,w)∈[C0(¯Ω×[0,∞))∩C2,1(¯Ω×(0,∞))]3 solving the problem (1.3). Moreover, the solution satisfies u,v,w>0 for all t>0 and
‖u(x⋅,t)‖L∞+‖v(x⋅,t)‖L∞+‖w(x⋅,t)‖L∞⩽C for all t>0, |
where C>0 is a constant independent of t.
Next, we shall study the large time behaviour of the constant steady states (us,vs,ws) of the system (1.3) solving the following system
{us[1−us−a1ws1+a2us+a3vs]=0,vs[r(1−vs)−a4ws1+a2us+a3vs]=0,ws[a5us1+a2us+a3vs+a6vs1+a2us+a3vs−μ]=0. |
If we solve the above system, we will find the following steady states
(us,vs,ws)={(0,0,0) or (1,0,0) or (0,1,0) or (1,1,0),if μ>a5+a61+a2+a3,a4<a1r(a5+a3a5−a2a6)a3a5−a6−a2a6,(0,0,0) or (1,0,0) or (0,1,0) or (1,1,0) or E1∗, if μ>a5+a61+a2+a3,a4<a1r(a5+a3a5−a2a6)a3a5−a6−a2a6,μ<a51+a2,(0,0,0) or (1,0,0),(0,1,0),(1,1,0),E2∗, if μ>a5+a61+a2+a3,a4<a1r(a5+a3a5−a2a6)a3a5−a6−a2a6,μ<a61+a3,(0,0,0) or (1,0,0) or (0,1,0) or (1,1,0) or E1∗ or E2∗ or E∗=(u∗,v∗,w∗)μ<a5+a61+a2+a3,a4>a1r(a5+a3a5−a2a6)a3a5−a6−a2a6, | (1.6) |
where
E1∗=(μa5−a2μ,0,a5(a5−(1+a2)μ)a1(a5−a2μ)2),E2∗=(0,μa6−a3μ,a6r(a6−(1+a3)μ)a4(a6−a3μ)2)u∗=a4(a6−a3μ)+a1r(−a6+μ+a3μ)a1r(a5−a2μ)+a4(a6−a3μ)v∗=a1r(a5−a2μ)+a4(−a5+μ+a2μ)a1r(a5−a2μ)+a4(a6−a3μ)w∗=−r[(1+a2)a4a6+a1(a5−a2a6)r+a3(−a4a5+a1a5r)](−a5−a6+(1+a2+a3)μ)(a1r(a5−a2μ)+a4(a6−a3μ))2 |
and (0,0,0) is the extinction steady state, (1,0,0) is the prey u only steady state, (0,1,0) is the prey v only steady state. E1∗ and E2∗ denote the semi-coexistence steady state. Finally, E∗ denotes the coexistence steady state. Next, we shall explore the following question: which of the above seven homogeneous steady states will be asymptotically stable? As we know that the global stability of the cross-diffusion system is difficult and many techniques are not available, we try to use the Lyapunov functionals to prove the global stability of the homogeneous steady states under some conditions. Next, we state our stability results as in the following theorem:
Theorem 1.2. (Global stability) Assume the conditions in Theorem 1.1 hold. Let (u,v,w) be the solution of (1.3) obtained in Theorem 1.1 and let K0=max{1,‖u0‖L∞},K1=max{1,‖v0‖L∞},Γ1=a5+(a3a5−a2a6)v∗a1(1+a2u∗+a3v∗) and Γ2=a5+(a3a5−a2a6)u∗a1(1+a2u∗+a3v∗). Then the following results hold true.
● If μ>a5+a61+a2+a3,a4⩽a1r(a5+a3a5−a2a6)a3a5−a6−a2a6, then the steady state (1,1,0) is globally asymptotically stable.
● If μ<a5+a61+a2+a3,a4>a1r(a5+a3a5−a2a6)a3a5−a6−a2a6, the steady state E∗ defined by (1.6) is globally asymptotically stable provided
Γ1(2a2+a3)2+Γ2a2r2<Γ1+Γ1(2a2+a3)u∗2+Γ2a2rv∗2, | (1.7) |
Γ2r(2a3+a2)2+Γ1a32<rΓ2+Γ2r(2a3+a2)v∗2+Γ1a3u∗2, | (1.8) |
4dΓ1Γ2ηu∗v∗>Γ1χ22u∗w∗‖v‖2L∞+χ21ηΓ2‖u‖2L∞v∗w∗. | (1.9) |
where ‖u‖L∞ and ‖v‖L∞ depends on d,η,a1,a2,a3 but independent of χ1,χ2.
The paper is organized as follows: In section 2, we first present some preliminary results, and then we state and prove the local existence of solutions of (1.3). Section 3 deals with the existence of globally bounded classical solutions as stated in Theorem 1.1. In Section 4, we establish the global stability results as stated in Theorem 1.2 by using the Lyapunov functionals and LaSalle's invariance principle.
In what follows, we shall abbreviate ∫Ωfdx as ∫Ωf for simplicity. In this section, we first prove the local existence of classical solutions to the system (1.3) in any dimension Ω⊂Rn,n⩾1 using the Amann's approach (cf. [37,38]). We use the following Gagliardo-Nirenberg interpolation inequality in the sequel.
Lemma 2.1. ([39]) There exists a constant C4>0, such that for all u∈W1,q(Ω),
‖u‖Lp⩽C4‖u‖aW1,q‖u‖1−aLm, | (2.1) |
where p,q⩾1 which satisfies p(n−q)<nq,m∈(0,p) with a=nm−npnm+1−nq∈(0,1).
Lemma 2.2. ([39]) There exists a constant C5>0, such that for all u∈W1,q(Ω), we have
‖u‖W1,p⩽C5(‖∇u‖Lp+‖u‖Lq), | (2.2) |
where p>1 and q>0.
Lemma 2.3. ([40]) Let T>0,τ∈(0,T),σ⩾0,a>0,b⩾0, and suppose that f:[0,T)→[0,∞) is absolutely continuous, and satisfies
f′(t)+af1+σ(t)⩽h(t), t∈R, | (2.3) |
where h⩾0,h(t)∈L1loc([0,T)) and
∫tt−τh(s)ds⩽b, for all t∈[τ,T). | (2.4) |
Then,
supt∈(0,T)f(t)+asupt∈(τ,T)∫tt−τf1+σ(s)ds⩽b+2max{f(0)+b+aτ,baτ+1+2b+2aτ}. | (2.5) |
Lemma 2.4. ([39]) Assume that m∈{0,1},p∈[1,∞] and q∈(1,∞). Then there exists some positive constant C1, such that
‖ϕ‖Wm,p⩽C1‖(A+1)θϕ‖Lq, | (2.6) |
for any ϕ∈D((A+1)θ), where θ∈(0,1) satisfies
m−np<2θ−nq. |
If in addition q⩾p, then there exist constants C2>0 and γ>0, such that for any ϕ∈Lp(Ω),
‖(A+1)θe−t(A+1)ϕ‖Lq⩽C2t−θ−n2(1p−1q)e−μt‖ϕ‖Lp, | (2.7) |
where the semigroup {e−t(A+1)}t⩾0 maps Lp(Ω) into D((A+1)θ). Moreover, for any p∈(0,∞) and ϵ>0, there exist constants C3>0 and γ>0, such that
‖(A+1)θe−tA∇⋅ϕ‖Lp⩽C3t−θ−12−ϵe−γt‖ϕ‖Lp | (2.8) |
this is valid for all Rn− valued ϕ∈Lp(Ω).
Theorem 2.1. (Local existence) Let the assumptions in Theorem 1.1 hold. Then, there exists a Tmax∈(0,∞], such that the problem (1.3) has a unique classical solution
(u,v,w)∈(C0(¯Ω×[0,Tmax))∩C2,1(¯Ω×(0,Tmax)))3, |
which satisfies (u,v,w)>0 for all t>0. Further,
if Tmax<∞, then limt↗Tmaxsup(‖u(⋅,t)‖L∞+‖v(⋅,t)‖L∞+‖w(⋅,t)‖L∞)=∞. | (2.9) |
Proof. Denote ψ=(u,v,w). Then, the problem (1.3) can be written as
{ψt=∇⋅(A(ψ)∇ψ)+F(ψ), x∈Ω,t>0,∂νψ=0, x∈∂Ω,t>0,ψ(⋅,0)=(u0,v0,w0), x∈Ω, | (2.10) |
where
A(ψ)=[d000ηd0−χ1w−χ2w1] and F(ψ)=[−a1uw1+a2u+a3v−a4vw1+a2u+a3va5uw+a6vw1+a2u+a3v]. | (2.11) |
Since the eigenvalues of A(ψ) are positive, the system (1.3) is normally parabolic(cf. [37,38]). Then, the application of Theorem 7.3 and Corollary 9.3 in [37] yields a Tmax>0, such that system (1.3) admits a unique solution (u,v,w)∈[C0(¯×[0,Tmax))∩C2,1(¯Ω×(0,Tmax))]3. Next, we show the nonnegativity of (u,v,w) by using the maximum principle. To do so, we need to rewrite the third equation of the system (1.3) as follows:
{wt=Δw+p1(x,t)⋅∇w+p2(x,t)w=0, x∈Ω,t∈(0,Tmax),∂νw=0, x∈Ω,t∈(0,Tmax),w(x,0)=w0⩾0 in x∈Ω, | (2.12) |
where p1(x,t)=χ1∇u+χ2∇v and p2(x,t)=χ1Δu+χ2Δv−a5u+a6v1+a2u+a3v. Hence, we apply the maximum principle for parabolic equation with Neumann boundary condition to (2.12) and we get w⩾0 for all (x,t)∈Ω×(0,Tmax). In addition, we also obtain w>0 by strong maximum principle since the initial function w0≢0. In the same way, we can obtain that u,v>0 for all (x,t)∈Ω×(0,Tmax). Because A(ψ) is lower triangular, (2.9) follows from Theorem 5.2 in [41].
Lemma 2.5. The solution (u,v,w) of the system (1.3) satisfies
0<u(x,t)⩽K0:=max{‖u0‖L∞(Ω),1}, limt→∞supu(x,t)⩽1, | (2.13) |
0<v(x,t)⩽K1:=max{‖v0‖L∞(Ω),1}, limt→∞supv(x,t)⩽1, | (2.14) |
‖w(x,t)‖L1(Ω)⩽K2:=δa1a4, | (2.15) |
where K0,K1,K2,δ=max{a4a5‖u0‖L1+a1a6‖v0‖L1+a1a4‖w0‖L1,c2c1} are positive constants independent of t.
Proof. The proof is similar to Lemma 2.2 in [21] but for reader's convenience, we provide the proof here. We have already proved that the solution (u,v,w) of the system (1.3) is non-negative. Using this fact, we have
{ut−dΔu=u(1−u)−a1uw1+a2u+a3v⩽u(1−u), x∈Ω,t>0,∂νu=0, x∈∂Ω,t>0,u(x,0)=u0(x),x∈Ω. | (2.16) |
Let u∗(t) be a solution to the following ODE problem
{du∗dt=u∗(1−u∗), t>0,u∗(0)=‖u0‖L∞. | (2.17) |
The solution of the above ODE satisfies u∗(t)⩽K0=max{‖u0‖L∞,1}, and in addition, u∗(t) is a super solution of the following PDE problem
{Ut−dΔU=U(1−U) x∈Ω,t>0,∂νU=0, x∈∂Ω,t>0,U(x,0)=u0(x),x∈Ω. | (2.18) |
Hence, we have U(x,t)⩽u∗(t) for all (x,t)∈¯Ω×(0,∞). Using the strong maximum principle to the problem (2.18), we obtain 0<U(x,t)⩽u∗(t) for all (x,t)∈¯Ω×(0,∞). From (2.16)–(2.18), and using the comparison principle, we conclude that
0<u(x,t)⩽U(x,t)⩽u∗(t)⩽K0,for all (x,t)∈¯Ω×(0,∞), | (2.19) |
which yields (2.13). Similarly, we can also prove (2.14).
Multiplying the first, second and third equations of (1.3) by a4a5, a1a6 and a1a4, respectively, and adding the resulting equations and then integrating it over Ω, we get
ddt(∫Ωa4a5u+a1a6v+a1a4w)=∫Ωa4a5u(1−u)+a1a6rv(1−v)−a1a4μw=∫Ωa4a5u−∫Ωa4a5u2+a1a6rv−a1a6rv2−a1a4μw. | (2.20) |
Using Cauchy-Schwartz inequality, one has
(∫Ωu)2⩽(∫Ωu2)|Ω| |
which implies
−∫Ωu2⩽−1|Ω|(∫Ωu)2. | (2.21) |
Using Young's inequality (−a2−b2⩽−2ab,a,b>0) yields
−∫Ωu2⩽−2∫Ωu+|Ω|. | (2.22) |
Substituting (2.22) into (2.20), we have that
ddt(∫Ωa4a5u+a1a6v+a1a4w)⩽∫Ωa4a5u−2∫Ωa4a5u+a4a5|Ω|+∫Ωa1a6rv−2a1a6r∫Ωv+a1a6|Ω|−a1a4μ∫Ωw⩽−∫Ωa4a5u−∫Ωa1a6rv−∫Ωa1a4μw+a4a5|Ω|+a1a6|Ω|. | (2.23) |
Set y(t)=∫Ωa4a5u+a1a6v+a1a4w and choose c1=min{1,r,μ} then (2.23) can be written as
y′(t)+c1y(t)⩽c2, | (2.24) |
where c2=(a4a5+a1a6)|Ω| and which yields (2.15) with the help of Gronwall's inequality. We further have from (2.17) that limt→∞supu(x,t)⩽1. The proof of Lemma 2.5 is complete.
In this subsection, we prove the global existence and boundedness of solutions. In order to prove the global existence, we first derive a uniform bound for w in Ln+1 by using a weight function argument and the proof is inspired from [23], which also concerns the predator-prey taxis with a single prey population. It is worth mentioning that the method was initially developed in [42].
Lemma 3.1. Assume that χ1 and χ2 satisfy (1.4) and (1.5), respectively, and let (u,v,w) be the solution of (1.3). Then, there exists a positive constant c0>0, such that
‖w(⋅,t)‖Ln+1(Ω)⩽c0 for t∈(0,Tmax). | (3.1) |
Proof. Let us define the constants and weight functions
k:=n+1,β1:=√(k−1)d10k1(d+1)K0,β2:=√(k−1)ηd10k1(ηd+1)K1, | (3.2) |
1⩽φ1(u)⩽e(β1K0)2:=h1>1, 0⩽u⩽K0 and 1⩽φ2(v)⩽e(β2K1)2:=h2>1, 0⩽v⩽K1. | (3.3) |
Now, by using the weight function and the first and second equation of (1.3), we obtain
1kddt∫Ωwkφ1(u)=∫Ωwk−1φ1(u)wt+1k∫Ωwkφ′1(u)ut=∫Ωwk−1φ1(u)Δw−χ1∫Ωwk−1φ1(u)∇⋅(w∇u)−χ2∫Ωwk−1φ1(u)∇⋅(w∇v)+∫Ωwkφ1(u)a5u+a6v1+a2u+a3v−μ∫Ωwkφ1(u)+1k∫Ωwkφ′1(u)Δu+1k∫Ωwkφ′1(u)u(1−u)−1k∫Ωwk+1φ′1(u)a1u1+a2u+a3v | (3.4) |
⩽−(k−1)∫Ωwk−2φ1(u)|∇w|2+χ1(k−1)∫Ωwk−1∇w⋅∇uφ1(u)+χ1∫Ωwkφ′1(u)|∇u|2+χ2(k−1)∫Ωwk−1φ1(u)∇w⋅∇v+χ2∫Ωwkφ′1(u)∇u⋅∇v+C∫Ωwkφ1(u)−d∫Ωwk−1φ′1(u)∇w⋅∇u−dk∫Ωwkφ′′1(u)|∇u|2+1k∫Ωwkuφ′1(u)+2β21k∫Ωwkφ1(u)u2, | (3.5) |
where we used the boundedness of the functional response, C>0. The above inequality can be written as
1kddt∫Ωwkφ1(u)+(k−1)∫Ωwk−2φ1(u)|∇w|2+dk+∫Ωwkφ′′1(u)|∇u|2⩽−(d+1)∫Ωwk−1φ′1(u)∇u⋅∇w+χ1(k−1)∫Ωwk−1∇w⋅∇uφ1(u)+χ1∫Ωwkφ′1(u)|∇u|2+χ2(k−1)∫Ωwk−1φ1(u)∇w⋅∇v+χ2∫Ωwkφ′1(u)∇u⋅∇v+C∫Ωwkφ1(u)+2β21k∫Ωwkφ1(u)u2. | (3.6) |
By using Young's inequality, we get
−(d+1)∫Ωwk−1φ′1(u)∇u⋅∇w⩽ϵ(d+1)2∫Ωwk−2φ1(u)|∇w|2+(d+1)2ϵ∫Ωwkφ′21(u)φ1(u)|∇u|2⩽k−14∫Ωwk−2φ1(u)|∇w|2+(d+1)2k−1∫Ωwkφ′21(u)φ1(u)|∇u|2, | (3.7) |
and
χ1(k−1)∫Ωwk−1φ1(u)∇w⋅∇u⩽k−14∫Ωwk−2φ1(u)|∇w|2+χ21(k−1)∫Ωwkφ1(u)|∇u|2, | (3.8) |
χ2(k−1)∫Ωwk−1φ1(u)∇w⋅∇v⩽k−14∫Ωwk−2φ1(u)|∇w|2+χ21(k−1)∫Ωwkφ1(u)|∇v|2. | (3.9) |
Again,
χ2∫Ωwkφ′1(u)∇u⋅∇v⩽ϵ2χ2∫Ωwkφ′1(u)|∇u|2+χ22ϵ∫Ωwkφ′1(u)|∇v|2⩽∫Ωwkφ′1(u)|∇u|2+χ224∫Ωwkφ′1(u)|∇v|2. | (3.10) |
Substituting (3.7)–(3.10) into (3.6), one has
1kddt∫Ωwkφ1(u)+(k−1)4∫Ωwk−2φ1(u)|∇w|2+dk+∫Ωwkφ′′1(u)|∇u|2⩽(d+1)2k−1∫Ωwkφ′21(u)φ1(u)|∇u|2+χ21(k−1)∫Ωwkφ1(u)|∇u|2+χ1∫Ωwkφ′1(u)|∇u|2+χ21(k−1)∫Ωwkφ1(u)|∇v|2+χ1∫Ωwkφ′1(u)|∇u|2+χ224χ1∫Ωwkφ′1(u)|∇v|2+C∫Ωwkφ1(u)+2β21k∫Ωwkφ1(u)u2. | (3.11) |
Now, we multiply the third equation of (1.3) by φ2(v), we have
1kddt∫Ωwkφ2(v)=∫Ωwk−1φ2(v)wt+1k∫Ωwkφ′2(v)vt⩽∫Ωwk−1φ2(v)Δw−χ1∫Ωwk−1φ2(v)∇⋅(w∇u)−χ2∫Ωwk−1φ2(v)∇⋅(w∇v)+C∫Ωwkφ2(v)+ηdk∫Ωwkφ′2(v)Δv+rk∫Ωwkφ′2(v)v⩽−(k−1)∫Ωwk−2φ2(u)|∇w|2−(ηd+1)∫Ωwk−1φ′2(v)∇w⋅∇v+χ1(k−1)∫Ωwk−1φ2(v)∇w⋅∇u+χ1∫Ωwkφ′2(v)∇v⋅∇u+χ2(k−1)∫Ωwk−1φ2(v)∇w⋅∇v+χ2∫Ωwkφ′2(v)|∇v|2+B3∫Ωwkφ2(v)+2rβ22k∫Ωwkφ2(v)v2. | (3.12) |
By using Young's inequality, we arrive at
−(ηd+1)∫Ωwk−1φ′2(v)∇w⋅∇v⩽k−14∫Ωwk−2φ2(v)|∇w|2+(ηd+1)2k−1∫Ωwkφ′22(v)φ2(v)|∇v|2, | (3.13) |
and
χ1(k−1)∫Ωwk−1φ2(v)∇w⋅∇u⩽k−14∫Ωwk−2φ2(v)|∇w|2+χ21(k−1)∫Ωwkφ2(v)|∇u|2 | (3.14) |
χ2(k−1)∫Ωwk−1φ2(v)∇w⋅∇v⩽k−14∫Ωwk−2φ2(v)|∇w|2+χ22(k−1)∫Ωwkφ2(v)|∇v|2 | (3.15) |
χ1∫Ωwkφ′2(v)∇u⋅∇v⩽ϵχ12∫Ωwkφ′2(v)|∇u|2+χ12ϵwkφ′2(v)|∇v|2⩽∫Ωwkφ′2(v)|∇v|2+χ214∫Ωwkφ′2(v)|∇u|2. | (3.16) |
Substituting (3.13)–(3.16) into (3.12), we derive that
1kddt∫Ωwkφ2(v)+(k−1)4∫Ωwk−2φ2(u)|∇w|2+ηdk∫Ωwkφ′′2(v)|∇v|2⩽(ηd+1)2k−1∫Ωwkφ′22(v)φ2(v)|∇v|2+χ21(k−1)∫Ωwkφ2(v)|∇u|2+χ2∫Ωwkφ′2(v)|∇v|2+χ214χ2∫Ωwkφ′2(v)|∇u|2+χ22(k−1)∫Ωwkφ2(v)|∇v|2+χ2∫Ωwkφ′2(v)|∇v|2+C∫Ωwkφ2(v)+2rβ22k∫Ωwkφ2(v)v2. | (3.17) |
Now, adding (3.11) and (3.17), the resulting inequality becomes
1kddt∫Ωwkφ1(u)+1kddt∫Ωwkφ2(v)+k−14∫Ωwk−2φ1(u)|∇w|2+k−14∫Ωwk−2φ2(v)|∇w|2+dk∫Ωwkφ′′1(u)|∇u|2+dk∫Ωwkφ′′2(v)|∇v|2⩽(d+1)2k−1∫Ωwkφ′21(u)φ1(u)|∇u|2+χ21(k−1)∫Ωwkφ1(u)|∇u|2+(1+χ1)∫Ωwkφ′1(u)|∇u|2+χ22(k−1)∫Ωwkφ1(u)|∇v|2+χ224∫Ωwkφ′1(u)|∇v|2+B3∫Ωwkφ1(u)+2β21k∫Ωwkφ1(u)u2+(ηd+1)2k−1∫Ωwkφ′22(v)φ2(v)|∇v|2+χ21(k−1)∫Ωwkφ2(v)|∇u|2+χ22(k−1)∫Ωwkφ2(v)|∇v|2+(1+χ2)∫Ωwkφ′2(v)|∇v|2+χ214∫Ωwkφ′2(v)|∇u|2+C∫Ωwkφ2(v)+2rβ22k∫Ωwkφ2(v)v2. | (3.18) |
Now, we do some computation to show that the terms involving |∇u|2 and |∇v|2 on the right-hand side of above inequality are dominated by ∫Ωwkφ′′1|∇u|2 and ∫Ωwkφ′′2|∇v|2, respectively. For s⩾0, define
j1(s)=(d+1)2(k−1)φ′21(u)φ1(u)=4β41s2φ21(s)k−1, j2(s)=χ21(k−1)φ1(s),j3(s)=2(1+χ1)β21sφ1(s) | (3.19) |
j4(s)=χ21(k−1)φ2(s), j5(s)=χ21β22sφ2(s)2,j6(s)=2dkβ21φ1(s)+4dkβ41s2φ1(s) | (3.20) |
and
i1(s)=4(ηd+1)2β42s2φ2(s)(k−1), i2(s)=χ22(k−1)φ1(s), i3(s)=χ22β21sφ1(s)2 | (3.21) |
i4(s)=χ22(k−1)φ2(s), i5(s)=2(1+χ2)β22sφ2(s). | (3.22) |
Now, combining (3.19) and (3.20), one has
(d+1)2k−1∫Ωwkφ′21(u)φ1(u)|∇u|2+χ21(k−1)∫Ωwkφ1(u)|∇u|2+(1+χ1)∫Ωwkφ′1(u)|∇u|2+χ21(k−1)∫Ωwkφ2(v)|∇u|2+χ214∫Ωwkφ′2(v)|∇u|2⩽dk∫Ωwkφ′′1(u)|∇u|2. | (3.23) |
Similarly, we combine (2.1) and (2.2), we have that
χ22(k−1)∫Ωwkφ1(u)|∇v|2+χ224∫Ωwkφ′1(u)|∇v|2+(ηd+1)2k−1∫Ωwkφ′22(v)φ2(v)|∇v|2+χ22(k−1)∫Ωwkφ2(v)|∇v|2+(1+χ2)∫Ωwkφ′2(v)|∇v|2⩽dk∫Ωwkφ′′2(v)|∇v|2. | (3.24) |
Substituting (2.5) and (3.24) into (3.18), one has
1kddt∫Ωwkφ1(u)+1kddt∫Ωwkφ2(v)+k−14∫Ωwk−2φ1(u)|∇w|2+k−14∫Ωwk−2φ1(v)|∇w|2⩽B3∫Ωwkφ1(u)+2β21k∫Ωwkφ1(u)u2+B3∫Ωwkφ2(v)+2rβ22k∫Ωwkφ2(v)v2⩽(C+2β21K20k)∫Ωwkφ1(u)+(B3+2rβ22K21k)∫Ωwkφ2(v)⩽c1∫Ωwkφ1(u)+c2∫Ωwkφ2(v) | (3.25) |
where c1=C+2β21K20k and c2=C+2rβ22K21k. Using Lemma 2.1, Lemma 2.2, and (3.3), we get the estimate
∫Ωwkφ1(u)⩽h1∫Ωwk=h1‖wk2‖2L2⩽h1C4‖wk2‖2aW1,2‖wk2‖2(1−a)L2k⩽hC4(C5‖∇wk2‖L2+‖wk2‖L2)2a‖wk2‖2(1−a)L2k⩽h1C4C5(‖∇wk2‖L2+‖wk2‖k2L1)2a‖w‖k(1−a)L1⩽h1C4C5(‖∇uk2‖L2+Kk22)2aKk(1−a)2⩽C6(‖∇uk2‖2L2+1)a, | (3.26) |
where a=kn2−n2kn2+1−n2∈(0,1). Now using the fact (3.3) and from (3.26), one can obtain
∫Ωwk−2φ1(u)|∇w|2⩾∫Ωwk−2|∇w|2⩾4k2∫Ω|∇wk2|2⩾4k2[1C1/a6(∫Ωwkφ1(u))1a−1]⩾4k2C1/a6(∫Ωwkφ1(u))1a−4k2. | (3.27) |
Similarly, we get
∫Ωwk−2φ2(v)|∇w|2⩾∫Ωwk−2|∇w|2⩾4k2C1/a7(∫Ωwkφ2(v))1a−4k2. | (3.28) |
From (3.27) and (3.28), we have
1kddt∫Ωwkφ1(u)+1kddt∫Ωwkφ2(v)⩽−(k−1)k2C1a6(∫Ωwkφ1(u))1a−(k−1)k2C1a7(∫Ωwkφ2(v))1a+2(k−1)k2 | (3.29) |
for all t∈(0,Tmax) and where 1a>1. Set y(t):=1k∫Ωwk(φ1(u)+φ2(v)). By using the inequality xp+yp⩾n1−p(x+y)p,p⩾1, we get
y′(t)⩽−C8y1a(t)+2(k−1)k2 for all t∈(0,Tmax), | (3.30) |
where C8:=min{(k−1)k2C1a6,(k−1)k2C1a7}n1−1a and 1a>1. By using Lemma 2.3 and the fact that (3.3), one has
‖w(⋅,t)‖Lk⩽(∫Ωwk(φ1(u)+φ2(v)))1k⩽C | (3.31) |
for all t∈(0,Tmax), where C(u0,v0,C8,τ)>0. The proof of Lemma 3.1 is complete.
Lemma 3.2. Let (u,v,w) be a solution of the system (1.3). Then, there exists a positive constant c>0, such that
‖w(⋅,t)‖L∞⩽c for all t∈(0,Tmax). | (3.32) |
Proof. To obtain the L∞− bound of w, we use the semigroup estimates. In order to do this, we first obtain that for any τ∈(0,Tmax), there exists a constant C>0, such that
‖(u(⋅,t),v(⋅,t))‖W1,∞⩽C(τ) for all t∈(τ,Tmax) | (3.33) |
Let τ∈(0,Tmax) be given such that τ<1 and also let q:=n+1 and θ∈(12(1+nq),1). To begin with, we rewrite the first equation of (1.3) as follows:
ut=dΔu−u+g(x,t), | (3.34) |
with g(x,t):=u(1−u)−a1uw1+a2u+a3v+u. Then, by Lemma 3.1 and the fact that 0<u⩽K0,0<v⩽K1 (see Lemma 2.5) and a1u1+a2u+a3v⩽˜K, ˜K>0, we have
‖g(x,t)‖Lq=‖u(1−u)−a1uw1+a2u+a3v+u‖Lq⩽K0(1+K0)|Ω|1q+a1˜K‖w(⋅,t)‖Lq+K0|Ω|1q⩽[K0(1+K0)+K0]|Ω|1q+a1˜K‖w(⋅,t)‖Lq⩽K0[2+K0]|Ω|1q+a1˜K‖w(⋅,t)‖Lq⩽K0[2+K0]|Ω|1q+a1˜Kc0. | (3.35) |
We apply the variation-of-constants formula to (3.34) and obtain
u(⋅,t)=e−t(Ad+1)u0+∫t0e−(Ad+1)(t−s)g(⋅,s)ds, | (3.36) |
where Ad=−dΔ. Then using (2.6), (2.7) and the estimate (3.35) in (3.36), one can derive
‖u(⋅,t)‖W1,∞⩽C1‖(Ad+1)θu(⋅,t)‖Lq⩽C1t−θe−μt‖u0‖Lq+C1∫t0(t−s)−θe−μ(t−s)‖g(⋅,s)‖Lqds⩽C1t−θe−μt‖u0‖Lq(Ω)+C1∫t0(t−s)−θe−μ(t−s)[K0[2+K0]|Ω|1q+a1˜Kc0]ds⩽C1t−θe−μt‖u0‖Lq(Ω)+C1[K0[2+K0]|Ω|1q+a1˜Kc0]∫∞0σ−θe−μσdσ⩽C1t−θ‖u0‖Lq(Ω)+C1[K0[2+K0]|Ω|1q+a1˜Kc0]μθΓ(1−θ)⩽C1t−θ+C1 | (3.37) |
for all t∈(τ,Tmax), where Γ(1−θ)>0. From the last inequality (3.37), we get the desired estimate
‖u(⋅,t)‖W1,∞⩽C1(τ−θ+1):=C(τ) for all t∈(τ,Tmax). | (3.38) |
where C1 is a generic constant which may vary line to line. Next, we obtain the bound for ‖v(⋅,t)‖W1,∞. To this end, we rewrite the second equation of (1.3) as follows:
vt=ηdΔv−v+h(x,t), | (3.39) |
with h(x,t):=rv(1−v)−a4vw1+a2u+a3v+v. Then, by Lemma 3.1 and the fact that 0<u⩽K0,0<v⩽K1 (see Lemma 2.5) and a4v1+a2u+a3v⩽¯K, ¯K>0, we have
‖h(x,t)‖Lq=‖rv(1−v)−a4vw1+a2u+a3v+v‖Lq⩽K1(r(1+K1)+1)|Ω|1q+a4¯K‖w(⋅,t)‖Lq⩽K1(r(1+K1)+1)|Ω|1q+a4¯Kc0. | (3.40) |
We apply the variation-of-constants formula to (3.34) and obtain
v(⋅,t)=e−t(Aηd+1)v0+∫t0e−(Aηd+1)(t−s)h(⋅,s)ds. | (3.41) |
Then, using (2.6), (2.7) and the estimate (3.40) in (3.41), we find
‖v(⋅,t)‖W1,∞⩽C1‖(Aηd+1)θv(⋅,t)‖Lq⩽C1t−θe−μt‖v0‖Lq+C1∫t0(t−s)−θe−μ(t−s)‖h(⋅,s)‖Lqds⩽C1t−θe−μt‖v0‖Lq(Ω)+C1∫t0(t−s)−θe−μ(t−s)[K1(r(1+K1)+1)|Ω|1q+a4¯Kc0]ds⩽C1t−θe−μt‖v0‖Lq(Ω)+C1[K1(r(1+K1)+1)|Ω|1q+a4¯Kc0]∫∞0σ−θe−μσdσ⩽C1t−θ‖v0‖Lq(Ω)+C1[K1(r(1+K1)+1)|Ω|1q+a4¯Kc0]μθΓ(1−θ)⩽C1t−θ+C1 | (3.42) |
for all t∈(τ,Tmax) where Γ(1−θ)>0. From the last inequality (3.42), we obtain
‖v(⋅,t)‖W1,∞⩽C1(τ−θ+1):=C(τ) for all t∈(τ,Tmax). | (3.43) |
Next we derive the L∞- bound of w(⋅,t). We rewrite the third equation of (1.3) as follows:
wt=Δw−w−∇⋅(χ1w∇u+χ2w∇v)+a5uw1+a2u+a3v+a6vw1+a2u+a3v+w−μw. | (3.44) |
Then, applying the variation-of-constants formula to (3.44), one has
w(⋅,t)=e−t(A+1)w0−χ1∫t0e−(t−s)(A+1)∇⋅(w∇u)ds−χ2∫t0e−(t−s)(A+1)∇⋅(w∇v)ds+∫t0e−(t−s)(A+1)f(u,v,w)ds:=I1+I2+I3+I4, | (3.45) |
where f(u,v,w)=a5uw+a6vw1+a2u+a3v+(1−μ)w. Now, we take the L∞-norm on both sides of the above equation, we have
‖w(⋅,t)‖L∞⩽‖I1‖L∞+‖I2‖L∞+‖I3‖L∞+‖I4‖L∞. | (3.46) |
First, we estimate the term I1 as follows:
‖I1‖L∞⩽C2τ−θe−μt‖u0‖L∞⩽C2τ−θ‖u0‖L∞ | (3.47) |
for all t∈(τ,Tmax) and θ∈(n2q,1) and μ>0. In order to estimate the term I2, we set m=0,q=n+1,p=∞ for (2.8) and we use (3.33) and (3.1), one has
‖I2‖L∞⩽C3χ1∫t0‖(A+1)θe−(t−s)(A+1)∇⋅(w∇u)‖Lqds⩽C3χ1∫t0e−(t−s)‖(A+1)θe−(t−s)A∇⋅(w∇u)‖Lqds⩽C4∫t0(t−s)θ−12−ϵe−(μ+1)(t−s)‖w∇u‖Lqds⩽C0C3C(τ)∫t0(t−s)θ−12−ϵe−(μ+1)(t−s)ds⩽C4∫∞0ρ−θ−12−ϵe−(μ+1)ρdρ⩽C5Γ(12−θ−ϵ), | (3.48) |
where Γ(12−θ−ϵ) is a Gamma function which is positive since 12−θ−ϵ>0 and μ,C5>0.
Next, we obtain the bound for I3. As in the estimate of I2, we set m=0,q=n+1,p=∞ for (2.8) and we use (3.33) and (3.1), one has
‖I3‖L∞⩽C3χ1∫t0‖(A+1)θe−(t−s)(A+1)∇⋅(w∇v)‖Lqds⩽C3χ2∫t0e−(t−s)‖(A+1)θe−(t−s)A∇⋅(w∇v)‖Lqds⩽C6∫t0(t−s)θ−12−ϵe−(μ+1)(t−s)‖w∇v‖Lqds⩽C0C6C(τ)∫t0(t−s)θ−12−ϵe−(μ+1)(t−s)ds⩽C7∫∞0ρ−θ−12−ϵe−(μ+1)ρdρ⩽C8Γ(12−θ−ϵ), | (3.49) |
where Γ(12−θ−ϵ) is a Gamma function which is positive since 12−θ−ϵ>0 and μ,C8>0. Finally, we obtain the bound for I4. To this end, we use (2.6) and (2.7) and let m=1,p=(n,∞] and q=n+1. Hence, we can choose θ∈(12(1−np+nq),1). Then one has
‖I4‖W1,p⩽C1‖(A+1)θI4‖Lq⩽C1C2∫t0(t−s)−θe−νt‖f(u,v,w)‖Lqds. | (3.50) |
Using the fact that 0<u⩽K0,0<v⩽K1 and(3.1), we can get
‖a5uw+a6vw1+a2u+a3v+(1−μ)w‖Lq⩽˜K‖w‖Lq+(1+μ)‖w‖Lq⩽[˜K+(1+μ)]‖w‖Lq⩽[˜K+(1+μ)]C(τ) | (3.51) |
for all t∈(τ,Tmax). Hence, we have
‖I4‖W1,p⩽C1C2[˜K+(1+μ)]C(τ)∫t0(t−s)−θe−νtds⩽C1C2[˜K+(1+μ)]C(τ)∫∞0σ−θe−νtdσ⩽C1C2[˜K+(1+μ)]C(τ)νθΓ(1−θ) | (3.52) |
for all t∈(τ,Tmax) and where Γ(1−θ) is a Gamma function and it is positive since 1−θ>0 and ν>0. Since p>n, Sobolev embedding theorem yields that
‖I4‖L∞⩽C9 for all t∈(τ,Tmax). | (3.53) |
Substituting the estimates (3.47), (3.48), (3.49), (3.53) into (3.46) which yields (3.32). Hence, this completes the proof.
Proof of Theorem 1.1. From Lemma 2.5, we obtain ‖(u(⋅,t),v(⋅,t))‖L∞(Ω)⩽C. Further, we also obtain the bound for ‖w(⋅,t)‖L∞ from Lemma 3.2. By noticing these results now, we can conclude that
‖u(⋅,t)‖L∞+‖v(⋅,t)‖L∞+‖w(⋅,t)‖L∞⩽c for all t∈(0,Tmax), | (3.54) |
where c is a positive constant. From the criterion (2.9), we obtain that Tmax=∞ and hence ‖u(⋅,t)‖L∞+‖v(⋅,t)‖L∞+‖w(⋅,t)‖L∞⩽c for all t∈(0,∞). The proof of Theorem 1.1 is complete.
In this section, we shall prove the global stability of solutions of (1.3) by constructing some suitable Lyapunov functionals, and then we use the LaSalle's principle.
Lemma 4.1. Let (u,v,w) be the solution of (1.3) and let Γ1=(a5(1+a3−a2a6))a1(1+a2+a3),Γ2=(a6(1+a2)−a3a5)a4(1+a2+a3). Then, if μ⩾a5+a61+a2+a3 and a4<a1r(a5+a3a5−a2a6)a3a5−a6−a2a6, it holds that
limt→∞(‖u(⋅,t)−1‖L∞+‖v(⋅,t)−1‖L∞+‖w(⋅,t)‖L∞)=0. | (4.1) |
Proof. Let us define the energy functional
E(t):=Γ1∫Ω(u−1−lnu)+Γ2∫Ω(v−1−lnv)+∫Ωw. | (4.2) |
First we need to prove that E(t)⩾0 and E(t)=0 iff (u,v,w)=(1,1,0). To this end, let ψ(x)=x−g∗lnx and by Taylor's formula, one has
g−g∗−g∗lngg∗=ψ(g)−ψ(g∗)=ψ′(g∗)(g−g∗)+12ψ″(δ)(g−g∗)2=g∗2δ2(g−g∗), |
where we choose δ in between g∗ and g. Now putting g=u and g∗=1 in the last equation, we have
u−1−lnu=12δ2(u−1)2⩾0. |
Similarly, we can show that
v−1−lnv=12δ2(v−1)2⩾0. |
Therefore, we get E(u,v,w)=E(1,1,0)=0 and E(u,v,w)⩾0 for (u,v,w)≠(1,1,0). Differentiating (4.2) with respect to t, and then substituting equations from (1.3), we have
dE(t)dt=Γ1∫Ωu−1uut+Γ2∫Ωv−1uvt+∫Ωwt=−Γ1d∫Ω|∇u|2u2+Γ1∫Ω[1−u−a1w1+a2u+a3v](u−1)+Γ2ηd∫Ω|∇v|2v2+Γ2∫Ω[r(1−v)−a4w1+a2u+a3v](v−1)+∫Ω[a5u+a6v1+a2u+a3v−μ]w⩽−Γ1d∫Ω|∇u|2u2+Γ1∫Ω[1−u−a1w1+a2u+a3v](u−1)−Γ2ηd∫Ω|∇v|2v2+Γ2∫Ω[r(1−v)−a4w1+a2u+a3v](v−1)+∫Ω[a5u+a6v1+a2u+a3v−a5+a61+a2+a3]w⩽−Γ1d∫Ω|∇u|2u2+Γ1∫Ω[1−u−a1w1+a2u+a3v](u−1)−Γ2ηd∫Ω|∇v|2v2+Γ2∫Ω[r(1−v)−a4w1+a2u+a3v](v−1)+∫Ω[a5(u−1)+a3a5(u−v)(1+a2u+a3v)(1+a2+a3)+a6(v−1)+a2a6(v−u)(1+a2+a3)(1+a2u+a3v)]w. | (4.3) |
By using the assumptions of Γ1 and Γ2 in (4.3), one has
dE(t)dt⩽−Γ1d∫Ω|∇u|2u2−Γ2ηd∫Ω|∇v|2v2−Γ1∫Ω(u−1)2−Γ2r∫Ω(v−1)2, | (4.4) |
which yields
dE(t)dt⩽0, | (4.5) |
for all (u,v,w) and also the equality holds when (u,v,w)=(1,1,0). At last, the LaSalle's invariance principle (cf. [43], Theorem 3) yields that the solutions (u,v,w) converge to the constant steady state (1,1,0) as time t→∞.
Lemma 4.2. Let Γ1=a5+(a3a5−a2a6)v∗a1(1+a2u∗+a3v∗) and Γ2=a6+(a2a6−a3a5)u∗a4(1+a2u∗+a3v∗) be positive constants. Let (u,v,w) be the solution of (1.3). If μ<a5+a61+a2+a3, a4>a1r(a5+a3a5−a2a6)a3a5−a6−a2a6 and
Γ1(2a2+a3)2+Γ2a2r2<Γ1+Γ1(2a2+a3)u∗2+Γ2a2rv∗2, | (4.6) |
Γ2r(2a3+a2)2+Γ1a32<rΓ2+Γ2r(2a3+a2)v∗2+Γ1a3u∗2, | (4.7) |
4dΓ1Γ2ηu∗v∗>Γ1χ22u∗w∗K21+χ21ηΓ2K20v∗w∗, | (4.8) |
then it holds that
limt→∞(‖u(⋅,t)−u∗‖L∞+‖v(⋅,t)−v∗‖L∞+‖w(⋅,t)−w∗‖L∞)=0. | (4.9) |
Proof. The coexistence steady state (u∗,v∗,w∗) of (1.3) satisfies equations
(1−u∗)−a1w∗1+a2u∗+a3v∗=0,r(1−v∗)−a4w∗1+a2u∗+a3v∗=0,−μ+a5u∗1+a2u∗+a3v∗+a6v∗1+a2u∗+a3v∗=0. |
Let us define the Lyapunov functional E(u,v,w) as
E(u,v,w):=Γ1F1(t)+Γ2F2(t)+F3(t), | (4.10) |
where
F1(t)=∫Ωu−u∗−u∗log(uu∗),F2(t)=∫Ωv−v∗−v∗log(vv∗),F3(t)=∫Ωw−w∗−w∗log(ww∗). | (4.11) |
Next, we take the derivative of E(t) with respect to t along the trajectory of the system (1.3) and we obtain
dE(t)dt=Γ1dF1(t)dt+Γ2dF2(t)dt+dF3(t)dt:=Γ1I1+Γ2I2+I3. | (4.12) |
Using the definition of F1(t), the first equation of (1.3) and the fact that (1−u∗)−a1w∗1+a2u∗+a3v∗=0, we estimate the term I1 as follows:
I1=∫Ωu−u∗u(dΔu+u(1−u)−a1uw1+a2u+a3v)=−u∗∫Ω|∇u|2u2+∫Ω(u−u∗)(1−u−a1w1+a2u+a3v−1+u∗+a1w∗1+a2u∗+a3v∗)=−u∗d∫Ω|∇u|2u2+∫Ω(u−u∗)(−(u−u∗)−a1w(1+a2u∗+a3v∗)(1+a2u+a3v)(1+a2u∗+a3v∗)+a1w∗(1+a2u+a3v)(1+a2u+a3v)(1+a2u∗+a3v∗))=−u∗d∫Ω|∇u|2u2−∫Ω(u−u∗)2+∫Ω[−a1w(1+a2u∗+a3v∗)](u−u∗)(1+a2u+a3v)(1+a2u∗+a3v∗)+[a1w∗(1+a2u+a3v)](u−u∗)(1+a2u+a3v)(1+a2u∗+a3v∗). | (4.13) |
Now, let us simplify the numerator in the integrand of the third integral on the R.H.S. of (4.13) as follows:
[−a1w(1+a2u∗+a3v∗)](u−u∗)+[a1w∗(1+a2u+a3v)](u−u∗)=[−a1(w−w∗)+a1a2(uw∗−wu∗)+a1a3(w∗v−wv∗)](u−u∗)=[−a1(w−w∗)+a1a2(uw∗+u∗w∗−u∗w∗−wu∗)+a1a3(w∗v+v∗w∗−v∗w∗−wv∗)](u−u∗)=−a1(w−w∗)(u−u∗)+a1a2(w∗(u−u∗)−u∗(w−w∗))(u−u∗)+a1a3(w∗(v−v∗)−v∗(w−w∗))(u−u∗). | (4.14) |
Substituting (4.14) into the last integral on the R.H.S of (4.13), we obtain
∫Ω[−a1w(1+a2u∗+a3v∗)+a1w∗(1+a2u+a3v)](u−u∗)(1+a2u+a3v)(1+a2u∗+a3v∗)=∫Ωa1a2w∗(u−u∗)2(1+a2u+a3v)(1+a2u∗+a3v∗) | (4.15) |
−∫Ωa1[1+a2u∗+a3v∗](u−u∗)(w−w∗)(1+a2u+a3v)(1+a2u∗+a3v∗)+∫Ωa1a3w∗(u−u∗)(v−v∗)(1+a2u+a3v)(1+a2u∗+a3v∗). | (4.16) |
Again, inserting (4.16) into (4.13), we end up with
I1=−u∗d∫Ω|∇u|2u2−∫Ω(u−u∗)2+∫Ωa1a2w∗(u−u∗)2(1+a2u+a3v)(1+a2u∗+a3v∗)−∫Ωa1[1+a2u∗+a3v∗](u−u∗)(w−w∗)(1+a2u+a3v)(1+a2u∗+a3v∗)+∫Ωa1a3w∗(u−u∗)(v−v∗)(1+a2u+a3v)(1+a2u∗+a3v∗)=−u∗d∫Ω|∇u|2u2+∫Ω(a1a2w∗(1+a2u+a3v)(1+a2u∗+a3v∗)−1)(u−u∗)2−∫Ωa1[1+a2u∗+a3v∗](u−u∗)(w−w∗)(1+a2u+a3v)(1+a2u∗+a3v∗)+∫Ωa1a3w∗(u−u∗)(v−v∗)(1+a2u+a3v)(1+a2u∗+a3v∗). | (4.17) |
Similarly, we estimate the term I2. Using the definition of F2(t), the second equation of (1.3) and the fact that r(1−v∗)−a4w∗1+a2u∗+a3v∗=0, we estimate I2 as follows:
I2=∫Ωv−v∗v(ηdΔv+rv(1−v)−a4vw1+a2u+a3v)=−v∗ηd∫Ω|∇v|2v2+∫Ω(v−v∗)(−rv−a4w1+a2u+a3v+rv∗+a4w∗1+a2u∗+a3v∗)=−v∗ηd∫Ω|∇v|2v2+∫Ω(v−v∗)(−r(v−v∗)−a4w(1+a2u∗+a3v∗)(1+a2u+a3v)(1+a2u∗+a3v∗)+a4w∗(1+a2u+a3v)(1+a2u+a3v)(1+a2u∗+a3v∗))=−v∗ηd∫Ω|∇v|2v2−r∫Ω(v−v∗)2+∫Ω[−a4w(1+a2u∗+a3v∗)](v−v∗)(1+a2u+a3v)(1+a2u∗+a3v∗)+[a4w∗(1+a2u+a3v)](v−v∗)(1+a2u+a3v)(1+a2u∗+a3v∗). | (4.18) |
Now, let us simplify the numerator in the integrand of the third integral on the R.H.S. of (4.18) as follows:
[−a4w(1+a2u∗+a3v∗)+a4w∗(1+a2u+a3v)](u−u∗)=a3a4w∗(v−v∗)2−a4[1+a2u∗+a3v∗](v−v∗)(w−w∗)+a2a4w∗(u−u∗)(v−v∗). | (4.19) |
Substituting (4.19) into (4.18) and simplifying, we obtain
I2=−v∗ηd∫Ω|∇v|2v2−r∫(v−v∗)2+∫Ωa2a3w∗(v−v∗)2(1+a2u+a3v)(1+a2u∗+a3v∗)−∫Ωa4[1+a2u∗+a3v∗](v−v∗)(w−w∗)(1+a2u+a3v)(1+a2u∗+a3v∗)+∫Ωa2a4w∗(u−u∗)(v−v∗)(1+a2u+a3v)(1+a2u∗+a3v∗)=−v∗ηd∫Ω|∇v|2v2+∫Ω(a2a3w∗(1+a2u+a3v)(1+a2u∗+a3v∗)−r)(v−v∗)2−∫Ωa4[1+a2u∗+a3v∗](v−v∗)(w−w∗)(1+a2u+a3v)(1+a2u∗+a3v∗)+∫Ωa2a4w∗(u−u∗)(v−v∗)(1+a2u+a3v)(1+a2u∗+a3v∗). | (4.20) |
Finally, we estimate the term I3. Using the definition of F3(t), the third equation of (1.3) and the fact that −μ+a5u∗1+a2u∗+a3v∗+a6v∗1+a2u∗+a3v∗=0, we find
I3=∫Ωw−w∗w(Δw−χ1∇⋅(w∇u)−χ2∇⋅(w∇v))+∫Ω(w−w∗)(−μ+a5u+a6v1+a2u+a3v)=−w∗∫Ω|∇w|2w2+χ1w∗∫Ω∇u∇ww+χ2w∗∫Ω∇v∇ww+∫Ω(w−w∗)(a5u+a6v1+a2u+a3v−a5u∗+a6v∗1+a2u∗+a3v∗). | (4.21) |
Further, we simplify the numerator in the integrand of the third integral on the R.H.S. of (4.21), one has that
(a5u+a6v)(1+a2u∗+a3v∗)−(a5u∗+a6v∗)(1+a2u+a3v)=a5(u−u∗)+a6(v−v∗)+a3a5[v∗(u−u∗)−u∗(v−v∗)]+a2a6[u∗(v−v∗)−v∗(u−u∗)]=[a5+(a3a5−a2a6)v∗](u−u∗)+[a6+(a2a6−a3a5)u∗](v−v∗). |
Now, we rewrite the fourth term in the R.H.S of (4.21) using the above estimate, we obtain
∫Ω(w−w∗)(a5u+a6v1+a2u+a3v−a5u∗+a6v∗1+a2u∗+a3v∗)=∫Ω[a5+(a3a5−a2a6)v∗](u−u∗)(w−w∗)(1+a2u+a3v)(1+a2u∗+a3v∗)+∫Ω[a6+(a2a6−a3a5)u∗](v−v∗)(w−w∗)(1+a2u+a3v)(1+a2u∗+a3v∗). | (4.22) |
Substituting (4.22) into (4.21), we have
I3=−w∗∫Ω|∇w|2w2+χ1w∗∫Ω∇u⋅∇ww+χ2w∗∫Ω∇v⋅∇ww+∫Ω[a5+(a3a5−a2a6)v∗](u−u∗)(w−w∗)(1+a2u+a3v)(1+a2u∗+a3v∗)+∫Ω[a6+(a2a6−a3a5)u∗](v−v∗)(w−w∗)(1+a2u+a3v)(1+a2u∗+a3v∗). | (4.23) |
Furthermore, inserting (4.17), (4.20) and (4.23) into (4.12) and let p(u,v)=1(1+a2u+a3v)(1+a2u∗+a3v∗), we arrive at
dE(t)dt=−u∗dΓ1∫Ω|∇u|2u2−v∗ηdΓ2∫Ω|∇v|2v2−w∗∫Ω|∇w|2w2+χ1w∗∫Ω∇u⋅∇ww+χ2w∗∫Ω∇v⋅∇ww+Γ1∫Ω(a1a2w∗p(u,v)−1)(u−u∗)2+w∗(Γ1a1a3+Γ2a2a4)∫Ω(u−u∗)(v−v∗)w∗p(u,v)+Γ2∫Ω(a4a3w∗p(u,v)−r)(v−v∗)2. | (4.24) |
Applying the Cauchy's inequality, we get
∫Ω(u−u∗)(v−v∗)p(u,v)⩽12∫Ω(u−u∗)2p(u,v)+12∫Ω(v−v∗)2p(u,v). | (4.25) |
Inserting the last inequality (4.25) into (4.24), and letting Z=(|∇u|u,|∇v|v,|∇w|w), we obtain
dE(t)dt⩽−u∗dΓ1∫Ω|∇u|2u2−v∗ηdΓ2∫Ω|∇v|2v2−w∗∫Ω|∇w|2w2+χ1w∗∫Ω∇u⋅∇ww+χ2w∗∫Ω∇v⋅∇ww⏟I4+Γ1∫Ω(a1a2w∗p(u,v)−1)(u−u∗)2+w∗(Γ1a1a3+Γ2a2a4)2∫Ω(u−u∗)2p(u,v)+w∗(Γ1a1a3+Γ2a2a4)2∫Ω(v−v∗)2p(u,v)+Γ2∫Ω(a3a4w∗p(u,v)−r)(v−v∗)2⩽I4+∫Ω(2Γ1a1a2w∗+w∗(Γ1a1a3+Γ2a2a4)2p(u,v)−Γ1)(u−u∗)2+∫Ω(2Γ2a3a4w∗+w∗(Γ1a1a3+Γ2a2a4)2p(u,v)−rΓ2)(v−v∗)2, | (4.26) |
where
I4=−∫ΩZTBZ, |
and the symmetric matrix is denoted by
B=[dΓ1u∗0−χ1w∗u20ηdΓ2v∗−χ2w∗v2−χ1w∗u2−χ2w∗v2w∗]. | (4.27) |
The above matrix B is positive definite if (4.8) holds. Therefore, we check that
|ddΓ1u∗00ηdΓ2v∗|=d2η2Γ2u∗v∗>0 | (4.28) |
and
|B|=dw∗4[4dΓ1Γ2ηu∗v∗−Γ1χ22u∗w∗v2−χ21ηΓ2u2v∗w∗]>0. | (4.29) |
Hence, there exists a positive constant α, such that
dE(t)dt⩽−α∫Ω(|∇u|2u2+|∇v|2v2+|∇w|2w2)+∫Ω(2Γ1a1a2w∗+w∗(Γ1a1a3+Γ2a2a4)2p(u,v)−Γ1)(u−u∗)2+∫Ω(2Γ2a2a3w∗+w∗(Γ1a1a3+Γ2a2a4)2p(u,v)−rΓ2)(v−v∗)2. | (4.30) |
Noting the facts that 1−u∗−a1w∗1+a2u∗+a3v∗=0 and r(1−v∗)−a4w∗1+a2u∗+a3v∗=0, one has that
−Γ1+2Γ1a1a2w∗+w∗(Γ1a1a3+Γ2a2a4)2(1+a2u+a3v)(1+a2u∗+a3v∗)⩽−Γ1+2Γ1a1a2w∗+w∗(Γ1a1a3+Γ2a2a4)2(1+a2u∗+a3v∗)=−Γ1+Γ1a2(1−u∗)+Γ2a2r(1−v∗)2+Γ1a3(1−u∗)2⩽0, |
and
−rΓ2+2Γ2a2a3w∗+w∗(Γ1a1a3+Γ2a2a4)2p(u,v)⩽−rΓ2+2Γ2a2a3w∗+w∗(Γ1a1a3+Γ2a2a4)2(1+a2u∗+a3v∗)=−rΓ2+Γ2a3r(1−v∗)+Γ1a3(1−u∗)2+Γ2a2r(1−v∗)2⩽0, |
where we used the assumptions (4.6) and (4.7). Hence, we can conclude that
ddtE(t)⩽−c∫Ω(|∇u|2u2+|∇v|2v2+|∇w|2w2), | (4.31) |
which yields that ddtE(t)⩽0 for all u,v,w and the equality holds if ∇u=∇v=∇w=0. Therefore by applying LaSalle's invariance principle (cf. [43], Theorem 3) we can say that the solutions of (1.3) converges to the coexistence steady state (u∗,v∗,w∗) as time t→∞.
Proof of Theorem 1.2. Theorem 1.2 is a consequence of Lemma 4.1 and Lemma 4.2.
Remark 4.1. We note that the condition (4.8) is a strong requirement, which implies that χ1 and χ2 have to be small enough.
The author is grateful to the referees for insightful comments which largely help improve the exposition of this paper. The author also thanks Prof. Zhi-An Wang from Hong Kong Polytechnic University for the fruitful discussions and valuable suggestions. This work was supported by the Postdoc Matching Fund Schemes of the Hong Kong Polytechnic University (Project ID P0036730 and a/c no. W18M).
The author declares that there are no conflicts of interest.
[1] |
N. Sapoukhina, Y. Tyutyunov, R. Arditi, The role of prey taxis in biological control: A spatial theoretical model, Am. Nat., 162 (2003), 61–76. https://doi.org/10.1086/375297 doi: 10.1086/375297
![]() |
[2] |
A. Mondal, A. K. Pal, P. Dolai, G.P. Samanta, A system of two competitive prey species in presence of predator under the influence of toxic substances, Filomat, 36 (2) (2022), 361–385. https://doi.org/10.2298/FIL2202361M doi: 10.2298/FIL2202361M
![]() |
[3] | M. A. Ragusa, A. Razani, Existence of a periodic solution for a coupled system of differential equations, in AIP Conference Proceedings, AIP Publishing LLC, 2022, 370004. https://doi.org/10.1063/5.0081381 |
[4] |
J. Tian, P. Liu, Global dynamics of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and prey-taxis, Elec. Res. Arch., 30 (2022), 929–942. https://doi.org/10.3934/era.2022048 doi: 10.3934/era.2022048
![]() |
[5] | P. Kareiva, G. T. Odell, Swarms of predators exhibit preytaxis if individual predators use area-restricted search, Am. Nat., 130 (1987), 233–270. |
[6] | J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331–340. |
[7] |
D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for tropic interaction, Ecology, 56 (1975), 881–892. https://doi.org/10.2307/1936298 doi: 10.2307/1936298
![]() |
[8] |
P. A. Abrams, L. R. Ginzburg, The nature of predation: prey dependent, ratio dependent or neither?, Trends Ecol. Evol., 15 (2000), 337–341. https://doi.org/10.1016/S0169-5347(00)01908-X doi: 10.1016/S0169-5347(00)01908-X
![]() |
[9] |
B. Ainseba, M. Bendahmane, A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. Real World Appl., 9 (2008), 2086–2105. https://doi.org/10.1016/j.nonrwa.2007.06.017 doi: 10.1016/j.nonrwa.2007.06.017
![]() |
[10] |
M. Bendahmane, Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis, Netw. Heterog. Media, 3 (2008), 863–879. https://doi.org/10.3934/nhm.2008.3.863 doi: 10.3934/nhm.2008.3.863
![]() |
[11] |
Y. Cai, Q. Cao, Z. A. Wang, Asymptotic dynamics and spatial patterns of a ratio-dependent predator-prey system with prey-taxis, Appl. Anal., 101 (2022), 81–99. https://doi.org/10.1080/00036811.2020.1728259 doi: 10.1080/00036811.2020.1728259
![]() |
[12] |
H. Y. Jin, Z. A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, Eur. J. Appl. Math., 32 (2021), 652–682. https://doi.org/10.1017/S0956792520000248 doi: 10.1017/S0956792520000248
![]() |
[13] |
D. Li, Global stability in a multi-dimensional predator-prey system with prey-taxis, Discrete Contin. Dyn. Syst. Ser., 41 (2021), 1681–1705. https://doi.org/10.3934/dcds.2020337 doi: 10.3934/dcds.2020337
![]() |
[14] |
S. Li, R. Mu, Positive steady-state solutions for predator-prey systems with prey-taxis and Dirichlet conditions, Nonlinear Anal. Real World Appl., 68 (2022), 103669. https://doi.org/10.1016/j.nonrwa.2022.103669 doi: 10.1016/j.nonrwa.2022.103669
![]() |
[15] |
D. Luo, Global bifurcation for a reaction-diffusion predator-prey model with Holling-Ⅱ functional response and prey-taxis, Chaos Soliton. Fract., 147 (2021), 110975. https://doi.org/10.1016/j.chaos.2021.110975 doi: 10.1016/j.chaos.2021.110975
![]() |
[16] |
X. L. Wang, W. D. Wang, G. H. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Methods Appl. Sci., 3 (2014), 431–443. https://doi.org/10.1002/mma.3079 doi: 10.1002/mma.3079
![]() |
[17] |
T. Xiang, Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl., 39 (2018) 278–299. https://doi.org/10.1016/j.nonrwa.2017.07.001 doi: 10.1016/j.nonrwa.2017.07.001
![]() |
[18] |
L. Zhang, S. Fu, Global bifurcation for a Holling Tanner predator-prey model, Nonlinear Anal. Real World Appl., 47 (2019), 460–472. https://doi.org/10.1016/j.nonrwa.2018.12.002 doi: 10.1016/j.nonrwa.2018.12.002
![]() |
[19] |
X. He, S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73–77. https://doi.org/10.1016/j.aml.2015.04.017 doi: 10.1016/j.aml.2015.04.017
![]() |
[20] |
W. Choi, I. Ahn, Predator invasion in predator-prey model with prey-taxis in spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 65 (2022), 103495. https://doi.org/10.1016/j.nonrwa.2021.103495 doi: 10.1016/j.nonrwa.2021.103495
![]() |
[21] |
H. Y. Jin, Z. A. Wang, Global stability of prey-taxis systems, J. Differ. Equation, 262 (2017), 1257–1290. https://doi.org/10.1016/j.jde.2016.10.010 doi: 10.1016/j.jde.2016.10.010
![]() |
[22] |
Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056–2064. https://doi.org/10.1016/j.nonrwa.2009.05.005 doi: 10.1016/j.nonrwa.2009.05.005
![]() |
[23] |
S. N. Wu, J. P. Shi, B. Y. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differ. Equation, 260 (2016), 5847–5874. https://doi.org/10.1016/j.jde.2015.12.024 doi: 10.1016/j.jde.2015.12.024
![]() |
[24] |
J. Wang, M. X. Wang, Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis, Z. Angew. Math. Phys. 69 (2018), 63. https://doi.org/10.1007/s00033-018-0960-7 doi: 10.1007/s00033-018-0960-7
![]() |
[25] |
Z. Feng, M. Zhang, Boundedness and large time behavior of solutions to a prey-taxis system accounting in liquid surrounding, Nonlinear Anal., Real World Appl., 57 (2021), 103197. https://doi.org/10.1016/j.nonrwa.2020.103197 doi: 10.1016/j.nonrwa.2020.103197
![]() |
[26] |
E. C. Haskel, J. Bell, Pattern formation in a predator-mediated coexistence model with prey-taxis, Dis. Cont. Dyn. Sys., 25 (2020), 2895–2921. https://doi.org/10.3934/dcdsb.2020045 doi: 10.3934/dcdsb.2020045
![]() |
[27] | E. C. Haskel, J. Bell, Bifurcation analysis for a one predator and two prey model with prey-taxis, J. Bio. Sys., 29, 495–524. https://doi.org/10.1142/S0218339021400131 |
[28] |
X. Xu, Y. Wang, Y. Wang, Local bifurcation of a Ronsenzwing-MacArthur predator prey model with two prey-taxis, Math. Bio. Eng., 16 (2019), 1786–1797. https://doi.org/10.3934/mbe.2019086 doi: 10.3934/mbe.2019086
![]() |
[29] |
H. Y. Jin, Z. A. Wang, L. Y. Wu, Global dynamics of a three species spatial food chain model, J. Differ. Equation, 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007
![]() |
[30] |
X. D. Zhao, F. Y. Yang, W. T. Li, Traveling waves for a nonlocal dispersal predator-prey model with two preys and one predator, Z. Angew. Math. Phys., 73 (2022), 124. https://doi.org/10.1007/s00033-022-01753-5 doi: 10.1007/s00033-022-01753-5
![]() |
[31] |
P. Amorim, R. B¨urger, R. Ordo˜nez, L. M. Villada, Global existence in a food chain model consisting of two competitive preys, one predator and chemotaxis, Nonlinear Anal. Real World Appl., 69 (2023), 103703. https://doi.org/10.1016/j.nonrwa.2022.103703 doi: 10.1016/j.nonrwa.2022.103703
![]() |
[32] |
Y. Min, C. Song, Z. Wang, Boundedness and global stability of the predator -prey model with prey-taxis and competition, Nonlinear Anal. Real World Appl., 66 (2022), 103521. https://doi.org/10.1016/j.nonrwa.2022.103521 doi: 10.1016/j.nonrwa.2022.103521
![]() |
[33] |
X. Wang, R. Li, Y. Shi, Global generalized solutions to a three species predator-prey model with prey-taxis, Discrete Contin. Dyn. Syst. Ser.-B, 27 (2022), 7012–7042. https://doi.org/10.3934/dcdsb.2022031 doi: 10.3934/dcdsb.2022031
![]() |
[34] |
H. Y. Jin, Z. A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system, Discrete Conti. Dyn. Sys., 40 (2020), 3509–3527. https://doi.org/10.3934/dcds.2020027 doi: 10.3934/dcds.2020027
![]() |
[35] |
P. Liu, J. P. Shi, Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst-Series B, 18 (10) (2013), 2597–2625. https://doi.org/10.3934/dcdsb.2013.18.2597 doi: 10.3934/dcdsb.2013.18.2597
![]() |
[36] |
M. Luca, A. Chavez-Ross, L. Edelstein, A. Mogilner, Chemotactic signalling, microglia, and Alzheimer's disease senile plaques: is there a connection?, Bull. Math. Biol., 65 (2021), 110975. https://doi.org/10.1016/j.chaos.2021.110975 doi: 10.1016/j.chaos.2021.110975
![]() |
[37] | H. Amann, Dynamic theory of quasilinear parabolic equations. Ⅱ. Reaction-diffusion systems, Differ. Integral. Equation, 3 (1990), 13–75. |
[38] | H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis, Springer Fachmedien, (1993), 13–75. https://doi.org/10.1007/978-3-663-11336-2_1 |
[39] |
D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equation, 215 (2005), 52–107. https://doi.org/10.1016/j.jde.2004.10.022 doi: 10.1016/j.jde.2004.10.022
![]() |
[40] |
C. Jin, Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion, Dis. Cont. Dyn. Sys. B, 23 (2018), 1675–1688. https://doi.org/10.3934/dcdsb.2018069 doi: 10.3934/dcdsb.2018069
![]() |
[41] |
H. Amann, Dynamic theory of quasilinear parabolic systems Ⅲ. Global existence, Math. Z., 202 (1989), 219–250. https://doi.org/10.1007/BF01215256 doi: 10.1007/BF01215256
![]() |
[42] |
M. Winkler, Absence of collapse in parabolic chemotaxis system with signal-dependent sensitivity, Math. Z., 283 (2010), 1664–1673. https://doi.org/10.1002/mana.200810838 doi: 10.1002/mana.200810838
![]() |
[43] |
J. LaSalle, Some extensions of Liapunov's second method, IRE Trans. Circuit Theory, 7 (1960), 520–527. https://doi.org/10.1109/TCT.1960.1086720 doi: 10.1109/TCT.1960.1086720
![]() |