Research article Special Issues

Global existence and stability of three species predator-prey system with prey-taxis


  • Received: 31 October 2022 Revised: 21 February 2023 Accepted: 24 February 2023 Published: 02 March 2023
  • In this paper, we study the following initial-boundary value problem of a three species predator-prey system with prey-taxis which describes the indirect prey interactions through a shared predator, i.e.,

    $ \begin{align*} \begin{cases} u_t = d\Delta u+u(1-u)- \frac{a_1uw}{1+a_2u+a_3v}, & \; \mbox{in}\ \ \Omega, t>0, \\ v_t = \eta d\Delta v+rv(1-v)- \frac{a_4vw}{1+a_2u+a_3v}, & \; \mbox{in}\ \ \Omega, t>0, \\ w_t = \nabla\cdot(\nabla w-\chi_1 w\nabla u-\chi_2 w\nabla v) -\mu w+ \frac{a_5uw}{1+a_2u+a_3v}+\frac{a_6vw}{1+a_2u+a_3v}, & \mbox{in}\ \ \Omega, t>0, \ \ \label{II} \end{cases} \end{align*} $

    under homogeneous Neumann boundary conditions in a bounded domain $ \Omega\subset \mathbb{R}^n (n \geqslant 1) $ with smooth boundary, where the parameters $ d, \eta, r, \mu, \chi_1, \chi_2, a_i > 0, i = 1, \ldots, 6. $ We first establish the global existence and uniform-in-time boundedness of solutions in any dimensional bounded domain under certain conditions. Moreover, we prove the global stability of the prey-only state and coexistence steady state by using Lyapunov functionals and LaSalle's invariance principle.

    Citation: Gurusamy Arumugam. Global existence and stability of three species predator-prey system with prey-taxis[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 8448-8475. doi: 10.3934/mbe.2023371

    Related Papers:

  • In this paper, we study the following initial-boundary value problem of a three species predator-prey system with prey-taxis which describes the indirect prey interactions through a shared predator, i.e.,

    $ \begin{align*} \begin{cases} u_t = d\Delta u+u(1-u)- \frac{a_1uw}{1+a_2u+a_3v}, & \; \mbox{in}\ \ \Omega, t>0, \\ v_t = \eta d\Delta v+rv(1-v)- \frac{a_4vw}{1+a_2u+a_3v}, & \; \mbox{in}\ \ \Omega, t>0, \\ w_t = \nabla\cdot(\nabla w-\chi_1 w\nabla u-\chi_2 w\nabla v) -\mu w+ \frac{a_5uw}{1+a_2u+a_3v}+\frac{a_6vw}{1+a_2u+a_3v}, & \mbox{in}\ \ \Omega, t>0, \ \ \label{II} \end{cases} \end{align*} $

    under homogeneous Neumann boundary conditions in a bounded domain $ \Omega\subset \mathbb{R}^n (n \geqslant 1) $ with smooth boundary, where the parameters $ d, \eta, r, \mu, \chi_1, \chi_2, a_i > 0, i = 1, \ldots, 6. $ We first establish the global existence and uniform-in-time boundedness of solutions in any dimensional bounded domain under certain conditions. Moreover, we prove the global stability of the prey-only state and coexistence steady state by using Lyapunov functionals and LaSalle's invariance principle.



    加载中


    [1] N. Sapoukhina, Y. Tyutyunov, R. Arditi, The role of prey taxis in biological control: A spatial theoretical model, Am. Nat., 162 (2003), 61–76. https://doi.org/10.1086/375297 doi: 10.1086/375297
    [2] A. Mondal, A. K. Pal, P. Dolai, G.P. Samanta, A system of two competitive prey species in presence of predator under the influence of toxic substances, Filomat, 36 (2) (2022), 361–385. https://doi.org/10.2298/FIL2202361M doi: 10.2298/FIL2202361M
    [3] M. A. Ragusa, A. Razani, Existence of a periodic solution for a coupled system of differential equations, in AIP Conference Proceedings, AIP Publishing LLC, 2022, 370004. https://doi.org/10.1063/5.0081381
    [4] J. Tian, P. Liu, Global dynamics of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and prey-taxis, Elec. Res. Arch., 30 (2022), 929–942. https://doi.org/10.3934/era.2022048 doi: 10.3934/era.2022048
    [5] P. Kareiva, G. T. Odell, Swarms of predators exhibit preytaxis if individual predators use area-restricted search, Am. Nat., 130 (1987), 233–270.
    [6] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331–340.
    [7] D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for tropic interaction, Ecology, 56 (1975), 881–892. https://doi.org/10.2307/1936298 doi: 10.2307/1936298
    [8] P. A. Abrams, L. R. Ginzburg, The nature of predation: prey dependent, ratio dependent or neither?, Trends Ecol. Evol., 15 (2000), 337–341. https://doi.org/10.1016/S0169-5347(00)01908-X doi: 10.1016/S0169-5347(00)01908-X
    [9] B. Ainseba, M. Bendahmane, A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. Real World Appl., 9 (2008), 2086–2105. https://doi.org/10.1016/j.nonrwa.2007.06.017 doi: 10.1016/j.nonrwa.2007.06.017
    [10] M. Bendahmane, Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis, Netw. Heterog. Media, 3 (2008), 863–879. https://doi.org/10.3934/nhm.2008.3.863 doi: 10.3934/nhm.2008.3.863
    [11] Y. Cai, Q. Cao, Z. A. Wang, Asymptotic dynamics and spatial patterns of a ratio-dependent predator-prey system with prey-taxis, Appl. Anal., 101 (2022), 81–99. https://doi.org/10.1080/00036811.2020.1728259 doi: 10.1080/00036811.2020.1728259
    [12] H. Y. Jin, Z. A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, Eur. J. Appl. Math., 32 (2021), 652–682. https://doi.org/10.1017/S0956792520000248 doi: 10.1017/S0956792520000248
    [13] D. Li, Global stability in a multi-dimensional predator-prey system with prey-taxis, Discrete Contin. Dyn. Syst. Ser., 41 (2021), 1681–1705. https://doi.org/10.3934/dcds.2020337 doi: 10.3934/dcds.2020337
    [14] S. Li, R. Mu, Positive steady-state solutions for predator-prey systems with prey-taxis and Dirichlet conditions, Nonlinear Anal. Real World Appl., 68 (2022), 103669. https://doi.org/10.1016/j.nonrwa.2022.103669 doi: 10.1016/j.nonrwa.2022.103669
    [15] D. Luo, Global bifurcation for a reaction-diffusion predator-prey model with Holling-Ⅱ functional response and prey-taxis, Chaos Soliton. Fract., 147 (2021), 110975. https://doi.org/10.1016/j.chaos.2021.110975 doi: 10.1016/j.chaos.2021.110975
    [16] X. L. Wang, W. D. Wang, G. H. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Methods Appl. Sci., 3 (2014), 431–443. https://doi.org/10.1002/mma.3079 doi: 10.1002/mma.3079
    [17] T. Xiang, Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl., 39 (2018) 278–299. https://doi.org/10.1016/j.nonrwa.2017.07.001 doi: 10.1016/j.nonrwa.2017.07.001
    [18] L. Zhang, S. Fu, Global bifurcation for a Holling Tanner predator-prey model, Nonlinear Anal. Real World Appl., 47 (2019), 460–472. https://doi.org/10.1016/j.nonrwa.2018.12.002 doi: 10.1016/j.nonrwa.2018.12.002
    [19] X. He, S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73–77. https://doi.org/10.1016/j.aml.2015.04.017 doi: 10.1016/j.aml.2015.04.017
    [20] W. Choi, I. Ahn, Predator invasion in predator-prey model with prey-taxis in spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 65 (2022), 103495. https://doi.org/10.1016/j.nonrwa.2021.103495 doi: 10.1016/j.nonrwa.2021.103495
    [21] H. Y. Jin, Z. A. Wang, Global stability of prey-taxis systems, J. Differ. Equation, 262 (2017), 1257–1290. https://doi.org/10.1016/j.jde.2016.10.010 doi: 10.1016/j.jde.2016.10.010
    [22] Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056–2064. https://doi.org/10.1016/j.nonrwa.2009.05.005 doi: 10.1016/j.nonrwa.2009.05.005
    [23] S. N. Wu, J. P. Shi, B. Y. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differ. Equation, 260 (2016), 5847–5874. https://doi.org/10.1016/j.jde.2015.12.024 doi: 10.1016/j.jde.2015.12.024
    [24] J. Wang, M. X. Wang, Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis, Z. Angew. Math. Phys. 69 (2018), 63. https://doi.org/10.1007/s00033-018-0960-7 doi: 10.1007/s00033-018-0960-7
    [25] Z. Feng, M. Zhang, Boundedness and large time behavior of solutions to a prey-taxis system accounting in liquid surrounding, Nonlinear Anal., Real World Appl., 57 (2021), 103197. https://doi.org/10.1016/j.nonrwa.2020.103197 doi: 10.1016/j.nonrwa.2020.103197
    [26] E. C. Haskel, J. Bell, Pattern formation in a predator-mediated coexistence model with prey-taxis, Dis. Cont. Dyn. Sys., 25 (2020), 2895–2921. https://doi.org/10.3934/dcdsb.2020045 doi: 10.3934/dcdsb.2020045
    [27] E. C. Haskel, J. Bell, Bifurcation analysis for a one predator and two prey model with prey-taxis, J. Bio. Sys., 29, 495–524. https://doi.org/10.1142/S0218339021400131
    [28] X. Xu, Y. Wang, Y. Wang, Local bifurcation of a Ronsenzwing-MacArthur predator prey model with two prey-taxis, Math. Bio. Eng., 16 (2019), 1786–1797. https://doi.org/10.3934/mbe.2019086 doi: 10.3934/mbe.2019086
    [29] H. Y. Jin, Z. A. Wang, L. Y. Wu, Global dynamics of a three species spatial food chain model, J. Differ. Equation, 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007
    [30] X. D. Zhao, F. Y. Yang, W. T. Li, Traveling waves for a nonlocal dispersal predator-prey model with two preys and one predator, Z. Angew. Math. Phys., 73 (2022), 124. https://doi.org/10.1007/s00033-022-01753-5 doi: 10.1007/s00033-022-01753-5
    [31] P. Amorim, R. B$\ddot{u}$rger, R. Ordo$\tilde{n}$ez, L. M. Villada, Global existence in a food chain model consisting of two competitive preys, one predator and chemotaxis, Nonlinear Anal. Real World Appl., 69 (2023), 103703. https://doi.org/10.1016/j.nonrwa.2022.103703 doi: 10.1016/j.nonrwa.2022.103703
    [32] Y. Min, C. Song, Z. Wang, Boundedness and global stability of the predator -prey model with prey-taxis and competition, Nonlinear Anal. Real World Appl., 66 (2022), 103521. https://doi.org/10.1016/j.nonrwa.2022.103521 doi: 10.1016/j.nonrwa.2022.103521
    [33] X. Wang, R. Li, Y. Shi, Global generalized solutions to a three species predator-prey model with prey-taxis, Discrete Contin. Dyn. Syst. Ser.-B, 27 (2022), 7012–7042. https://doi.org/10.3934/dcdsb.2022031 doi: 10.3934/dcdsb.2022031
    [34] H. Y. Jin, Z. A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system, Discrete Conti. Dyn. Sys., 40 (2020), 3509–3527. https://doi.org/10.3934/dcds.2020027 doi: 10.3934/dcds.2020027
    [35] P. Liu, J. P. Shi, Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst-Series B, 18 (10) (2013), 2597–2625. https://doi.org/10.3934/dcdsb.2013.18.2597 doi: 10.3934/dcdsb.2013.18.2597
    [36] M. Luca, A. Chavez-Ross, L. Edelstein, A. Mogilner, Chemotactic signalling, microglia, and Alzheimer's disease senile plaques: is there a connection?, Bull. Math. Biol., 65 (2021), 110975. https://doi.org/10.1016/j.chaos.2021.110975 doi: 10.1016/j.chaos.2021.110975
    [37] H. Amann, Dynamic theory of quasilinear parabolic equations. Ⅱ. Reaction-diffusion systems, Differ. Integral. Equation, 3 (1990), 13–75.
    [38] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis, Springer Fachmedien, (1993), 13–75. https://doi.org/10.1007/978-3-663-11336-2_1
    [39] D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equation, 215 (2005), 52–107. https://doi.org/10.1016/j.jde.2004.10.022 doi: 10.1016/j.jde.2004.10.022
    [40] C. Jin, Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion, Dis. Cont. Dyn. Sys. B, 23 (2018), 1675–1688. https://doi.org/10.3934/dcdsb.2018069 doi: 10.3934/dcdsb.2018069
    [41] H. Amann, Dynamic theory of quasilinear parabolic systems Ⅲ. Global existence, Math. Z., 202 (1989), 219–250. https://doi.org/10.1007/BF01215256 doi: 10.1007/BF01215256
    [42] M. Winkler, Absence of collapse in parabolic chemotaxis system with signal-dependent sensitivity, Math. Z., 283 (2010), 1664–1673. https://doi.org/10.1002/mana.200810838 doi: 10.1002/mana.200810838
    [43] J. LaSalle, Some extensions of Liapunov's second method, IRE Trans. Circuit Theory, 7 (1960), 520–527. https://doi.org/10.1109/TCT.1960.1086720 doi: 10.1109/TCT.1960.1086720
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1861) PDF downloads(172) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog