Theory article Special Issues

On a two-species competitive predator-prey system with density-dependent diffusion

  • Received: 29 June 2022 Revised: 21 August 2022 Accepted: 29 August 2022 Published: 14 September 2022
  • This paper deals with a two-species competitive predator-prey system with density-dependent diffusion, i.e.,

    $ \begin{eqnarray*} \label{1a} \left\{ \begin{split}{} &u_t = \Delta (d_{1}(w)u)+\gamma_{1}uF_{1}(w)-uh_{1}(u)-\beta_{1}uv,&(x,t)\in \Omega\times (0,\infty),\\ &v_t = \Delta (d_{2}(w)v)+\gamma_{2}vF_{2}(w)-vh_{2}(v)-\beta_{2}uv,&(x,t)\in \Omega\times (0,\infty),\\ &w_t = D\Delta w-uF_{1}(w)-vF_{2}(w)+f(w),&(x,t)\in \Omega\times (0,\infty), \end{split} \right. \end{eqnarray*} $

    under homogeneous Neumann boundary conditions in a smooth bounded domain $ \Omega\subset \mathbb{R}^{2} $, with the nonnegative initial data $ \left({u_{0}, v_{0}, w_{0}} \right) \in (W^{1, p}(\Omega))^{3} $ with $ p > 2 $, where the parameters $ D, \gamma_{1}, \gamma_{2}, \beta_{1}, \beta_{2} > 0 $, $ d_{1}(w) $ and $ d_{2}(w) $ are density-dependent diffusion functions, $ F_{1}(w) $ and $ F_{2}(w) $ are commonly called the functional response functions accounting for the intake rate of predators as the functions of prey density, $ h_{1}(u) $ and $ h_{2}(v) $ represent the mortality rates of predators, and $ f(w) $ stands for the growth function of the prey. First, we rigorously prove the global boundedness of classical solutions for the above general model provided that the parameters satisfy some suitable conditions by means of $ L^{p} $-estimate techniques. Moreover, in some particular cases, we establish the asymptotic stabilization and precise convergence rates of globally bounded solutions under different conditions on the parameters by constructing some appropriate Lyapunov functionals. Our results not only extend the previous ones, but also involve some new conclusions.

    Citation: Pan Zheng. On a two-species competitive predator-prey system with density-dependent diffusion[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13421-13457. doi: 10.3934/mbe.2022628

    Related Papers:

  • This paper deals with a two-species competitive predator-prey system with density-dependent diffusion, i.e.,

    $ \begin{eqnarray*} \label{1a} \left\{ \begin{split}{} &u_t = \Delta (d_{1}(w)u)+\gamma_{1}uF_{1}(w)-uh_{1}(u)-\beta_{1}uv,&(x,t)\in \Omega\times (0,\infty),\\ &v_t = \Delta (d_{2}(w)v)+\gamma_{2}vF_{2}(w)-vh_{2}(v)-\beta_{2}uv,&(x,t)\in \Omega\times (0,\infty),\\ &w_t = D\Delta w-uF_{1}(w)-vF_{2}(w)+f(w),&(x,t)\in \Omega\times (0,\infty), \end{split} \right. \end{eqnarray*} $

    under homogeneous Neumann boundary conditions in a smooth bounded domain $ \Omega\subset \mathbb{R}^{2} $, with the nonnegative initial data $ \left({u_{0}, v_{0}, w_{0}} \right) \in (W^{1, p}(\Omega))^{3} $ with $ p > 2 $, where the parameters $ D, \gamma_{1}, \gamma_{2}, \beta_{1}, \beta_{2} > 0 $, $ d_{1}(w) $ and $ d_{2}(w) $ are density-dependent diffusion functions, $ F_{1}(w) $ and $ F_{2}(w) $ are commonly called the functional response functions accounting for the intake rate of predators as the functions of prey density, $ h_{1}(u) $ and $ h_{2}(v) $ represent the mortality rates of predators, and $ f(w) $ stands for the growth function of the prey. First, we rigorously prove the global boundedness of classical solutions for the above general model provided that the parameters satisfy some suitable conditions by means of $ L^{p} $-estimate techniques. Moreover, in some particular cases, we establish the asymptotic stabilization and precise convergence rates of globally bounded solutions under different conditions on the parameters by constructing some appropriate Lyapunov functionals. Our results not only extend the previous ones, but also involve some new conclusions.



    加载中


    [1] P. Kareiva, G. Odell, Swarms of predators exhibit preytaxis if individual predators use area-restricted search, Amer. Nat., 130 (1987), 233–270. https://doi.org/10.1086/284707 doi: 10.1086/284707
    [2] A.J. Lotka, Elements of Physical Biology, Baltimore: Williams and Wilkins Co., 1925.
    [3] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558–560. https://doi.org/10.1038/118558a0 doi: 10.1038/118558a0
    [4] C. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entom. Soc. Can., 45 (1965), 1–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv
    [5] C. Cosner, D. L. DeAngelis, J. S. Ault, D. Olson, Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol., 56 (1999), 65–75. https://doi.org/10.1006/tpbi.1999.1414 doi: 10.1006/tpbi.1999.1414
    [6] P. H. Crowley, E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. North Amer. Benthol. Soc., 8 (1989), 211–221. https://doi.org/10.2307/1467324 doi: 10.2307/1467324
    [7] C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34 (2014), 1701–1745. https://doi.org/10.3934/dcds.2014.34.1701 doi: 10.3934/dcds.2014.34.1701
    [8] W. W. Murdoch, C. J. Briggs, R. M. Nisbert, Consumer-Resource Dynamics, Monographs in Population Biology, Princeton University Press, 2003.
    [9] P. Turchin, Complex Population Dynamics: A Theoretical/Empirical Synthesis, Monographs in Population Biology, Princeton University Press, 2003.
    [10] G. T. Skalski, J. F. Gilliam, Functional responses with predator interference: Viable alternatives to the Holling type II model, Ecology, 82 (2001), 3083–3092. https://doi.org/10.1890/0012-9658 doi: 10.1890/0012-9658
    [11] J. M. Lee, T. Hillen, M. A. Lewis, Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), 551–573. https://doi.org/10.1080/17513750802716112 doi: 10.1080/17513750802716112
    [12] J. M. Lee, T. Hillen, M. A. Lewis, Continuous traveling waves for prey-taxis, Bull. Math. Biol., 70 (2008), 654–676. https://doi.org/10.1007/s11538-007-9271-4 doi: 10.1007/s11538-007-9271-4
    [13] H. Jin, Z. Wang, Global stability of prey-taxis systems, J. Differ. Equations, 262 (2017), 1257–1290. https://doi.org/10.1016/j.jde.2016.10.010 doi: 10.1016/j.jde.2016.10.010
    [14] H. Jin, Z. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, European J. Appl. Math., 32 (2021), 652–682. https://doi.org/10.1017/S0956792520000248 doi: 10.1017/S0956792520000248
    [15] S. Wu, J. Shi, B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differ. Equations, 260 (2016), 5847–5874. https://doi.org/10.1016/j.jde.2015.12.024 doi: 10.1016/j.jde.2015.12.024
    [16] Q. Wang, Y. Song, L. Shao, Nonconstant positive steady states and pattern formation of 1D prey-taxis systems, J. Nonlinear Sci., 27 (2017), 71–97. https://doi.org/10.1007/s00332-016-9326-5 doi: 10.1007/s00332-016-9326-5
    [17] W. Choi, I. Ahn, Predator invasion in predator-prey model with prey-taxis in spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 65 (2022), 103495. https://doi.org/10.1016/j.nonrwa.2021.103495 doi: 10.1016/j.nonrwa.2021.103495
    [18] Y. Cai, Q. Cao, Z. Wang, Asymptotic dynamics and spatial patterns of a ratio-dependent predator-prey system with prey-taxis, Appl. Anal., 101 (2022), 81–99. https://doi.org/10.1080/00036811.2020.1728259 doi: 10.1080/00036811.2020.1728259
    [19] H. Jin, Y. King Z. Wang, Boundedness, stabilization, and pattern formation driven by density suppressed motility, SIAM J. Appl. Math., 78 (2018), 1632–1657. https://doi.org/10.1137/17M1144647 doi: 10.1137/17M1144647
    [20] Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056–2064. https://doi.org/10.1016/j.nonrwa.2009.05.005 doi: 10.1016/j.nonrwa.2009.05.005
    [21] J. I. Tello, D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129–2162. https://doi.org/10.1142/S0218202516400108 doi: 10.1142/S0218202516400108
    [22] J. Wang, M. Wang, The diffusive Beddington-DeAngelis predator-prey model with nonlinear prey-taxis and free boundary, Math. Method. Appl. Sci., 41 (2018), 6741–6762. https://doi.org/10.1002/mma.5189 doi: 10.1002/mma.5189
    [23] J. Wang, M. Wang, Global solution of a diffusive predator-prey model with prey-taxis, Comput. Math. Appl., 77 (2019), 2676–2694. https://doi.org/10.1016/j.camwa.2018.12.042 doi: 10.1016/j.camwa.2018.12.042
    [24] J. Wang, M. Wang, The dynamics of a predator-prey model with diffusion and indirect prey-taxis, J. Dyn. Differ. Equ., 32 (2020), 1291–1310. https://doi.org/10.1007/s10884-019-09778-7 doi: 10.1007/s10884-019-09778-7
    [25] M. Winkler, Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation, J. Differ. Equations, 263 (2017), 4826–4869. https://doi.org/10.1016/j.jde.2017.06.002 doi: 10.1016/j.jde.2017.06.002
    [26] T. Xiang, Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl., 39 (2018), 278–299. https://doi.org/10.1016/j.nonrwa.2017.07.001 doi: 10.1016/j.nonrwa.2017.07.001
    [27] P. Mishra, D. Wrzosek, Repulsive chemotaxis and predator evasion in predator-prey models with diffusion and prey-taxis, Math. Models Methods Appl. Sci., 32 (2022), 1–42. https://doi.org/10.1142/S0218202522500014 doi: 10.1142/S0218202522500014
    [28] L. Rodriguez Q., L. Gordillo, Density-dependent diffusion and refuge in a spatial Rosenzweig-MacArthur model: Stability results, J. Math. Anal. Appl., 512 (2022), 126174. https://doi.org/10.1016/j.jmaa.2022.126174 doi: 10.1016/j.jmaa.2022.126174
    [29] L. Rodriguez Q., J. Zhao, L. Gordillo, The effects of simple density-dependent prey diffusion and refuge in a predator-prey system, J. Math. Anal. Appl., 498 (2021), 124983. https://doi.org/10.1016/j.jmaa.2021.124983 doi: 10.1016/j.jmaa.2021.124983
    [30] K. Wang, Q. Wang, F. Yu, Stationary and time periodic patterns of two-predator and one-prey systems with prey-taxis, Discrete Contin. Dyn. Syst., 37 (2017), 505–543. https://doi.org/10.3934/dcds.2017021 doi: 10.3934/dcds.2017021
    [31] J. Wang, M. Wang, Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis, Z. Angew. Math. Phys., 69 (2018), 63. https://doi.org/10.1007/s00033-018-0960-7 doi: 10.1007/s00033-018-0960-7
    [32] Y. Mi, C. Song, Z. Wang, Boundedness and global stability of the predator-prey model with prey-taxis and competition, Nonlinear Anal. Real World Appl., 66 (2022), 103521. https://doi.org/10.1016/j.nonrwa.2022.103521 doi: 10.1016/j.nonrwa.2022.103521
    [33] S. Qiu, C. Mu, X. Tu, Dynamics for a three-species predator-prey model with density-dependent motilities, J. Dyn. Differ. Equations, (2021). http://dx.doi.org/10.1007/s10884-021-10020-6
    [34] X. Fu, L.H. Tang, C. Liu, J. D. Huang, T. Hwa, P. Lenz, Stripe formation in bacterial system with density-suppressed motility, Phys. Rev. Lett., 108 (2012), 198102. http://dx.doi.org/10.1103/PhysRevLett.108.198102 doi: 10.1103/PhysRevLett.108.198102
    [35] C. Liu, X. Fu, L. Liu, X. Ren, C. K. L. Chau, S. Li, et al., Sequential establishment of stripe patterns in an expanding cell population, Science, 334 (2011), 238–241. https://doi.org/10.1126/science.1209042 doi: 10.1126/science.1209042
    [36] K. Fujie, J. Jiang, Global existence for a kinetic model of pattern formation with density-suppressed motilities, J. Differ. Equations, 269 (2020), 5338–5378. https://doi.org/10.1016/j.jde.2020.04.001 doi: 10.1016/j.jde.2020.04.001
    [37] J. Jiang, P. Laurençot, Y. Zhang, Global existence, uniform boundedness, and stabilization in a chemotaxis system with density-suppressed motility and nutrient consumption, Comm. Partial Differ. Equations, 47 (2022), 1024–1069. https://doi.org/10.1080/03605302.2021.2021422 doi: 10.1080/03605302.2021.2021422
    [38] H. Jin, Z. Wang, Critical mass on the Keller-Segel system with signal-dependent motility, Proc. Amer. Math. Soc., 148 (2020), 4855–4873. https://doi.org/10.1090/proc/15124 doi: 10.1090/proc/15124
    [39] H. Jin, S. Shi, Z. Wang, Boundedness and asymptotics of a reaction-diffusion system with density-dependent motility, J. Differ. Equations, 269 (2020), 6758–6793. https://doi.org/10.1016/j.jde.2020.05.018 doi: 10.1016/j.jde.2020.05.018
    [40] J. Li, Z. Wang, Traveling wave solutions to the density-suppressed motility model, J. Differ. Equations, 301 (2021), 1–36. https://doi.org/10.1016/j.jde.2021.07.038 doi: 10.1016/j.jde.2021.07.038
    [41] M. Ma, R. Peng, Z. Wang, Stationary and non-stationary patterns of the density-suppressed motility model, Physica D, 402 (2020), 132259. https://doi.org/10.1016/j.physd.2019.132259 doi: 10.1016/j.physd.2019.132259
    [42] Z. Wang, X. Xu, Steady states and pattern formation of the density-suppressed motility model, IMA J. Appl. Math., 86 (2021), 577603. https://doi.org/10.1093/imamat/hxab006 doi: 10.1093/imamat/hxab006
    [43] Y. Tao, M. Winkler, Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system, Math. Models Methods Appl. Sci., 27 (2017), 1645–1683. https://doi.org/10.1142/S0218202517500282 doi: 10.1142/S0218202517500282
    [44] P. Zheng, R. Willie, Dynamics in an attraction-repulsion Navier-Stokes system with signal-dependent motility and sensitivity, J. Math. Phys., 62 (2021), 041503. https://doi.org/10.1063/5.0029161 doi: 10.1063/5.0029161
    [45] Z. Wang, J. Xu, On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion, J. Math. Biol., 82 (2021), 37. https://doi.org/10.1007/s00285-021-01562-w doi: 10.1007/s00285-021-01562-w
    [46] J. Dockery, V. Hutson, K. Mischaikow, M. Pernarowski, The evolution of slow dispersal rates: a reaction diffusion model, J. Math. Biol., 37 (1998), 61–83. https://doi.org/10.1007/s002850050120 doi: 10.1007/s002850050120
    [47] Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differ. Equations, 223 (2006), 400–426. https://doi.org/10.1016/j.jde.2005.05.010 doi: 10.1016/j.jde.2005.05.010
    [48] H. Berestycki, A. Zilio, Predators-prey models with competition, part I: Existence, bifurcation and qualitative properties, Commun. Contemp. Math., 20 (2018), 1850010. https://doi.org/10.1142/S0219199718500104 doi: 10.1142/S0219199718500104
    [49] H. Berestycki, A. Zilio, Predators-prey models with competition: The emergence of territoriality, Amer. Nat., 193 (2019), 436–446. https://doi.org/10.1086/701670 doi: 10.1086/701670
    [50] J. Lin, W. Wang, C. Zhao, T. Yang, Global dynamics and traveling wave solutions of two predators-one prey models, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1135–1154. https://doi.org/10.3934/dcdsb.2015.20.1135 doi: 10.3934/dcdsb.2015.20.1135
    [51] P. Pang, M. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Differ. Equations, 200 (2004), 245–273. https://doi.org/10.1016/j.jde.2004.01.004 doi: 10.1016/j.jde.2004.01.004
    [52] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis, (1993), 9–126. https://doi.org/10.1007/978-3-663-11336-2_1
    [53] H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differ. Integral Equations, 3 (1990), 13–75.
    [54] H. Amann, Dynamic theory of quasilinear parabolic systems. III. Global existence, Math. Z., 202 (1989), 219–250.
    [55] R. Kowalczyk, Z. Szymaáska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379–398. https://doi.org/10.1016/j.jmaa.2008.01.005 doi: 10.1016/j.jmaa.2008.01.005
    [56] C. Stinner, C. Surulescu, M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969–2007. https://doi.org/10.1137/13094058X doi: 10.1137/13094058X
    [57] X. Bai, M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553–583. https://doi.org/10.1512/iumj.2016.65.5776 doi: 10.1512/iumj.2016.65.5776
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1984) PDF downloads(167) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog