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Abstract: This paper deals with a two-species competitive predator-prey system with density-
dependent diffusion, i.e.,

ut = ∆(d1(w)u) + γ1uF1(w) − uh1(u) − β1uv, (x, t) ∈ Ω × (0,∞),
vt = ∆(d2(w)v) + γ2vF2(w) − vh2(v) − β2uv, (x, t) ∈ Ω × (0,∞),
wt = D∆w − uF1(w) − vF2(w) + f (w), (x, t) ∈ Ω × (0,∞),

under homogeneous Neumann boundary conditions in a smooth bounded domain Ω ⊂ R2, with the
nonnegative initial data (u0, v0,w0) ∈ (W1,p(Ω))3 with p > 2, where the parameters D, γ1, γ2, β1, β2 > 0,
d1(w) and d2(w) are density-dependent diffusion functions, F1(w) and F2(w) are commonly called
the functional response functions accounting for the intake rate of predators as the functions of prey
density, h1(u) and h2(v) represent the mortality rates of predators, and f (w) stands for the growth
function of the prey. First, we rigorously prove the global boundedness of classical solutions for the
above general model provided that the parameters satisfy some suitable conditions by means of Lp-
estimate techniques. Moreover, in some particular cases, we establish the asymptotic stabilization and
precise convergence rates of globally bounded solutions under different conditions on the parameters
by constructing some appropriate Lyapunov functionals. Our results not only extend the previous ones,
but also involve some new conclusions.
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1. Introduction

In 1987, Karevia and Odell [1] first proposed the following one-predator and one-prey model with
prey-taxis in order to explain that an area-restricted search creates the following predator aggregation
phenomenon ut = ∇ · (d(w)∇u) − ∇ · (uχ(w)∇w) +G1(u,w),

wt = D∆w +G2(u,w),
(1.1)

where D > 0 is the diffusivity coefficient of preys, d(w) denotes the motility function of predators, χ(w)
represents the prey-taxis sensitivity coefficient, and the term −∇ · (uχ(w)∇w) stands for the tendency of
the predator moving towards the increasing direction of the prey gradient, and it is viewed as the prey-
taxis term. The functions G1(u,w) and G2(u,w) describe the predator-prey interactions, which include
both intra-specific and inter-specific interactions. Generally the predator-prey interaction functions
G1(u,w) and G2(u,w) possess the following prototypical forms.

G1(u,w) = γuF(w) − uh(u), G2(u,w) = −uF(w) + f (w), (1.2)

where γ > 0 denotes the intrinsic predation rate, uF(w) represents the inter-specific interaction and
uh(u) and f (w) stand for the intra-specific interaction. Specifically, F(w) is the functional response
function accounting for the intake rate of predators as a function of prey density; it is often used in the
following form in the literature [2–4]

F(w) = w (Holling type I), F(w) =
w

λ + w
(Holling type II),

F(w) =
wm

λm + wm (Holling type III), F(w) = 1 − e−λw (Ivlev type)
(1.3)

with constants λ > 0 and m > 1; other types of functional response functions (e.g., Beddington-
DeAngelis type in [5], Crowley-Martin type in [6]) and more predator-prey interactions can be found
in [7–10]. The predator mortality rate function h(u) is typically of the form

h(u) = θ + αu, (1.4)

where θ > 0 accounts for the natural death rate and α ≥ 0 denotes the rate of death resulting from
the intra-specific competition, which is also called the density-dependent death [11]. The prey growth
function f (w) is usually assumed to be negative for large w due to the limitation of resources (or
crowding effect), and its typical forms are

f (w) = µw
(
1 −

w
K

)
(Logistic type), or

f (w) = µw
(
1 −

w
K

) (w
k
− 1

)
(Bistable or Allee effect type),

(1.5)

where µ > 0 is the intrinsic growth rate of prey, K > 0 is called the carrying capacity and 0 < k < K.
Now there exist many interesting results about global existence, uniform boundedness, asymptotic
behavior, traveling waves and pattern formation of solutions to System (1.1) or its variants in [11–15].
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When d(w) = d > 0 and χ(w) = χ > 0, G1(u, v) and G2(u, v) have the forms of (1.2), Wu et al. [15]
obtained the global existence and uniform persistence of solutions to (1.1) in any dimension provided
that χ is suitably small. Then, Jin and Wang [13] derived the global boundedness and asymptotic
stability of solutions for System (1.1) without the smallness assumption on χ in a two-dimensional
bounded domain. Moreover, Wang et al. [16] studied the nonconstant positive steady states and pattern
formation of (1.1) in a one-dimensional bounded domain. Under the conditions that d(w) and χ(w)
are not constants and h(u) is given by (1.4), Jin and Wang [14] established the global boundedness,
asymptotic behavior and spatio-temporal patterns of solutions for (1.1) under some conditions on the
parameters in a two-dimensional smooth bounded domain. For more related results in predator-prey
models, we refer the readers to [17–29] and the references therein.

However, all the aforementioned works are devoted to studying prey-taxis models with
one-predator and one prey. Now let us mention some predator-prey models with two-predator and
one-prey. Recently, the following general two-predator and one-prey model with prey-taxis has
attracted a lot of attention.

ut = ∇ · (d1(w)∇u) − ∇ · (uχ1(w)∇w) + γ1uF1(w) − uh1(u) − β1uv,

vt = ∇ · (d2(w)∇v) − ∇ · (vχ2(w)∇w) + γ2vF2(w) − vh2(v) − β2uv,

wt = D∆w − uF1(w) − vF2(w) + f (w),
(1.6)

as applied in a smooth bounded domain Ω ⊂ Rn, n ≥ 1. Given d1(w) = d2(w) = 1 and β1 = β2 = 0,
Wang et al. [30] derived the global boundedness, nonconstant positive steady states and time-periodic
patterns of solutions for System (1.6). Wang and Wang [31] studied the uniform boundedness and
asymptotic stability of nonnegative spatially homogeneous equilibria for (1.6) in any dimension. Given
d1(w) = d2(w) = 1, χi(w) = χi > 0 (i = 1, 2) and β1 = β2 = β > 0, Mi et al. [32] obtained the
global boundedness and stability of classical solutions in any dimension under suitable conditions of
parameters. Under the conditions that d1(w) and d2(w) are non-constants and β1 = β2 = 0, Qiu et
al. [33] rigorously proved the global existence, uniform boundedness and stabilization of classical
solutions in any dimension with suitable conditions on motility functions and the coefficients of the
logistic source. However, when β1, β2 , 0, the global existence and stabilization of solutions for (1.6)
are still open. Given χi(w) = −d′i (w) ≥ 0 if d′i (w) ≤ 0 (i = 1, 2), the diffusion-advection terms
in (1.6) can respectively become the forms ∆(d1(w)u) and ∆(d2(w)v), which could be interpreted as
“density-suppressed motility” in [34, 35]. This means that the predator will reduce its motility when
encountering the prey, which is a rather reasonable assumption that has very sound applications in
the predator-prey systems. Since the possible degeneracy caused by the density-suppressed motility
brings considerable challenges for mathematical analysis, many works have showed various interesting
results, which can be found in [36–44]. Given χi(w) = −d′i (w) ≥ 0 (i = 1, 2), F1(w) = F2(w) = w,
h1(u) = u, h2(v) = v and f (w) = µw(m(x) − w), System (1.6) can be simplified as

ut = ∆(d1(w)u) + u(γ1w − u − β1v),
vt = ∆(d2(w)v) + v(γ2w − v − β2u),
wt = D∆w − (u + v)w + µw(m(x) − w),

(1.7)

where the parameters D, µ, γi, βi (i = 1, 2) are positive, the dispersal rate functions di(w) (i = 1, 2)
satisfy following the hypothesis: di(w) ∈ C2([0,∞)), d′i (w) ≤ 0 on [0,∞) and di(w) > 0. Wang and
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Xu [45] have found some interesting results for System (1.7) in a two-dimensional smooth bounded
domain. More specifically, when D = 1 and m(x) = 1, System (1.7) has a unique globally bounded
classical solution. By constructing appropriate Lyapunov functionals and using LaSalle’s invariant
principle, the authors proved that the global bounded solution of (1.7) converges to the co-existence
steady state exponentially or competitive exclusion steady state algebraically as time tends to infinity
in different parameter regimes. For a prey’s resource that is spatially heterogeneous (i.e., m(x) is
non-constant), the authors used numerical simulations to demonstrate that the striking phenomenon
“slower diffuser always prevails” given in [46, 47] fails to appear if the non-random dispersal strategy
is employed by competing species (i.e., either d1(w) or d2(w) is non-constant) while it still holds if both
d1(w) and d2(w) are constants. However, there are few results about global boundedness and large time
behavior of solutions for (1.7) in the general form.

Inspired by the above works, this paper is concerned with the following two-species competitive
predator-prey system with the following density-dependent diffusion

ut = ∆(d1(w)u) + γ1uF1(w) − uh1(u) − β1uv, (x, t) ∈ Ω × (0,∞),
vt = ∆(d2(w)v) + γ2vF2(w) − vh2(v) − β2uv, (x, t) ∈ Ω × (0,∞),
wt = D∆w − uF1(w) − vF2(w) + f (w), (x, t) ∈ Ω × (0,∞),
∂u
∂ν
=
∂v
∂ν
=
∂w
∂ν
= 0, (x, t) ∈ ∂Ω × (0,∞),

(u, v,w) (x, 0) = (u0, v0,w0) (x) , x ∈ Ω,

(1.8)

where Ω ⊂ R2 is a bounded domain with a smooth boundary ∂Ω, ∂
∂ν

denotes the derivative with respect
to the outward normal vector ν of ∂Ω, and the parameters D and γi, βi (i = 1, 2) are positive. The
unknown functions u = u(x, t) and v = v(x, t) denote the densities of two-competing species (e.g.,
predators), and w = w(x, t) represents the density of predators’ resources (e.g., the prey) at a position
x and time t > 0. When d1(w) = d1 > 0 and d2(w) = d2 > 0, System (1.8) becomes the well-known
diffusive predator-prey system, which has been widely studied in [48–51]. However, to the best of our
knowledge, the results of the two-predator and one-prey system given by (1.8) with density-suppressed
motility (i.e., d1(w) and d2(w) are non-constants) indicate that the competition and general predator
mortality rate hi(u) are almost vacant. The main aim of this paper is to explore the influence of the
predation interaction, competition and general predator mortality on the dynamical behavior of System
(1.8). Throughout this paper, we assume that the functions di(s), Fi(s), hi(s), (i = 1, 2), f (s) and initial
data (u0, v0,w0) mentioned in (1.8) satisfy the following hypotheses:
(H1) di(s) ∈ C2([0,∞)) with di(s) > 0 and d′i (s) ≤ 0, i = 1, 2 on [0,∞). The typical example is
di(s) = 1

(1+s)κi or di(s) = exp(−κis) with κi > 0, i = 1, 2.
(H2) Fi(s) ∈ C1([0,∞)), Fi(0) = 0, Fi(s) > 0 and F′i (s) > 0, i = 1, 2 in (0,∞).
(H3) hi(s) ∈ C2([0,∞)) and there exist constants θi > 0 and αi ≥ 0 such that hi(s) ≥ θi and h′i(s) ≥ αi,
i = 1, 2 for all s > 0.
(H4) f (s) ∈ C1([0,∞)) with f (0) = 0, and there exist positive constants µ and K such that f (s) ≤ µs
for all s ≥ 0, f (K) = 0 and f (s) < 0 for s > K.
(H5) (u0, v0,w0) ∈ (W1,p(Ω))3 with p > 2 and u0, v0,w0 ≥ 0.

Here, we note that there are many candidates for the above functions Fi(s), hi(s) and f (s) as in
(1.3)–(1.5). Due to the presence of the prey’s density dependent diffusion coefficient, Model (1.8) is a
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cross-diffusion system and the parabolic comparison principle is no longer applicable. Moreover,
when α1 = α2 = 0, the key L2-spatiotemporal estimates of u and v cannot be directly derived; thus, the
uniform boundedness of solutions is not an obvious result and needs to be justified. Based on the
above hypotheses, the first main result of this paper asserts the global existence and boundedness of
solutions for System (1.8) as follows.

Theorem 1.1. Let D, γi, βi > 0 (i = 1, 2), Ω ⊂ R2 be a smooth bounded domain and the hypotheses
(H1)–(H5) hold. Then System (1.8) has a unique global nonnegative classical solution
(u, v,w) ∈ (C(Ω × [0,∞)) ∩ C2,1(Ω × (0,∞)))3, which is uniformly bounded in time, i.e., there exists a
constant C > 0 independent of t such that

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥L∞(Ω) + ∥w(·, t)∥W1,∞(Ω) ≤ C for all t > 0. (1.9)

In particular, one has 0 ≤ w(x, t) ≤ K0 for all (x, t) ∈ Ω × (0,∞), where

K0 := max{||w0||L∞(Ω),K}. (1.10)

Remark 1.1. For the special case F1(w) = F2(w) = w, h1(u) = u, h2(v) = v and f (w) = µw(1 − w), the
results of Theorem 1.1 have been obtained in [45]. However, since α1 and α2 may be equal to zero in
the hypotheses of this paper, the L2-spatiotemporal estimates of u and v cannot be directly obtained by
using the method in [45]. By means of the mechanism “density-suppressed motility”, we invoke some
ideas used in [14] and apply the self-adjoint realization of ∆ + δ with some δ > 0 in L2(Ω) to establish
the key L2-spatiotemporal estimates of u and v.

The second main aim of this paper is to study the role of non-random dispersal and competition
between two predators in the asymptotic properties of the nonnegative spatial homogeneous equilibria
of System (1.8). For simplicity, we let F1(w) = F2(w) = w, h1(u) = θ1 + α1u, h2(v) = θ2 + α2v and
f (w) = µw(1−w), where θ1 = θ2 = θ > 0 and α1, α2, µ > 0; then, System system (1.8) can be simplified
as 

ut = ∆(d1(w)u) + γ1uw − u(θ + α1u) − β1uv, (x, t) ∈ Ω × (0,∞),
vt = ∆(d2(w)v) + γ2vw − v(θ + α2v) − β2uv, (x, t) ∈ Ω × (0,∞),
wt = D∆w − (u + v)w + µw(1 − w), (x, t) ∈ Ω × (0,∞),
∂u
∂ν
=
∂v
∂ν
=
∂w
∂ν
= 0, (x, t) ∈ ∂Ω × (0,∞),

(u, v,w) (x, 0) = (u0, v0,w0) (x) , x ∈ Ω.

(1.11)

Theorem 1.1 ensures that System (1.11) possesses a unique global bounded nonnegative classical
solution (u, v,w) such that 0 ≤ w(x, t) ≤ K0 := max{||w0||L∞(Ω), 1} for all (x, t) ∈ Ω×(0,∞). Now we find
some sufficient conditions of parameters so that (1.11) admits a positive constant solution (u∗, v∗,w∗)
satisfying 

γ1w∗ − θ − α1u∗ − β1v∗ = 0,
γ2w∗ − θ − α2v∗ − β2u∗ = 0,
− u∗ − v∗ + µ − µw∗ = 0,

(1.12)
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i.e.,

AX = B, (1.13)

where

A =


−α1 −β1 γ1

−β2 −α2 γ2

1 1 µ

 , X =


u∗

v∗

w∗

 , B =


θ

θ

µ

 .
If the determinant Φ of the coefficient matrix A in (1.13) does not equal zero, it follows from Cramer’s
rule that

u∗ =
Φu

Φ
, v∗ =

Φv

Φ
, w∗ =

Φw

Φ
, (1.14)

where 
Φ = (γ1 + β1µ)(α2 − β2) + (γ2 + α2µ)(α1 − β1),
Φu = α2µ(γ1 − θ) − β1µ(γ2 − θ) + θ(γ1 − γ2),
Φv = α1µ(γ2 − θ) − β2µ(γ1 − θ) + θ(γ2 − γ1),
Φw = (θ + β1µ)(α2 − β2) + (θ + α2µ)(α1 − β1).

(1.15)

When β1 < α1 and β2 < α2, it follows that Φ > 0 and Φw > 0, and thus we know w∗ > 0. Next, we
shall discuss the sign of Φu and Φv. For convenience, we let

β∗1 :=
l1

µ(γ2 − θ)
(1.16)

and
β∗2 :=

l2

µ(γ1 − θ)
, (1.17)

where
l1 := α2µ(γ1 − θ) + θ(γ1 − γ2) (1.18)

and
l2 := α1µ(γ2 − θ) + θ(γ2 − γ1). (1.19)

It is not difficult to see that u∗ = Φu
Φ

, v∗ = Φv
Φ

and w∗ = Φw
Φ

are positive, if γi > θ, i = 1, 2 and one of the
following conditions holds:
(H6) γ1 < γ2, l1 > 0, β1 < min{α1, β

∗
1} and β2 < min{α2, β

∗
2};

(H7) γ1 > γ2, l2 > 0, β1 < min{α1, β
∗
1} and β2 < min{α2, β

∗
2};

(H8) γ1 = γ2 and max{β1, β2} < min{α1, α2}.

Now, we give our main results on the asymptotic stability properties of the nonnegative spatial
homogeneous equilibria of System (1.11) as follows.

Theorem 1.2. Let Ω ⊂ R2 be a smooth bounded domain and the parameters γi, αi, βi, (i = 1, 2), θ, µ
and D be positive. Assume that d1(w) and d2(w) satisfy (H1), and that (u, v,w) is a global bounded
classical solution of System (1.11). Suppose that γi > θ, i = 1, 2,

(β1γ2 + β2γ1)2 < 4γ1γ2α1α2 (1.20)
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and

D > max
w∈[0,K0]

w2

4w∗

[
u∗|d′1(w)|2

γ1d1(w)
+

v∗|d′2(w)|2

γ2d2(w)

]
(1.21)

as well as one of the conditions (H6)–(H8) holds. Then for all initial data (u0, v0,w0) satisfying (H5),
there exist positive constants C and λ such that

||u(·, t) − u∗||L∞(Ω) + ||v(·, t) − v∗||L∞(Ω) + ||w(·, t) − w∗||L∞(Ω) ≤ Ce−λt (1.22)

for all t > 0, where (u∗, v∗,w∗) is given by (1.14).

Remark 1.2. From a biological point of view, it is well known that the change of the predators comes
from predation, competition and mortality in System (1.11). The parameters γi, βi, αi (i = 1, 2) and θ
respectively stand for the predation rate, competition strength, density-dependent death and natural
death rate of the predators, which play a collective role in studying the dynamical behavior of (1.11).
More specifically, when γi > θ, it is called strong predation; otherwise, it is weak predation. Hence
the results of Theorem 1.2 can tell us that if the predations of two predators are strong and the prey
diffusion coefficient D is suitably large, all species can reach a coexistence state.

Theorem 1.3. Let Ω ⊂ R2 be a smooth bounded domain and the parameters γi, αi, βi, (i = 1, 2), θ, µ
and D be positive. Assume that d1(w) and d2(w) satisfy (H1), and the (u, v,w) is a global bounded
classical solution of System (1.11). Suppose that we have (1.20) and

D > max
w∈[0,K0]

uw2|d′1(w)|2

4γ1wd1(w)
(1.23)

as well as one of the following conditions holds:
(i) γ1 > γ2 > θ, l2 ≤ 0, β1 < min{α1, β

∗
1} and β2 < α2;

(ii) γ1 > γ2 > θ, l2 > 0, β1 < min{α1, β
∗
1} and β2 ∈ [β∗2, α2);

(iii) γ1 > θ ≥ γ2,
where

u =
µ(γ1 − θ)
α1µ + γ1

and w =
α1µ + θ

α1µ + γ1
. (1.24)

Then for all initial data (u0, v0,w0) satisfying (H5), one has

||u(·, t) − u||L∞(Ω) + ||v(·, t)||L∞(Ω) + ||w(·, t) − w||L∞(Ω) → 0 as t → ∞, (1.25)

exponentially if θ > γ2w − β2u or algebraically if θ = γ2w − β2u.

Theorem 1.4. Let Ω ⊂ R2 be a smooth bounded domain and the parameters γi, αi, βi, (i = 1, 2), θ, µ
and D be positive. Assume that d1(w) and d2(w) satisfy (H1), and the (u, v,w) is a global bounded
solution of System (1.11). Suppose that we have (1.20) and

D > max
w∈[0,K0]

ṽw2|d′2(w)|2

4γ2w̃d2(w)
(1.26)

as well as one of the following conditions holds:
(i) γ2 > γ1 > θ, l1 ≤ 0, β2 < min{α2, β

∗
2} and β1 < α1;
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(ii) γ2 > γ1 > θ, l1 > 0, β2 < min{α2, β
∗
2} and β1 ∈ [β∗1, α1);

(iii) γ2 > θ ≥ γ1,
where

ṽ =
µ(γ2 − θ)
α2µ + γ2

and w̃ =
α2µ + θ

α2µ + γ2
. (1.27)

Then for all initial data (u0, v0,w0) satisfying (H5), one has

||u(·, t)||L∞(Ω) + ||v(·, t) − ṽ||L∞(Ω) + ||w(·, t) − w̃||L∞(Ω) → 0 as t → ∞, (1.28)

exponentially if θ > γ1w̃ − β1̃v or algebraically if θ = γ1w̃ − β1̃v.

Remark 1.3. It follows from Theorem 1.3 that if the predator u is superior over v in the competition
and the prey diffusion coefficient D is suitably large, the semi-trivial equilibrium (u, 0,w) is globally
asymptotically stable. Similarly, we can obtain Theorem 1.4. Hence, we only give the conclusion of
Theorem 1.4, without showing the details of the proof for brevity.

Theorem 1.5. Let Ω ⊂ R2 be a smooth bounded domain and the parameters γi, αi, βi, (i = 1, 2), θ, µ
and D be positive. Assume that d1(w) and d2(w) satisfy (H1), and the (u, v,w) is a global bounded
solution of System (1.11). Suppose that

γi ≤ θ, i = 1, 2.

Then for all initial data (u0, v0,w0) satisfying (H5), one has

||u(·, t)||L∞(Ω) + ||v(·, t)||L∞(Ω) + ||w(·, t) − 1||L∞(Ω) → 0 as t → ∞, (1.29)

exponentially if γi < θ, i = 1, 2 or algebraically if γi = θ, i = 1, 2.

Remark 1.4. It follows from Theorem 1.5 that if the capture rates of the two predators are low (i.e.
γi ≤ θ, i = 1, 2), the prey-only steady state (0, 0, 1) is globally asymptotically stable regardless of the
size of the prey diffusion coefficient D.

Remark 1.5. Compared with the previous results of [33] without competitive terms, the results of
Theorems 1.2–1.5 indicate that the competition terms play a crucial role in the global stability of the
constant steady states in (1.11). Moreover, under the condition of density-suppressed motility, our
global stability results of Theorems 1.2–1.5 can also generalize the ranges of parameters αi and βi

(i = 1, 2) for two dimensional cases in [32]. However, since the heat-semigroup estimates of u and v
are no longer applicable due to the appearance of density-suppressed motility, the global stability in
L∞-norm is still open in the higher-dimensional problem.

The rest of this paper is organized as follows. In Section 2, we first state the local existence of the
classical solution to (1.8) and collect preliminary lemmas. In Section 3, we derive the global existence
and boundedness of classical solutions for (1.8) and prove Theorem 1.1. Finally, we shall study the
asymptotic stability of global bounded solutions for (1.11) and prove Theorems 1.2–1.5.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13421–13457.



13429

2. Local existence and preliminaries

In this section, we shall give the local existence and some preliminary lemmas. Firstly, we state
the local existence of the classical solution to (1.8), as obtained by means of the abstract theory of
quasilinear parabolic systems in [52].

Lemma 2.1. Let D, γi, βi > 0 (i = 1, 2), Ω ⊂ R2 be a smooth bounded domain and the hypotheses
(H1)–(H5) hold. Then, there exists a Tmax ∈ (0,∞] such that System (1.8) possesses a unique classical
solution (u, v,w) ∈ (C(Ω × [0,Tmax)) ∩C2,1(Ω × (0,Tmax)))3 satisfying

u, v ≥ 0 and 0 ≤ w ≤ K0 := max{||w0||L∞(Ω),K}. (2.1)

In addition, the following extensibility criterion holds, i.e. if Tmax < ∞, then

lim sup
t↗Tmax

(
∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥L∞(Ω) + ∥w(·, t)∥W1,∞(Ω)

)
= ∞. (2.2)

Proof. Let z = (u, v,w)T ; then, System (1.8) can be rewritten as
zt = ∇ · (P(z)∇z) + Q(z), (x, t) ∈ Ω × (0,∞),
∂z
∂ν
= 0, (x, t) ∈ ∂Ω × (0,∞),

z(·, 0) = z0 = (u0, v0,w0), x ∈ Ω,

(2.3)

where

P(z) =


d1(w) 0 ud′1(w)

0 d2(w) vd′2(w)
0 0 D

 and Q(z) =


γ1uF1(w) − uh1(u) − β1uv
γ2vF2(w) − vh2(v) − β2uv
−uF1(w) − vF2(w) + f (w)

 . (2.4)

According to the conditions that D > 0 and di(w) > 0 (i = 1, 2), the matrix P(z) is positively definite
for the given initial data z0, which asserts that System (1.8) is normally parabolic. Thus it follows
from Theorem 7.3 of [53] that there exists a Tmax ∈ (0,∞] such that System (1.8) admits a unique
classical solution (u, v,w) ∈ (C0(Ω × [0,Tmax)) ∩ C2,1(Ω × (0,Tmax)))3. The nonnegativity of (u, v,w)
directly comes from the maximum principle [14,45]. It similarly follows from Lemma 2.2 of [13] that
w ≤ K0 := max{||w0||L∞(Ω),K}. Since P(z) is an upper triangular matrix, we can deduce from Theorem
5.2 of [54] that the extensibility criterion given by (2.2) holds. The proof of Lemma 2.1 is complete.
□

Lemma 2.2. Let Ω ⊂ Rn(n ≥ 1) be a smooth bounded domain, D > 0 and T ∈ (0,∞]. Assume that
φ(x, t) ∈ C(Ω × [0,T )) ∩C2,1(Ω × (0,T )) satisfies

φt = D∆φ − φ + ψ, (x, t) ∈ Ω × (0,T ),
∂φ

∂ν
= 0, (x, t) ∈ ∂Ω × (0,T ),

(2.5)

where ψ ∈ L∞((0,T ); Lp(Ω)) with p ≥ 1. Then there exists a positive constant C such that

||φ(·, t)||W1,q(Ω) ≤ C for all t ∈ (0,T ), (2.6)
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where

q ∈


[1, np

n−p ), if p < n,

[1,∞), if p = n,

[1,∞], if p > n.

(2.7)

Proof. This lemma directly comes from Lemma 1 of [55]. □

Now, we give the following lemma ( [56], Lemma 3.4) to derive some a priori estimates for w.

Lemma 2.3. Let T > 0, τ ∈ (0,T ) and a, d > 0, and assume that y : [0,T ) → [0,∞) is absolutely
continuous. If there exists a nonnegative function h ∈ L1

loc([0,T )) satisfying∫ t+τ

t
h(s)ds ≤ d for all t ∈ [0,T − τ) (2.8)

and
y′(t) + ay(t) ≤ h(t), (2.9)

one has

y(t) ≤ max
{

y(0) + d,
d
aτ
+ 2d

}
for all t ∈ [0,T ). (2.10)

Next, we give a basic property of the solution components u and v for System (1.8).

Lemma 2.4. Let the assumptions of Lemma 2.1 hold. Then there exists a constant C > 0 such that∫
Ω

u + vdx ≤ C for all t ∈ (0,Tmax) (2.11)

and ∫ t+τ

t

∫
Ω

u2 + v2dxds ≤ C for all t ∈ (0,Tmax − τ), (2.12)

where τ = min{1, 1
2Tmax}.

Proof. It follows from a direct computation for System (1.8) that

d
dt

∫
Ω

(
1
γ1

u +
1
γ2

v + w
)

dx =
∫
Ω

f (w)dx −
1
γ1

∫
Ω

uh1(u)dx

−
β1

γ1

∫
Ω

uvdx −
1
γ2

∫
Ω

vh2(v)dx −
β2

γ2

∫
Ω

uvdx

≤ µ

∫
Ω

wdx −
1
γ1

∫
Ω

u(θ1 + α1u)dx

−
1
γ2

∫
Ω

v(θ2 + α2v)dx

= µ

∫
Ω

wdx − θ1

∫
Ω

1
γ1

udx − θ2

∫
Ω

1
γ2

vdx

−
α1

γ1

∫
Ω

u2dx −
α2

γ2

∫
Ω

v2dx,

(2.13)
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for all t ∈ (0,Tmax), where we have applied (H3), (H4), β1, β2 > 0 and (2.1).
Let θ := min{θ1, θ2}, it follows from (2.1) that

d
dt

∫
Ω

(
1
γ1

u +
1
γ2

v + w
)

dx +
α1

γ1

∫
Ω

u2dx +
α2

γ2

∫
Ω

v2dx

≤ −θ

∫
Ω

(
1
γ1

u +
1
γ2

v + w
)

dx + (µK0 + θ)|Ω|,
(2.14)

which leads to (2.11) by Gronwall’s inequality. If αi > 0, i = 1, 2, then integrating (2.14) over (t, t+ τ),
we have (2.12) directly. If αi = 0, i = 1, 2, we can also prove (2.12) by means of the idea used in [14].
For the readers’ convenience, we give the sketch of the proof.

Let A denote the self-adjoint realization of −∆ + δ under homogeneous Neumann boundary
conditions in L2(Ω), where δ ∈

(
0,min{ θ1

d1(0) ,
θ2

d2(0) }
)
. It follows from δ > 0 that A has an

order-preserving bounded inverse A−1 on L2(Ω). Thus this allows us to obtain a positive constant c1

such that
||A−1Ψ||L2(Ω) ≤ c1||Ψ||L2(Ω) for all Ψ ∈ L2(Ω) (2.15)

and

||A−
1
2Ψ||2L2(Ω) =

∫
Ω

Ψ · A−1Ψdx ≤ c1||Ψ||
2
L2(Ω) for all Ψ ∈ L2(Ω). (2.16)

By a simple calculation in (1.8), we have(
1
γ1

u +
1
γ2

v + w
)

t
= ∆

(
1
γ1

d1(w)u +
1
γ2

d2(w)v + Dw
)
−

1
γ1

uh1(u) −
β1

γ1
uv

−
1
γ2

vh2(v) −
β2

γ2
uv + f (w),

(2.17)

which can be written as(
1
γ1

u +
1
γ2

v + w
)

t
+A

(
1
γ1

d1(w)u +
1
γ2

d2(w)v + Dw
)

= δ

(
1
γ1

d1(w)u +
1
γ2

d2(w)v + Dw
)
−

1
γ1

uh1(u) −
β1

γ1
uv

−
1
γ2

vh2(v) −
β2

γ2
uv + f (w)

=
1
γ1

u (δd1(w) − h1(u)) +
1
γ2

v (δd2(w) − h2(v)) + δDw + f (w) −
β1

γ1
uv −

β2

γ2
uv

≤
1
γ1

u (δd1(0) − θ1) +
1
γ2

v (δd2(0) − θ2) + (δD + µ)K0

≤ (δD + µ)K0

:= c2,

(2.18)

where we have applied (H1), (H3), (H4), (2.1) and δ ∈
(
0,min{ θ1

d1(0) ,
θ2

d2(0) }
)
. Hence, by multiplying
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(2.18) byA−1
(

1
γ1

u + 1
γ2

v + w
)
≥ 0 and integrating it over Ω, we derive

1
2

d
dt

∫
Ω

∣∣∣∣∣∣A− 1
2

(
1
γ1

u +
1
γ2

v + w
)∣∣∣∣∣∣2 dx

+

∫
Ω

(
1
γ1

d1(w)u +
1
γ2

d2(w)v + Dw
) (

1
γ1

u +
1
γ2

v + w
)

dx

≤ c2

∫
Ω

A−1
(

1
γ1

u +
1
γ2

v + w
)

dx.

(2.19)

According to the fact that 0 < di(K0) ≤ di(w), i = 1, 2, due to (H1) and (2.1), and by letting c3 :=
min{d1(K0), d2(K0),D} > 0, we deduce

d
dt

∫
Ω

∣∣∣∣∣∣A− 1
2

(
1
γ1

u +
1
γ2

v + w
)∣∣∣∣∣∣2 dx + 2c3

∫
Ω

(
1
γ1

u +
1
γ2

v + w
)2

dx

≤ 2c2

∫
Ω

A−1
(

1
γ1

u +
1
γ2

v + w
)

dx.

(2.20)

It follows from Hölder’s and Young’s inequality as well as (2.15) that

2c2

∫
Ω

A−1
(

1
γ1

u +
1
γ2

v + w
)

dx ≤ 2c2|Ω|
1
2

∫
Ω

∣∣∣∣∣∣A−1
(

1
γ1

u +
1
γ2

v + w
)∣∣∣∣∣∣2 dx


1
2

≤ 2c1c2|Ω|
1
2

∫
Ω

(
1
γ1

u +
1
γ2

v + w
)2

dx
 1

2

≤
c3

2

∫
Ω

(
1
γ1

u +
1
γ2

v + w
)2

dx +
2c2

1c2
2|Ω|

c3
.

(2.21)

According to (2.16), we have

c3

2c1

∫
Ω

∣∣∣∣∣∣A− 1
2

(
1
γ1

u +
1
γ2

v + w
)∣∣∣∣∣∣2 ≤ c3

2

∫
Ω

(
1
γ1

u +
1
γ2

v + w
)2

dx. (2.22)

By combining (2.20)–(2.22), we derive

d
dt

∫
Ω

∣∣∣∣∣∣A− 1
2

(
1
γ1

u +
1
γ2

v + w
)∣∣∣∣∣∣2 dx +

c3

2c1

∫
Ω

∣∣∣∣∣∣A− 1
2

(
1
γ1

u +
1
γ2

v + w
)∣∣∣∣∣∣2

+ c3

∫
Ω

(
1
γ1

u +
1
γ2

v + w
)2

dx ≤
2c2

1c2
2|Ω|

c3
.

(2.23)

By the ordinary differential equations (ODE) argument, there exists a c4 > 0 such that∫
Ω

∣∣∣∣∣∣A− 1
2

(
1
γ1

u +
1
γ2

v + w
)∣∣∣∣∣∣2 dx ≤ c4, (2.24)
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which implies that

∫ t+τ

t

∫
Ω

1
γ2

1

u2 +
1
γ2

2

v2dxds ≤
∫ t+τ

t

∫
Ω

(
1
γ1

u +
1
γ2

v
)2

dxds

≤

∫ t+τ

t

∫
Ω

(
1
γ1

u +
1
γ2

v + w
)2

dxds

≤
c4

c3
+

2c2
1c2

2|Ω|

c2
3

.

(2.25)

The proof of Lemma 2.4 is complete. □

Finally, we shall give the following key estimate of w, which plays a crucial role in the proof of
Theorem 1.1.

Lemma 2.5. Let the assumptions of Lemma 2.1 hold. Then there exists a constant C > 0 such that∫
Ω

|∇w|2dx ≤ C for all t ∈ (0,Tmax) (2.26)

and ∫ t+τ

t

∫
Ω

|∆w|2dxds ≤ C for all t ∈ (0,Tmax − τ), (2.27)

where τ = min{1, 1
2Tmax}.

Proof. Multiplying the third equation of System (1.8) with −2∆w and integrating it by parts, we deduce
from Young’s inequality and (2.1) that

d
dt

∫
Ω

|∇w|2dx

= −2D
∫
Ω

|∆w|2dx + 2
∫
Ω

(uF1(w) + vF2(w))∆wdx − 2
∫
Ω

f (w)∆wdx

≤ −D
∫
Ω

|∆w|2dx +
2
D

∫
Ω

(uF1(w) + vF2(w))2dx +
2
D

∫
Ω

f 2(w)dx

≤ −D
∫
Ω

|∆w|2dx +
4F2

1(K0)
D

∫
Ω

u2dx +
4F2

2(K0)
D

∫
Ω

v2dx +
2(µK0)2

D
|Ω|,

(2.28)

where we have used the hypotheses (H2) and (H4).
It follows from ∂w

∂ν
= 0, Young’s inequality and (2.1) that∫
Ω

|∇w|2dx = −
∫
Ω

w∆wdx ≤
D
2

∫
Ω

|∆w|2dx +
1

2D

∫
Ω

w2dx

≤
D
2

∫
Ω

|∆w|2dx +
K2

0

2D
|Ω|.

(2.29)
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Let c5 := max
{

4F2
1(K0)
D ,

4F2
2(K0)
D

}
; we infer from (2.28) and (2.29) that

d
dt

∫
Ω

|∇w|2dx +
∫
Ω

|∇w|2dx +
D
2

∫
Ω

|∆w|2dx

≤ c5

∫
Ω

u2 + v2dx + c6,

(2.30)

where c6 := 2(µK0)2

D |Ω| +
K2

0
2D |Ω|. It follows from Lemma 2.3 and Lemma 2.4 that (2.26) holds. Then

integrating (2.30) over (t, t + τ), we can deduce from (2.12) and (2.26) that (2.27) holds. □

3. Global boundedness of solutions

In this section, we shall study the global existence and uniform boundedness of solutions for
system (1.8) when n = 2. To do this, we need the following lemmas.

Lemma 3.1. Let the conditions of Theorem 1.1 hold. Then the solution (u, v,w) of system (1.8)
satisfies ∫

Ω

u2dx +
∫
Ω

v2dx ≤ C (3.1)

and

||w(·, t)||W1,q(Ω) ≤ C (3.2)

for all q ∈ [1,∞) and t ∈ (0,Tmax), where C > 0 is a constant independent of t.
Proof. Multiplying the first equation of System (1.8) by 2u and integrating by parts, we deduce from
Young’s and Hölder’s inequalities that

d
dt

∫
Ω

u2dx = −2
∫
Ω

d1(w)|∇u|2dx − 2
∫
Ω

d′1(w)u∇u · ∇wdx

+ 2γ1

∫
Ω

u2F1(w)dx − 2
∫
Ω

u2h1(u)dx − 2β1

∫
Ω

u2vdx

≤ −

∫
Ω

d1(w)|∇u|2dx +
∫
Ω

|d′1(w)|2

d1(w)
u2|∇w|2dx + 2γ1F1(K0)

∫
Ω

u2dx

≤ −d1(K0)
∫
Ω

|∇u|2dx +K1

∫
Ω

u2|∇w|2dx + 2γ1F1(K0)
∫
Ω

u2dx

≤ −d1(K0)
∫
Ω

|∇u|2dx +K1

(∫
Ω

u4dx
) 1

2
(∫
Ω

|∇w|4dx
) 1

2

+ 2γ1F1(K0)
∫
Ω

u2dx,

(3.3)

where K1 := maxw∈[0,K0]
|d′1(w)|2

d1(w) and we have applied (H1)–(H3) and (2.1).
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By using the Gagliardo-Nirenberg inequality in two dimensions, there exists a C1 > 0 such that(∫
Ω

u4dx
) 1

2

= ||u||2L4(Ω) ≤ C1(||∇u||L2(Ω)||u||L2(Ω) + ||u||2L2(Ω)). (3.4)

According to Lemma 2.5 of [19] when n = 2, it follows from Lemma 2.5 that(∫
Ω

|∇w|4dx
) 1

2

≤ C2(||∆w||L2(Ω)||∇w||L2(Ω) + ||∇w||2L2(Ω))

≤ C3(||∆w||L2(Ω) + 1),

(3.5)

for all t ∈ (0,Tmax), where C2,C3 > 0. Thus, by combining (3.4) with (3.5), we infer from Young’s
inequality that

K1

(∫
Ω

u4dx
) 1

2
(∫
Ω

|∇w|4dx
) 1

2

≤ d1(K0)
∫
Ω

|∇u|2dx +C4||u||2L2(Ω)||∆w||2L2(Ω)

+C5||u||2L2(Ω),

(3.6)

where C4,C5 are positive constants. Thus it follows from (3.3) and (3.6) that

d
dt

∫
Ω

u2dx ≤ C6

∫
Ω

u2dx
(∫
Ω

|∆w|2dx + 1
)
, (3.7)

where C6 := max{C4,C5 + 2γ1F1(K0)}.
By Lemma 2.4, we can find t0 = t0(t) ∈ ((t − τ)+, t) for any t ∈ (0,Tmax) such that there exists a

C7 > 0 satisfying ∫
Ω

u2(x, t0)dx ≤ C7, (3.8)

where τ is defined in Lemma 2.4. It follows from Lemma 2.5 that there exists a C8 > 0 such that∫ t0+τ

t0

∫
Ω

|∆w(x, t)|2dxdt ≤ C8. (3.9)

Therefore, integrating (3.7) over (t0, t), we deduce from t0 < t < t0 + τ ≤ t0 + 1, (3.8) and (3.9) that∫
Ω

u2dx ≤
∫
Ω

u2(x, t0)dxeC6
∫ t

t0
(
∫
Ω
|∆w|2dx+1)ds

≤ C7eC6(C8+1) (3.10)

for all t ∈ (0,Tmax).
Similarly, we obtain ∫

Ω

v2dx ≤ C9 for all t ∈ (0,Tmax). (3.11)

It follows from the third equation of System (1.8), we know that w solves the following problem
wt = D∆w − w + g(u, v,w), (x, t) ∈ Ω × (0,Tmax),
∂w
∂ν
= 0, (x, t) ∈ ∂Ω × (0,Tmax),

(3.12)

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13421–13457.



13436

where g(u, v,w) = w−uF1(w)−vF2(w)+ f (w). According to (H2), (H3) and (2.1), we infer from (3.10)
and (3.11) that

||g(u, v,w)||L2(Ω) ≤ C10(||u||L2(Ω) + ||v||L2(Ω) + 1) ≤ C11 (3.13)

for all t ∈ (0,Tmax). Hence, it follows from Lemma 2.2 in two dimensions that (3.2) holds. The proof
of Lemma 3.1 is complete. □

Next, we shall prove the boundedness of w in W1∞(Ω).

Lemma 3.2. Let the conditions of Theorem 1.1 hold. Then the solution component w of system (1.8)
satisfies

||w(·, t)||W1,∞(Ω) ≤ C (3.14)

for all t ∈ (0,Tmax), where C > 0 is a constant independent of t.
Proof. Multiplying the first equation of System (1.8) by u2 and integrating by parts, we deduce from
Young’s and Hölder’s inequalities that

1
3

d
dt

∫
Ω

u3dx = −2
∫
Ω

d1(w)u|∇u|2dx − 2
∫
Ω

d′1(w)u2∇u · ∇wdx

+ γ1

∫
Ω

u3F1(w)dx −
∫
Ω

u3h1(u)dx − β1

∫
Ω

u3vdx

≤ −

∫
Ω

d1(w)u|∇u|2dx +
∫
Ω

|d′1(w)|2

d1(w)
u3|∇w|2dx

+ γ1F1(K0)
∫
Ω

u3dx − θ1

∫
Ω

u3dx

≤ −
4d1(K0)

9

∫
Ω

|∇u
3
2 |2dx +K1

∫
Ω

u3|∇w|2dx

+ γ1F1(K0)
∫
Ω

u3dx − θ1

∫
Ω

u3dx

≤ −
4d1(K0)

9

∫
Ω

|∇u
3
2 |2dx +K1

(∫
Ω

u6dx
) 1

2
(∫
Ω

|∇w|4dx
) 1

2

+ γ1F1(K0)
∫
Ω

u3dx − θ1

∫
Ω

u3dx,

(3.15)

for all t ∈ (0,Tmax), whereK1 is defined in the proof of Lemma 3.1 and we have applied (H1)–(H3) and
(2.1).

It follows from Lemma 3.1 that there exist positive constants C1 and C2 such that ||∇w||L4(Ω) ≤ C1

and ||u||L2(Ω) ≤ C2 for all t ∈ (0,Tmax). Then by using the Gagliardo-Nirenberg inequality and Young’s
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inequality, we can find positive constants Ci, i = 3, · · ·, 6 such that

K1

(∫
Ω

u6dx
) 1

2
(∫
Ω

|∇w|4dx
) 1

2

≤ K1C2
1 ||u

3
2 ||2L4(Ω)

≤ C3

(
||∇u

3
2 ||

4
3

L2(Ω) · ||u
3
2 ||

2
3

L
4
3 (Ω)
+ ||u

3
2 ||2

L
4
3 (Ω)

)
≤

2d1(K0)
9

∫
Ω

|∇u
3
2 |2dx +C4

(3.16)

and

γ1F1(K0)
∫
Ω

u3dx ≤ γ1F1(K0)||u
3
2 ||2L2(Ω)

≤ C5

(
||∇u

3
2 ||

2
3

L2(Ω) · ||u
3
2 ||

4
3

L
4
3 (Ω)
+ ||u

3
2 ||2

L
4
3 (Ω)

)
≤

2d1(K0)
9

∫
Ω

|∇u
3
2 |2dx +C6

(3.17)

for all t ∈ (0,Tmax).
Combining (3.15)–(3.17), we have

d
dt

∫
Ω

u3dx + 3θ1

∫
Ω

u3dx ≤ C7 := 3(C4 +C6) (3.18)

for all t ∈ (0,Tmax). By the ODE argument, we can derive

∫
Ω

u3dx ≤ max
{∫
Ω

u3
0dx,

C7

3θ1

}
for all t ∈ (0,Tmax). (3.19)

Similarly, we also derive the boundedness of ||v||L3(Ω). Then it follows from Lemma 2.2 in two
dimensions that (3.14) holds. □

By means of the boundedness of ||w(·, t)||W1,∞(Ω), it follows from the Moser iteration of [45] that we
can obtain the boundedness of ||u(·, t)||L∞(Ω) and ||v(·, t)||L∞(Ω) for all t ∈ (0,Tmax).

Lemma 3.3. Let the conditions of Theorem 1.1 hold. Then the solution component (u, v) of system
(1.8) satisfies

||u(·, t)||L∞(Ω) + ||v(·, t)||L∞(Ω) ≤ C (3.20)

for all t ∈ (0,Tmax), where C > 0 is a constant independent of t.
Proof. Multiplying the first equation of System (1.8) by up−1 with p ≥ 2 and integrating by parts, we
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deduce from Young’s inequality that

1
p

d
dt

∫
Ω

updx = −(p − 1)
∫
Ω

d1(w)up−2|∇u|2dx − (p − 1)
∫
Ω

d′1(w)up−1∇u · ∇wdx

+ γ1

∫
Ω

upF1(w)dx −
∫
Ω

uph1(u)dx − β1

∫
Ω

upvdx

≤ −
p − 1

2

∫
Ω

d1(w)up−2|∇u|2dx +
p − 1

2

∫
Ω

|d′1(w)|2

d1(w)
up|∇w|2dx

+ γ1F1(K0)
∫
Ω

updx

≤ −
p − 1

2
d1(K0)

∫
Ω

up−2|∇u|2dx +
p − 1

2
K1

∫
Ω

up|∇w|2dx

+ γ1F1(K0)
∫
Ω

updx

(3.21)

for all t ∈ (0,Tmax), whereK1 is defined in the proof of Lemma 3.1 and we have applied (H1)–(H3) and
(2.1).

It follows from Lemma 3.2 that there exists a C1 > 0 such that ||∇w(·, t)||L∞(Ω) ≤ C1 for all t ∈
(0,Tmax). Hence, we deduce from (3.21) that

d
dt

∫
Ω

updx +
p(p − 1)d1(K0)

2

∫
Ω

up−2|∇u|2dx + p(p − 1)
∫
Ω

updx

≤ C2 p(p − 1)
∫
Ω

updx,
(3.22)

for all t ∈ (0,Tmax), where C2 := K1C2
1

2 + γ1F1(K0) + 1 is independent of p. The rest can be handled
exactly as the Moser iteration in Lemma 2.7 of [45] to derive the boundedness of ||u(·, t)||L∞(Ω) for all
t ∈ (0,Tmax). Similarly, we can obtain the boundedness of ||v(·, t)||L∞(Ω) for all t ∈ (0,Tmax). The proof
of Lemma 3.3 is complete. □

Proof of Theorem 1.1. Theorem 1.1 is a direct consequence of Lemma 2.1, Lemma 3.2 and
Lemma 3.3. □

4. Large time behavior

In this section, we shall study the asymptotic stability of global bounded solutions for System
(1.11) by constructing energy functionals used in [13, 57]. To do this, we first give some regularity
results of the solution (u, v,w) for System (1.11).

Lemma 4.1. Let (u, v,w) be a global bounded classical solution for (1.11) ensured in Theorem 1.1.
Then there exist σ ∈ (0, 1) and C > 0 such that

||u||Cσ, σ2 (Ω×[t,t+1]) + ||v||Cσ, σ2 (Ω×[t,t+1]) + ||w||C2+σ,1+σ2 (Ω×[t,t+1]) ≤ C for all t > 1. (4.1)

Proof. This lemma can be verified by a similar argument in Lemma 4.1 of [14], so we omit the details
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here for brevity. □

Lemma 4.2. Let (u, v,w) be a global bounded classical solution for (1.11) ensured in Theorem 1.1.
Then there exists a C > 0 such that

||u(·, t)||W1,4(Ω) + ||v(·, t)||W1,4(Ω) ≤ C for all t > 0. (4.2)

Proof. This lemma can be verified by a similar argument in Lemma 3.6 of [45], so we omit the
details here for brevity. □

In order to prove the asymptotic stabilization of global bounded solutions for system (1.11), we
provide the following lemma, which is proved in [57].

Lemma 4.3. Let ϕ : (1,∞)→ [0,∞) be uniformly continuous such that
∫ ∞

1
ϕ(t)dt < ∞. Then

ϕ(t)→ 0 as t → ∞. (4.3)

4.1. Proof of Theorem 1.2

In this subsection, we are devoted to studying the stabilization of the coexistence steady state
(u∗, v∗,w∗) for some parameters cases. Let us introduce the following functionals

E1(t) =
1
γ1

∫
Ω

(
u − u∗ − u∗ ln

u
u∗

)
dx +

1
γ2

∫
Ω

(
v − v∗ − v∗ ln

v
v∗

)
dx

+

∫
Ω

(
w − w∗ − w∗ ln

w
w∗

)
dx,

and
F1(t) =

∫
Ω

(u − u∗)2 dx +
∫
Ω

(v − v∗)2 dx +
∫
Ω

(w − w∗)2 dx

+

∫
Ω

∣∣∣∣∣∇u
u

∣∣∣∣∣2dx +
∫
Ω

∣∣∣∣∣∇v
v

∣∣∣∣∣2dx +
∫
Ω

|∇w|2dx,

where (u∗, v∗,w∗) is given by (1.14).

Lemma 4.4. Let the conditions of Theorem 1.2 hold. Then there exists a positive constant ε1

independent of t such that
E1(t) ≥ 0 (4.4)

and
d
dt
E1(t) ≤ −ε1F1(t) for all t > 0. (4.5)

Proof. Let
I1(t) := 1

γ1

∫
Ω

(
u − u∗ − u∗ ln u

u∗

)
dx,

I2(t) := 1
γ2

∫
Ω

(
v − v∗ − v∗ ln v

v∗

)
dx,

I3(t) :=
∫
Ω

(
w − w∗ − w∗ ln w

w∗

)
dx,
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then E1(t) can be rewritten as

E1(t) = I1(t) + I2(t) + I3(t) for all t > 0.

Step 1: We shall prove the nonnegativity of E1(t) for all t > 0. Let H(ξ) := ξ − u∗ ln ξ for ξ > 0; it
follows from Taylor’s formula for all x ∈ Ω and each t > 0 that there exists a τ = τ(x, t) ∈ (0, 1) such
that

u − u∗ − u∗ ln
u
u∗
= H(u) − H (u∗)

= H′ (u∗) · (u − u∗) +
1
2

H′′ (τu + (1 − τ)u∗) · (u − u∗)2

=
u∗

2 (τu + (1 − τ)u∗)2 (u − u∗)2
≥ 0.

Hence, we immediately derive that I1(t) =
∫
Ω

(H(u) − H (u∗)) dx ≥ 0. Similarly, we know that I2(t) ≥ 0
and I3(t) ≥ 0 for all t > 0. Thus, we know that (4.4) holds.
Step 2: Now, we further prove (4.5). By a series of simple calculations, we get

d
dt

I1(t) =
1
γ1

∫
Ω

u − u∗

u
utdx

=
1
γ1

∫
Ω

u − u∗

u
(∆(d1(w)u) + γ1uw − u(θ + α1u) − β1uv)dx

= −
u∗

γ1

∫
Ω

d1(w)|∇u|2

u2 dx −
u∗

γ1

∫
Ω

d′1(w)∇u · ∇w
u

dx

+
1
γ1

∫
Ω

(u − u∗)(γ1w − θ − α1u − β1v)dx

= −
u∗

γ1

∫
Ω

d1(w)|∇u|2

u2 dx −
u∗

γ1

∫
Ω

d′1(w)∇u · ∇w
u

dx

+

∫
Ω

(u − u∗)(w − w∗)dx −
α1

γ1

∫
Ω

(u − u∗)2dx

−
β1

γ1

∫
Ω

(u − u∗)(v − v∗)dx,

(4.6)

where we have used the fact that θ = γ1w∗ − α1u∗ − β1v∗.
Similarly, it follows from the identities θ = γ2w∗ − β2u∗ − α2v∗ and µ = u∗ + v∗ + µw∗ that

d
dt

I2(t) = −
v∗

γ2

∫
Ω

d2(w)|∇v|2

v2 dx −
v∗

γ2

∫
Ω

d′2(w)∇v · ∇w
v

dx

+

∫
Ω

(v − v∗)(w − w∗)dx −
α2

γ2

∫
Ω

(v − v∗)2dx

−
β2

γ2

∫
Ω

(v − v∗)(u − u∗)dx,

(4.7)

and
d
dt

I3(t) = −Dw∗
∫
Ω

|∇w|2

w2 dx −
∫
Ω

(w − w∗)(u − u∗)dx −
∫
Ω

(w − w∗)(v − v∗)dx

− µ

∫
Ω

(w − w∗)2dx.
(4.8)
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Hence, by combining (4.6)–(4.8), we derive

d
dt
E1(t) = −

α1

γ1

∫
Ω

(u − u∗)2dx −
α2

γ2

∫
Ω

(v − v∗)2dx − µ
∫
Ω

(w − w∗)2dx

−

(
β1

γ1
+
β2

γ2

) ∫
Ω

(u − u∗)(v − v∗)dx −
u∗

γ1

∫
Ω

d1(w)|∇u|2

u2 dx

−
v∗

γ2

∫
Ω

d2(w)|∇v|2

v2 dx − Dw∗
∫
Ω

|∇w|2

w2 dx −
u∗

γ1

∫
Ω

d′1(w)∇u · ∇w
u

dx

−
v∗

γ2

∫
Ω

d′2(w)∇v · ∇w
v

dx

:= −
∫
Ω

X1A1XT
1 dx −

∫
Ω

Y1B1YT
1 dx,

(4.9)

where X1 = (u − u∗, v − v∗,w − w∗) and Y1 =
(
∇u
u ,
∇v
v ,∇w

)
, as well as

A1 =


α1
γ1

1
2

(
β1
γ1
+

β2
γ2

)
0

1
2

(
β1
γ1
+

β2
γ2

)
α2
γ2

0
0 0 µ

 , B1 =


u∗d1(w)
γ1

0 u∗d′1(w)
2γ1

0 v∗d2(w)
γ2

v∗d′2(w)
2γ2

u∗d′1(w)
2γ1

v∗d′2(w)
2γ2

Dw∗
w2

 . (4.10)

It follows from (1.20) that∣∣∣∣∣α1

γ1

∣∣∣∣∣ > 0 and

∣∣∣∣∣∣∣
α1
γ1

1
2

(
β1
γ1
+

β2
γ2

)
1
2

(
β1
γ1
+

β2
γ2

)
α2
γ2

∣∣∣∣∣∣∣ = α1α2

γ1γ2
−

1
4

(
β1

γ1
+
β2

γ2

)2

> 0 (4.11)

as well as

|A1| = µ

α1α2

γ1γ2
−

1
4

(
β1

γ1
+
β2

γ2

)2 > 0, (4.12)

which implies that the matrix A1 is positive definite as according to Sylvester’s criterion. Similarly, we
deduce from (1.21) that∣∣∣∣∣u∗d1(w)

γ1

∣∣∣∣∣ > 0 and

∣∣∣∣∣∣∣
u∗d1(w)
γ1

0
0 v∗d2(w)

γ2

∣∣∣∣∣∣∣ = u∗v∗d1(w)d2(w)
γ1γ2

> 0 (4.13)

as well as

|B1| =
u∗v∗w∗d1(w)d2(w)

γ1γ2w2

(
D −

u∗w2|d′1(w)|2

4γ1w∗d1(w)
−

v∗w2|d′2(w)|2

4γ2w∗d2(w)

)
> 0, (4.14)

which implies that the matrix B1 is positive definite. Thus there exist positive constants κ1 and κ2 such
that

X1A1XT
1 ≥ κ1|X1|

2 and Y1B1YT
1 ≥ κ2|Y1|

2 (4.15)

for all x ∈ Ω and t > 0. Let ε1 := min{κ1, κ2}, we have

d
dt
E1(t) ≤ −ε1

∫
Ω

|X1|
2 + |Y1|

2dx for all t > 0, (4.16)
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which implies that (4.5) holds. The proof of Lemma 4.4 is complete. □

With the aid of Lemma 4.4, we shall give the following large time behavior of global solutions for
system (1.11).

Lemma 4.5. Let the assumptions of Theorem 1.2 hold. Then the global bounded solution of (1.11)
converges to the coexistence steady state (u∗, v∗,w∗) given by (1.14), i.e.,

||u(·, t) − u∗||L∞(Ω) + ||v(·, t) − v∗||L∞(Ω) + ||w(·, t) − w∗||L∞(Ω) → 0 (4.17)

as t → ∞.
Proof. It follows from Lemma 4.4 and integration over (1,∞) that∫ ∞

1
F1(t)dt ≤

E1(1)
ε1

< ∞.

According to Theorem 1.1 and Lemma 4.1, the bounded solution u, v and w are Hölder continuous in
Ω̄× [t, t+1] with respect to t > 1. Thus we conclude that F1(t) is uniformly continuous in (1,∞). Thus
we infer from Lemma 4.3 that∫

Ω

(u − u∗)2 dx +
∫
Ω

(v − v∗)2 dx +
∫
Ω

(w − w∗)2 dx→ 0 (4.18)

as t → ∞. By the Gagliardo-Nirenberg inequality in two dimensions, there exists a C1 > 0 such that

∥u − u∗∥L∞(Ω) ≤ C1 ∥u − u∗∥
2
3

W1,4(Ω) ∥u − u∗∥
1
3

L2(Ω) .

Moreover, it follows from Lemma 4.2 that u(·, t) − u∗ is bounded in W1,4(Ω); thus, we conclude from
(4.18) that u(·, t) → u∗ in L∞(Ω) as t → ∞. By the similar arguments for v and w, we derive (4.17).
The proof of Lemma 4.5 is complete. □

Now, we give the convergence rate of the coexistence state (u∗, v∗,w∗) for System (1.11).

Lemma 4.6. Let the assumptions of Theorem 1.2 hold; the global bounded solution (u, v,w) of (1.11)
exponentially converges to the coexistence state (u∗, v∗,w∗), i.e. there exist C > 0 and λ > 0 such that

||u(·, t) − u∗||L∞(Ω) + ||v(·, t) − v∗||L∞(Ω) + ||w(·, t) − w∗||L∞(Ω) ≤ Ce−λt (4.19)

for all t > T1, where T1 > 0 is some fixed time.
Proof. It follows from Lemma 4.5 that ||u − u∗||L∞(Ω) → 0 as t → ∞. Therefore, we apply L’Hôpital’s
rule to obtain

lim
u→u∗

u − u∗ − u∗ ln u
u∗

(u − u∗)2 =
1

2u∗
, (4.20)

which implies that there exists a t1 > 0 such that

1
4u∗

∫
Ω

(u − u∗)2dx ≤
∫
Ω

(
u − u∗ − u∗ ln

u
u∗

)
dx ≤

3
4u∗

∫
Ω

(u − u∗)2dx (4.21)
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for all t > t1. Similarly, we can find t2 > 0 satisfying

1
4v∗

∫
Ω

(v − v∗)2dx ≤
∫
Ω

(
v − v∗ − v∗ ln

v
v∗

)
dx ≤

3
4v∗

∫
Ω

(v − v∗)2dx (4.22)

and

1
4w∗

∫
Ω

(w − w∗)2dx ≤
∫
Ω

(
w − w∗ − w∗ ln

w
w∗

)
dx ≤

3
4w∗

∫
Ω

(w − w∗)2dx (4.23)

for all t > t2. Let T1 := max{t1, t2}; by means of the definitions of E1(t) and F1(t), it follows from the
second inequalities in (4.21)–(4.23) that there exists a C1 > 0 such that

C1E1(t) ≤ F1(t) for all t > T1. (4.24)

By Lemma 4.4, we derive

E′1(t) ≤ −ε1F1(t) ≤ −ε1C1E1(t) for all t > T1, (4.25)

which implies that there exist C2 > 0 and C3 > 0 such that

E1(t) ≤ C2e−C3(t−T1) for all t > T1. (4.26)

Thus we deduce from the first inequalities in (4.21)–(4.23) that there exists a C4 > 0 such that∫
Ω

(u(x, t) − u∗)2dx +
∫
Ω

(v(x, t) − v∗)2dx +
∫
Ω

(w(x, t) − w∗)2dx

≤ C4E1(t) ≤ C2C4e−C3(t−T1) for all t > T1.

(4.27)

It follows from the Gagliardo-Nirenberg inequality in two dimensions, Lemma 4.2 and Lemma 3.2 that
there exist positive constants C5 and C6 such that

||u − u∗||L∞(Ω) + ||v − v∗||L∞(Ω) + ||w − w∗||L∞(Ω)

≤ C5

(
||u − u∗||

2
3

W1,4(Ω)||u − u∗||
1
3

L2(Ω) + ||v − v∗||
2
3

W1,4(Ω)||v − v∗||
1
3

L2(Ω)

+ ||w − w∗||
2
3

W1,4(Ω)||w − w∗||
1
3

L2(Ω)

)
≤ C6

(∫
Ω

(u − u∗)2dx +
∫
Ω

(v − v∗)2dx +
∫
Ω

(w − w∗)2dx
) 1

6

≤ C6(C2C4)
1
6 e
−C3(t−T1)

6

(4.28)

for all t > T1. The proof of Lemma 4.6 is complete. □

Proof of Theorem 1.2. The statement of Theorem 1.2 is a straightforward consequence of Lemma
4.6. □
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4.2. Proof of Theorems 1.3 and 1.4

In this subsection, we shall study the stabilization of the semi-trivial steady state (u, 0,w) or
(0, ṽ, w̃) for some parameters cases. Since the methods of the proofs of Theorem 1.3 and Theorem 1.4
are very similar, we only give the proof of Theorem 1.3 for brevity. To do this, let us introduce the
following functionals

E2(t) =
1
γ1

∫
Ω

(
u − u − u ln

u
u

)
dx +

1
γ2

∫
Ω

vdx

+

∫
Ω

(
w − w − w ln

w
w

)
dx,

and
F2(t) =

∫
Ω

(u − u)2 dx +
∫
Ω

v2dx +
∫
Ω

(w − w)2 dx

+

∫
Ω

∣∣∣∣∣∇u
u

∣∣∣∣∣2dx +
∫
Ω

|∇w|2dx,

where u = µ(γ1−θ)
α1µ+γ1

and w = α1µ+θ

α1µ+γ1
.

Lemma 4.7. Let the conditions of Theorem 1.3 hold. Then there exists a positive constant ε2

independent of t such that
E2(t) ≥ 0 (4.29)

and
d
dt
E2(t) ≤ −ε2F2(t) −

1
γ2

(θ − γ2w + β2u)
∫
Ω

vdx for all t > 0. (4.30)

Proof. Let
J1(t) := 1

γ1

∫
Ω

(
u − u − u ln u

u

)
dx,

J2(t) := 1
γ2

∫
Ω

vdx,
J3(t) :=

∫
Ω

(
w − w − w ln w

w

)
dx,

then E2(t) can be represented as

E2(t) = J1(t) + J2(t) + J3(t) for all t > 0.

Firstly, we can prove the nonnegativity of E2(t) for all t > 0 by the similar arguments used in Step 1 in
Lemma 4.4. For brevity, we omit the details here. Now, we shall prove (4.30). By a series of simple
calculations, we get

d
dt

J1(t) = −
u
γ1

∫
Ω

d1(w)|∇u|2

u2 dx −
u
γ1

∫
Ω

d′1(w)∇u · ∇w
u

dx

+

∫
Ω

(u − u)(w − w)dx −
α1

γ1

∫
Ω

(u − u)2dx

−
β1

γ1

∫
Ω

(u − u)vdx,

(4.31)

where we have used the fact that θ = γ1w − α1u.
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Similarly, we can derive

d
dt

J2(t) = −
α2

γ2

∫
Ω

v2dx −
β2

γ2

∫
Ω

v(u − u)dx

+

∫
Ω

v(w − w)dx −
1
γ2

(θ − γ2w + β2u)
∫
Ω

vdx,
(4.32)

and
d
dt

J3(t) = −Dw
∫
Ω

|∇w|2

w2 dx −
∫
Ω

(w − w)(u − u)dx −
∫
Ω

(w − w)vdx

− µ

∫
Ω

(w − w)2dx,
(4.33)

where we have used the fact that µ = u + µw. Thus it follows from (4.31)–(4.33) that

d
dt
E2(t) = −

α1

γ1

∫
Ω

(u − u)2dx −
α2

γ2

∫
Ω

v2dx − µ
∫
Ω

(w − w)2dx

−

(
β1

γ1
+
β2

γ2

) ∫
Ω

(u − u)vdx −
u
γ1

∫
Ω

d1(w)|∇u|2

u2 dx

− Dw
∫
Ω

|∇w|2

w2 dx −
u
γ1

∫
Ω

d′1(w)∇u · ∇w
u

dx

−
1
γ2

(θ − γ2w + β2u)
∫
Ω

vdx

:= −
∫
Ω

X2A2XT
2 dx −

∫
Ω

Y2B2YT
2 dx −

1
γ2

(θ − γ2w + β2u)
∫
Ω

vdx,

(4.34)

where X2 = (u − u, v,w − w) and Y2 =
(
∇u
u ,∇w

)
, as well as

A2 =


α1
γ1

1
2

(
β1
γ1
+

β2
γ2

)
0

1
2

(
β1
γ1
+

β2
γ2

)
α2
γ2

0
0 0 µ

 , B2 =

 ud1(w)
γ1

ud′1(w)
2γ1

ud′1(w)
2γ1

Dw
w2

 . (4.35)

It follows from (1.20) that∣∣∣∣∣α1

γ1

∣∣∣∣∣ > 0 and

∣∣∣∣∣∣∣
α1
γ1

1
2

(
β1
γ1
+

β2
γ2

)
1
2

(
β1
γ1
+

β2
γ2

)
α2
γ2

∣∣∣∣∣∣∣ = α1α2

γ1γ2
−

1
4

(
β1

γ1
+
β2

γ2

)2

> 0 (4.36)

as well as

|A2| = µ

α1α2

γ1γ2
−

1
4

(
β1

γ1
+
β2

γ2

)2 > 0, (4.37)

which implies that the matrix A2 is positive definite as according to Sylvester’s criterion. Similarly, we
deduce from (1.23) that∣∣∣∣∣ud1(w)

γ1

∣∣∣∣∣ > 0 and |B2| =
uwd1(w)
γ1w2

(
D −

uw2|d′1(w)|2

4γ1wd1(w)

)
> 0, (4.38)

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13421–13457.



13446

which implies that the matrix B2 is positive definite. Thus there exist positive constants ι1 and ι2 such
that

X2A2XT
2 ≥ ι1|X2|

2 and Y2B2YT
2 ≥ ι2|Y2|

2 (4.39)

for all x ∈ Ω and t > 0. Let ε2 ∈ (0,min{ι1, ι2}); we obtain

d
dt
E2(t) ≤ −ε2

∫
Ω

|X2|
2 + |Y2|

2dx −
1
γ2

(θ − γ2w + β2u)
∫
Ω

vdx for all t > 0, (4.40)

which implies that (4.30) holds. The proof of Lemma 4.7 is complete. □

With the help of Lemma 4.7, we shall give the following stabilization of the semi-trivial steady
state (u, 0,w) for System (1.11).

Lemma 4.8. Let the assumptions of Theorem 1.3 hold. Then the global bounded solution (u, v,w) of
(1.11) converges to the semi-trivial steady state (u, 0,w) given by (1.24), i.e.,

||u(·, t) − u||L∞(Ω) + ||v(·, t)||L∞(Ω) + ||w(·, t) − w||L∞(Ω) → 0 (4.41)

as t → ∞.
Proof. The proof of this lemma is similar to that of Lemma 4.5; here we omit the details. □

Now, we give the convergence rate of the semi-trivial steady state (u, 0,w) for System (1.11).

Lemma 4.9. Let the assumptions of Theorem 1.3 hold; then, there exist positive constants C and λ
such that:
(a) when θ = γ2w − β2u, then

||u(·, t) − u||L∞(Ω) + ||v(·, t)||L∞(Ω) + ||w(·, t) − w||L∞(Ω) ≤ C(1 + t)−λ for all t > T2; (4.42)

(b) when θ > γ2w − β2u, then

||u(·, t) − u||L∞(Ω) + ||v(·, t)||L∞(Ω) + ||w(·, t) − w||L∞(Ω) ≤ Ce−λt for all t > T2, (4.43)

where T2 > 0 is some fixed time.
Proof. Let

F ∗2 (t) :=
∫
Ω

(u − u)2 dx +
∫
Ω

v2dx +
∫
Ω

(w − w)2 dx, (4.44)

then it follows from Lemma 4.7 that there exists a ε2 > 0 such that

d
dt
E2(t) ≤ −ε2F

∗
2 (t) −

1
γ2

(θ − γ2w + β2u)
∫
Ω

vdx for all t > 0. (4.45)

We deduce from Lemma 4.8 that ||u(·, t) − u||L∞(Ω) + ||v(·, t)||L∞(Ω) + ||w(·, t) − w||L∞(Ω) → 0 as t → ∞.
Hence, we apply L’Hôpital’s rule to obtain

lim
u→u

u − u − u ln u
u

(u − u)2 =
1
2u
, (4.46)
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which implies that there exists a t′1 > 0 such that

1
4u

∫
Ω

(u − u)2dx ≤
∫
Ω

(
u − u − u ln

u
u

)
dx ≤

3
4u

∫
Ω

(u − u)2dx (4.47)

for all t > t′1. Similarly, we can find t′2 > 0 satisfying

1
4w

∫
Ω

(w − w)2dx ≤
∫
Ω

(
w − w − w ln

w
w

)
dx ≤

3
4w

∫
Ω

(w − w)2dx (4.48)

for all t > t′2.
By using the fact that lims→0

s
s2+s = 1, it follows from ||v(·, t)||L∞(Ω) → 0 as t → ∞ that there exists a

t′3 > 0 such that

1
2

∫
Ω

v2 + vdx ≤
∫
Ω

vdx ≤
3
2

∫
Ω

v2 + vdx (4.49)

for all t > t′3.
(a) When θ = γ2w − β2u, (4.45) can be turned into

d
dt
E2(t) ≤ −ε2F

∗
2 (t) for all t > 0. (4.50)

Let T2 := max{t′1, t
′
2, t
′
3}; by means of the definitions of E2(t) and F ∗2 (t), it follows from the second

inequalities in (4.47) and (4.48) that there exist positive constants C1 and C2 such that

E2(t) ≤
3

4γ1u

∫
Ω

(u − u)2dx +
1
γ2

∫
Ω

vdx +
3

4w

∫
Ω

(w − w)2dx

≤ C1

(∫
Ω

(u − u)2dx
) 1

2

+C1

(∫
Ω

v2dx
) 1

2

+C1

(∫
Ω

(w − w)2dx
) 1

2

≤ C2(F ∗2 (t))
1
2 ,

(4.51)

for all t > T2, where we have used Hölder’s inequality and the boundedness of (u, v,w) asserted by
Theorem 1.1. Thus, we deduce from (4.50) that

E′2(t) ≤ −
ε2

C2
2

E2
2(t) for all t > T2, (4.52)

which implies

E2(t) ≤
C3

t − T2
for all t > T2, (4.53)

with some positive constant C3. Hence we infer from the first inequalities in (4.47)–(4.49) that there
exists a C4 > 0 such that ∫

Ω

(u − u)2dx +
∫
Ω

v2dx +
∫
Ω

(w − w)2dx

≤ C4E2(t) ≤
C3C4

t − T2
for all t > T2.

(4.54)
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It follows from the Gagliardo-Nirenberg inequality in two dimensions, Lemma 4.2 and Lemma 3.2 that
there exist positive constants C5 and C6 such that

||u − u||L∞(Ω) + ||v||L∞(Ω) + ||w − w||L∞(Ω)

≤ C5

(
||u − u||

2
3

W1,4(Ω)||u − u||
1
3

L2(Ω) + ||v||
2
3

W1,4(Ω)||v||
1
3

L2(Ω)

+ ||w − w||
2
3

W1,4(Ω)||w − w||
1
3

L2(Ω)

)
≤ C6

(∫
Ω

(u − u)2dx +
∫
Ω

v2dx +
∫
Ω

(w − w)2dx
) 1

6

≤ C6(C3C4)
1
6 (t − T2)−

1
6

(4.55)

for all t > T2.
(b) When θ > γ2w − β2u, let T2 := max{t′1, t

′
2, t
′
3}; by means of the definitions of E2(t) and F ∗2 (t), it

follows from the second inequalities in (4.47) and (4.48) that there exists a positive constant C7 such
that

E2(t) ≤ C7

(
F ∗2 (t) +

∫
Ω

vdx
)
, (4.56)

for all t > T2.
By combining (4.45) with (4.56), we have

d
dt
E2(t) ≤ −

ε2

C7
E2(t) −

1
γ2

(θ − γ2w + β2u − γ2ε2)
∫
Ω

vdx for all t > T2. (4.57)

Since θ > γ2w − β2u, then we can select ε2 ≤
1
γ2

(θ − γ2w + β2u) such that

d
dt
E2(t) ≤ −

ε2

C7
E2(t) for all t > T2, (4.58)

which means that there exist C8 > 0 and C9 > 0 satisfying

E2(t) ≤ C8e−C9(t−T2) for all t > T2. (4.59)

Thus we deduce from the first inequalities in (4.47)–(4.49) that there exists a C10 > 0 such that∫
Ω

(u − u)2dx +
∫
Ω

v2dx +
∫
Ω

(w − w)2dx

≤ C10E2(t) ≤ C8C10e−C9(t−T2) for all t > T2.

(4.60)

It follows from the Gagliardo-Nirenberg inequality in two dimensions, Lemma 4.2 and Lemma 3.2 that

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13421–13457.



13449

there exist positive constants C11 and C12 such that

||u − u||L∞(Ω) + ||v||L∞(Ω) + ||w − w||L∞(Ω)

≤ C11

(
||u − u||

2
3

W1,4(Ω)||u − u||
1
3

L2(Ω) + ||v||
2
3

W1,4(Ω)||v||
1
3

L2(Ω)

+ ||w − w||
2
3

W1,4(Ω)||w − w||
1
3

L2(Ω)

)
≤ C12

(∫
Ω

(u − u)2dx +
∫
Ω

v2dx +
∫
Ω

(w − w)2dx
) 1

6

≤ C12(C8C10)
1
6 e
−C9(t−T2)

6

(4.61)

for all t > T2. The proof of Lemma 4.9 is complete. □

Proof of Theorem 1.3. The statement of Theorem 1.3 is a direct consequence of Lemma 4.9. □

4.3. Proof of Theorem 1.5

In this subsection, we are devoted to discussing the asymptotic stability of the prey-only steady
state (0, 0, 1) under some suitable parameters conditions. To do this, let us denote the following
functionals

E3(t) =
1
γ1

∫
Ω

udx +
1
γ2

∫
Ω

vdx +
∫
Ω

(w − 1 − ln w) dx

and

F3(t) =
∫
Ω

u2dx +
∫
Ω

v2dx +
∫
Ω

(w − 1)2 dx +
∫
Ω

|∇w|2dx,

we can derive the following estimates of E3(t) and F3(t).

Lemma 4.10. Let the conditions of Theorem 1.5 hold. Then there exists a ε3 > 0 independent of t such
that

E3(t) ≥ 0 (4.62)

and

d
dt
E3(t) ≤ −ε3F3(t) −

1
γ1

(θ − γ1)
∫
Ω

udx −
1
γ2

(θ − γ2)
∫
Ω

vdx for all t > 0. (4.63)

Proof. By the similar arguments as in the proofs of Lemma 4.4 and Lemma 4.7, we can derive (4.62)
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and
d
dt
E3(t) = −

α1

γ1

∫
Ω

u2dx −
α2

γ2

∫
Ω

v2dx − µ
∫
Ω

(w − 1)2dx

−

(
β1

γ1
+
β2

γ2

) ∫
Ω

uvdx − D
∫
Ω

|∇w|2

w2 dx

−
1
γ1

(θ − γ1)
∫
Ω

udx −
1
γ2

(θ − γ2)
∫
Ω

vdx

≤ −
α1

γ1

∫
Ω

u2dx −
α2

γ2

∫
Ω

v2dx − µ
∫
Ω

(w − 1)2dx −
D
K2

0

∫
Ω

|∇w|2dx

−
1
γ1

(θ − γ1)
∫
Ω

udx −
1
γ2

(θ − γ2)
∫
Ω

vdx,

(4.64)

where we have used the fact that w ≤ K0 = max{||w0||L∞(Ω), 1}. Let ε3 ∈

(
0,min{α1

γ1
, α2
γ2
, µ, D

K2
0
}

)
; we

obtain

d
dt
E3(t) ≤ −ε3F3(t) −

1
γ1

(θ − γ1)
∫
Ω

udx −
1
γ2

(θ − γ2)
∫
Ω

vdx, (4.65)

for all t > 0. The proof of Lemma 4.10 is complete. □

With the help of Lemma 4.10, we shall give the following stabilization of the prey-only steady
state for System (1.11).

Lemma 4.11. Let the assumptions of Theorem 1.5 hold. Then the global bounded solution of (1.11)
converges to the prey-only steady state (0, 0, 1), i.e.,

||u(·, t)||L∞(Ω) + ||v(·, t)||L∞(Ω) + ||w(·, t) − 1||L∞(Ω) → 0 (4.66)

as t → ∞.
Proof. The proof of this lemma is similar to that of Lemma 4.5; here we omit the details. □

Now, we give the convergence rate of the prey-only steady state (0, 0, 1) for System (1.11).

Lemma 4.12. Let the assumptions of Theorem 1.5 hold; then there exist positive constants C and λ
such that:
(a) when γi = θ, i = 1, 2, then

||u(·, t)||L∞(Ω) + ||v(·, t)||L∞(Ω) + ||w(·, t) − 1||L∞(Ω) ≤ C(1 + t)−λ for all t > T3; (4.67)

(b) when γi < θ, i = 1, 2, then

||u(·, t)||L∞(Ω) + ||v(·, t)||L∞(Ω) + ||w(·, t) − 1||L∞(Ω) ≤ Ce−λt for all t > T3, (4.68)

where T3 > 0 is some fixed time.
Proof. Let

F ∗3 (t) :=
∫
Ω

u2dx +
∫
Ω

v2dx +
∫
Ω

(w − 1)2 dx, (4.69)
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then it follows from Lemma 4.10 that there exists a ε3 > 0 such that

d
dt
E3(t) ≤ −ε3F

∗
3 (t) −

1
γ1

(θ − γ1)
∫
Ω

udx −
1
γ2

(θ − γ2)
∫
Ω

vdx for all t > 0. (4.70)

By using the facts that lims→0
s

s2+s = 1 and lims→1
s−1−ln s
(s−1)2 = 1

2 , it follows from
||u(·, t)||L∞(Ω) + ||v(·, t)||L∞(Ω) + ||w(·, t) − 1||L∞(Ω) → 0 as t → ∞, as asserted in Lemma 4.11 that there
exists a T3 > 0 such that

1
2

∫
Ω

u2 + udx ≤
∫
Ω

udx ≤
3
2

∫
Ω

u2 + udx (4.71)

and
1
2

∫
Ω

v2 + vdx ≤
∫
Ω

vdx ≤
3
2

∫
Ω

v2 + vdx (4.72)

as well as
1
4

∫
Ω

(w − 1)2dx ≤
∫
Ω

(w − 1 − ln w) dx ≤
3
4

∫
Ω

(w − 1)2dx (4.73)

for all t > T3.
(a) When γi = θ, i = 1, 2, (4.70) can be simplified as

d
dt
E3(t) ≤ −ε3F

∗
3 (t) for all t > 0. (4.74)

By means of the definitions of E3(t) and F ∗3 (t), it follows from the second inequality in (4.73) that there
exist positive constants C1 and C2 such that

E3(t) ≤
1
γ1

∫
Ω

udx +
1
γ2

∫
Ω

vdx +
3
4

∫
Ω

(w − 1)2dx

≤ C1

(∫
Ω

u2dx
) 1

2

+C1

(∫
Ω

v2dx
) 1

2

+C1

(∫
Ω

(w − 1)2dx
) 1

2

≤ C2(F ∗3 (t))
1
2 ,

(4.75)

for all t > T3, where we have used Hölder’s inequality and the boundedness of (u, v,w) asserted by
Theorem 1.1. Thus we deduce from (4.74) that

E′3(t) ≤ −
ε3

C2
2

E2
3(t) for all t > T3, (4.76)

which implies

E3(t) ≤
C3

t − T3
for all t > T3, (4.77)

with some positive constant C3. Hence we infer from the first inequalities in (4.71)–(4.73) that there
exists a C4 > 0 such that ∫

Ω

u2dx +
∫
Ω

v2dx +
∫
Ω

(w − 1)2dx

≤ C4E3(t) ≤
C3C4

t − T3
for all t > T3.

(4.78)
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It follows from the Gagliardo-Nirenberg inequality in two dimensions, Lemma 4.2 and Lemma 3.2 that
there exist positive constants C5 and C6 such that

||u||L∞(Ω) + ||v||L∞(Ω) + ||w − 1||L∞(Ω)

≤ C5

(
||u||

2
3

W1,4(Ω)||u||
1
3

L2(Ω) + ||v||
2
3

W1,4(Ω)||v||
1
3

L2(Ω)

+ ||w − 1||
2
3

W1,4(Ω)||w − 1||
1
3

L2(Ω)

)
≤ C6

(∫
Ω

u2dx +
∫
Ω

v2dx +
∫
Ω

(w − 1)2dx
) 1

6

≤ C6(C3C4)
1
6 (t − T3)−

1
6

(4.79)

for all t > T3.
(b) When γi < θ, i = 1, 2, by means of the definitions of E3(t) and F ∗3 (t), it follows from the second

inequalities in (4.71)–(4.73) that there exists a positive constant C7 such that

E3(t) ≤ C7

(
F ∗3 (t) +

∫
Ω

udx +
∫
Ω

vdx
)
, (4.80)

for all t > T3.
By combining (4.70) with (4.80), we derive

d
dt
E3(t) ≤ −

ε3

C7
E3(t) −

1
γ1

(θ − γ1 − ε3γ1)
∫
Ω

udx −
1
γ2

(θ − γ2 − ε3γ2)
∫
Ω

vdx (4.81)

for all t > 0. Since γi < θ, i = 1, 2, we can select ε3 ≤ min
{

1
γ1

(θ − γ1), 1
γ2

(θ − γ2)
}

such that

d
dt
E3(t) ≤ −

ε3

C7
E3(t) for all t > T3, (4.82)

which means that there exist C8 > 0 and C9 > 0 satisfying

E3(t) ≤ C8e−C9(t−T3) for all t > T3. (4.83)

Thus we deduce from the first inequalities in (4.71)–(4.73) that there exists a C10 > 0 such that∫
Ω

u2dx +
∫
Ω

v2dx +
∫
Ω

(w − 1)2dx

≤ C10E2(t) ≤ C8C10e−C9(t−T3) for all t > T3.

(4.84)

It follows from the Gagliardo-Nirenberg inequality in two dimensions, Lemma 4.2 and Lemma 3.2 that
there exist positive constants C11 and C12 such that

||u||L∞(Ω) + ||v||L∞(Ω) + ||w − 1||L∞(Ω)

≤ C11

(
||u||

2
3

W1,4(Ω)||u||
1
3

L2(Ω) + ||v||
2
3

W1,4(Ω)||v||
1
3

L2(Ω)

+ ||w − 1||
2
3

W1,4(Ω)||w − 1||
1
3

L2(Ω)

)
≤ C12

(∫
Ω

u2dx +
∫
Ω

v2dx +
∫
Ω

(w − 1)2dx
) 1

6

≤ C12(C8C10)
1
6 e
−C9(t−T3)

6

(4.85)
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for all t > T3. The proof of Lemma 4.12 is complete. □

Proof of Theorem 1.5. The statement of Theorem 1.5 is a direct consequence of Lemma 4.12. □
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