[1]
|
A. M. Bowcock, J. G. Krueger, Getting under the skin: the immunogenetics of psoriasis, Nat. Rev. Immunol., 5 (2005), 699–711. https://doi.org/10.1038/nri1689 doi: 10.1038/nri1689
|
[2]
|
C. E. Griffiths, J. N. Barker, Pathogenesis and clinical features of psoriasis, Lancet, 370 (2007), 263–271. https://doi.org/10.1016/s0140-6736(07)61128-3 doi: 10.1016/s0140-6736(07)61128-3
|
[3]
|
J. Li, X. Li, R. Hou, R. Liu, X. Zhao, F. Dong, et al., Psoriatic T cells reduce epidermal turnover time and affect cell proliferation contributed from differential gene expression, JAMA Dermatol., 42 (2015), 874–880. https://doi.org/10.1111/1346-8138.12961 doi: 10.1111/1346-8138.12961
|
[4]
|
A. Gandarillas, The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint, Cell Cycle, 11 (2012), 4507–4516. https://doi.org/10.4161/cc.22529 doi: 10.4161/cc.22529
|
[5]
|
P. J. Hauser, D. Agrawal, W. J. Pledger, Primary keratinocytes have an adhesion dependent S phase checkpoint that is absent in immortalized cell lines, Oncogene, 17 (1998), 3083–3092. https://doi.org/10.1038/sj.onc.1202235 doi: 10.1038/sj.onc.1202235
|
[6]
|
A. Gandarillas, D. Davies, J. M. Blanchard, Normal and c-Myc-promoted human keratinocyte differentiation both occur via a novel cell cycle involving cellular growth and endoreplication, Oncogene, 19 (2000), 3278–3289. https://doi.org/10.1038/sj.onc.1203630 doi: 10.1038/sj.onc.1203630
|
[7]
|
C. Albanesi, S. Madonna, P. Gisondi, G. Girolomoni, The interplay between keratinocytes and immune cells in the pathogenesis of psoriasis, Front. Immunol., 9 (2018), 1549. https://doi.org/10.3389/fimmu.2018.01549 doi: 10.3389/fimmu.2018.01549
|
[8]
|
F. Verrecchia, M. Pessah, A. Atfi, A. Mauviel, Tumor necrosis factor-alpha inhibits transforming growth factor-beta /Smad signaling in human dermal fibroblasts via AP-1 activation, J. Biol. Chem., 275 (2000), 30226–30231. https://doi.org/10.1074/jbc.M005310200 doi: 10.1074/jbc.M005310200
|
[9]
|
F. Q. Wen, X. Liu, T. Kobayashi, S. Abe, Q. Fang, T. Kohyama, et al., Interferon-gamma inhibits transforming growth factor-beta production in human airway epithelial cells by targeting Smads, Am. J. Respir. Cell Mol. Biol., 30 (2004), 816–822. https://doi.org/10.1165/rcmb.2002-0249OC doi: 10.1165/rcmb.2002-0249OC
|
[10]
|
D. E. Brash, Roles of the transcription factor p53 in keratinocyte carcinomas, Br. J. Dermatol., 154 (2006), 8–10. https://doi.org/10.1111/j.1365-2133.2006.07230.x doi: 10.1111/j.1365-2133.2006.07230.x
|
[11]
|
C. S. Murphy, J. A. Pietenpol, K. Münger, P. M. Howley, H. L. Moses, c-myc and pRB: role in TGF-beta 1 inhibition of keratinocyte proliferation, Cold Spring Harb. Symp. Quant. Biol., 56 (1991), 129–135. https://doi.org/10.1101/sqb.1991.056.01.017 doi: 10.1101/sqb.1991.056.01.017
|
[12]
|
J. W. Harbour, R. X. Luo, A. Dei Santi, A. A. Postigo, D. C. Dean, Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1, Cell, 98 (1999), 859–869. https://doi.org/10.1016/s0092-8674(00)81519-6 doi: 10.1016/s0092-8674(00)81519-6
|
[13]
|
G. Yao, T. J. Lee, S. Mori, J. R. Nevins, L. You, A bistable Rb-E2F switch underlies the restriction point, Nat. Cell Biol., 10 (2008), 476–482. https://doi.org/10.1038/ncb1711 doi: 10.1038/ncb1711
|
[14]
|
S. L. Spencer, S. D. Cappell, F. C. Tsai, K. W. Overton, C. L. Wang, T. Meyer, The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit, Cell, 155 (2013), 369–383. https://doi.org/10.1016/j.cell.2013.08.062 doi: 10.1016/j.cell.2013.08.062
|
[15]
|
H. W. Yang, M. Chung, T. Kudo, T. Meyer, Competing memories of mitogen and p53 signalling control cell-cycle entry, Nature, 549 (2017), 404–408. https://doi.org/10.1038/nature23880 doi: 10.1038/nature23880
|
[16]
|
J. Moser, I. Miller, D. Carter, S. L. Spencer, Control of the restriction point by Rb and p21, Proc. Natl. Acad. Sci. USA, 115 (2018), E8219–E8227. https://doi.org/10.1073/pnas.1722446115 doi: 10.1073/pnas.1722446115
|
[17]
|
M. Chung, C. Liu, H. W. Yang, M. S. Kö berlin, S. D. Cappell, T. Meyer, Transient hysteresis in CDK4/6 activity underlies passage of the restriction point in G1, Mol. Cell, 76 (2019), 562–573.e564. https://doi.org/10.1016/j.molcel.2019.08.020 doi: 10.1016/j.molcel.2019.08.020
|
[18]
|
S. Hume, G. L. Dianov, K. Ramadan, A unified model for the G1/S cell cycle transition, Nucleic Acids Res., 48 (2020), 12483–12501. https://doi.org/10.1093/nar/gkaa1002 doi: 10.1093/nar/gkaa1002
|
[19]
|
T. Blasi, H. Hennig, H. D. Summers, F. J. Theis, J. Cerveira, J. O. Patterson, et al., Label-free cell cycle analysis for high-throughput imaging flow cytometry, Nat Commun., 7 (2016), 10256. https://doi.org/10.1038/ncomms10256 doi: 10.1038/ncomms10256
|
[20]
|
E. Moen, D. Bannon, T. Kudo, W. Graf, M. Covert, D. Van Valen, Deep learning for cellular image analysis, Nat. Methods, 16 (2019), 1233–1246. https://doi.org/10.1038/s41592-019-0403-1 doi: 10.1038/s41592-019-0403-1
|
[21]
|
C. Liu, P. Cui, T. Huang, Identification of cell cycle-regulated genes by convolutional neural network, Comb. Chem. High Throughput Screen., 20 (2017), 603–611. https://doi.org/10.2174/1386207320666170417144937 doi: 10.2174/1386207320666170417144937
|
[22]
|
F. Huang, L. Chen, W. Guo, T. Huang, Y. D. Cai, Identification of human cell cycle phase markers based on single-cell RNA-seq data by using machine learning methods, Biomed Res Int., 2022 (2022), 2516653. https://doi.org/10.1155/2022/2516653 doi: 10.1155/2022/2516653
|
[23]
|
T. Huang, L. Liu, Z. Qian, K. Tu, Y. Li, L. Xie, Using GeneReg to construct time delay gene regulatory networks, BMC Res. Notes, 3 (2010), 142. https://doi.org/10.1186/1756-0500-3-142 doi: 10.1186/1756-0500-3-142
|
[24]
|
W. Liu, Y. Jiang, L. Peng, X. Sun, W. Gan, Q. Zhao, et al., Inferring gene regulatory networks using the improved markov blanket discovery algorithm, Interdiscip Sci., 14 (2022), 168–181. https://doi.org/10.1007/s12539-021-00478-9 doi: 10.1007/s12539-021-00478-9
|
[25]
|
M. M. Kordmahalleh, M. G. Sefidmazgi, S. H. Harrison, A. Homaifar, Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network, BioData Min., 10 (2017), 29. https://doi.org/10.1186/s13040-017-0146-4 doi: 10.1186/s13040-017-0146-4
|
[26]
|
B. Yang, W. Bao, D. S. Huang, Y. Chen, Inference of large-scale time-delayed gene regulatory network with parallel mapReduce cloud platform, Sci. Rep., 8 (2018), 17787. https://doi.org/10.1038/s41598-018-36180-y doi: 10.1038/s41598-018-36180-y
|
[27]
|
S. Mangiola, M. A. Doyle, A. T. Papenfuss, Interfacing seurat with the R tidy universe, Bioinformatics, 2021 (2021), https://doi.org/10.1093/bioinformatics/btab404
|
[28]
|
N. Grabe, K. Neuber, Simulating psoriasis by altering transit amplifying cells, Bioinformatics, 23 (2007), 1309–1312. https://doi.org/10.1093/bioinformatics/btm042 doi: 10.1093/bioinformatics/btm042
|
[29]
|
H. Zhang, W. Hou, L. Henrot, S. Schnebert, M. Dumas, C. Heusèle, et al., Modelling epidermis homoeostasis and psoriasis pathogenesis, J. R. Soc. Interface., 12 (2015), https://doi.org/10.1098/rsif.2014.1071
|
[30]
|
K. Ohno, Y. Kobayashi, M. Uesaka, T. Gotoda, M. Denda, H. Kosumi, et al., A computational model of the epidermis with the deformable dermis and its application to skin diseases, Sci. Rep., 11 (2021), 13234. https://doi.org/10.1038/s41598-021-92540-1 doi: 10.1038/s41598-021-92540-1
|
[31]
|
L. Salmena, L. Poliseno, Y. Tay, L. Kats, P. P. Pandolfi, A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?, Cell, 146 (2011), 353–358. https://doi.org/10.1016/j.cell.2011.07.014 doi: 10.1016/j.cell.2011.07.014
|
[32]
|
P. Sumazin, X. Yang, H. S. Chiu, W. J. Chung, A. Iyer, D. Llobet-Navas, et al., An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma, Cell, 147 (2011), 370–381. https://doi.org/10.1016/j.cell.2011.09.041 doi: 10.1016/j.cell.2011.09.041
|
[33]
|
D. S. Sardina, S. Alaimo, A. Ferro, A. Pulvirenti, R. Giugno, A novel computational method for inferring competing endogenous interactions, Brief. Bioinf., 18 (2017), 1071–1081. https://doi.org/10.1093/bib/bbw084 doi: 10.1093/bib/bbw084
|
[34]
|
M. List, A. Dehghani Amirabad, D. Kostka, M. H. Schulz, Large-scale inference of competing endogenous RNA networks with sparse partial correlation, Bioinformatics, 35 (2019), i596–i604. https://doi.org/10.1093/bioinformatics/btz314 doi: 10.1093/bioinformatics/btz314
|
[35]
|
L. Zhang, P. Yang, H. Feng, Q. Zhao, H. Liu, Using network distance analysis to predict lncRNA-miRNA interactions, Interdiscip. Sci., 13 (2021), 535–545. https://doi.org/10.1007/s12539-021-00458-z doi: 10.1007/s12539-021-00458-z
|
[36]
|
L. Zhang, T. Liu, H. Chen, Q. Zhao, H. Liu, Predicting lncRNA-miRNA interactions based on interactome network and graphlet interaction, Genomics, 113 (2021), 874–880. https://doi.org/10.1016/j.ygeno.2021.02.002 doi: 10.1016/j.ygeno.2021.02.002
|
[37]
|
W. Liu, H. Lin, L. Huang, L. Peng, T. Tang, Q. Zhao, et al., Identification of miRNA-disease associations via deep forest ensemble learning based on autoencoder, Brief. Bioinf., 23 (2022), https://doi.org/10.1093/bib/bbac104
|
[38]
|
C. C. Wang, C. D. Han, Q. Zhao, X. Chen, Circular RNAs and complex diseases: from experimental results to computational models, Brief. Bioinf., 22 (2021), https://doi.org/10.1093/bib/bbab286
|
[39]
|
F. Sun, J. Sun, Q. Zhao, A deep learning method for predicting metabolite-disease associations via graph neural network, Brief. Bioinf., 23 (2022), https://doi.org/10.1093/bib/bbac266
|
[40]
|
Q. Zhou, Q. Yu, Y. Gong, Z. Liu, H. Xu, Y. Wang, et al., Construction of a lncRNA-miRNA-mRNA network to determine the regulatory roles of lncRNAs in psoriasis, Exp. Ther. Med., 18 (2019), 4011–4021. https://doi.org/10.3892/etm.2019.8035 doi: 10.3892/etm.2019.8035
|
[41]
|
Z. Yu, Y. Gong, L. Cui, Y. Hu, Q. Zhou, Z. Chen, et al., High-throughput transcriptome and pathogenesis analysis of clinical psoriasis, J. Dermatol. Sci., 98 (2020), 109–118. https://doi.org/10.1016/j.jdermsci.2020.03.006 doi: 10.1016/j.jdermsci.2020.03.006
|
[42]
|
J. Lin, X. Li, F. Zhang, L. Zhu, Y. Chen, Transcriptome wide analysis of long non-coding RNA-associated ceRNA regulatory circuits in psoriasis, J. Cell. Mol. Med., 25 (2021), 6925–6935. https://doi.org/10.1111/jcmm.16703 doi: 10.1111/jcmm.16703
|
[43]
|
Y. Wang, J. Zhu, J. Xu, J. Du, X. Lu, The long non-coding RNA and mRNA expression profiles in keratinocytes from patients with psoriasis vulgaris, Ann Palliat Med., 10 (2021), 9206–9214. https://doi.org/10.21037/apm-21-2046 doi: 10.21037/apm-21-2046
|
[44]
|
Y. Yang, S. Xie, W. Jiang, S. Tang, Y. Shi, Discovering novel biomarkers associated with the pathogenesis of psoriasis: Evidence from bioinformatic analysis, Int. J. Gen. Med., 15 (2022), 2817–2833. https://doi.org/10.2147/ijgm.S354985 doi: 10.2147/ijgm.S354985
|
[45]
|
J. Deng, C. Schieler, J. A. M. Borghans, C. Lu, A. Pandit, Finding gene regulatory networks in psoriasis: Application of a tree-based machine learning approach, Front. Immunol., 13 (2022), 921408. https://doi.org/10.3389/fimmu.2022.921408 doi: 10.3389/fimmu.2022.921408
|
[46]
|
L. Sereni, M. C. Castiello, D. Di Silvestre, P. Della Valle, C. Brombin, F. Ferrua, et al., Lentiviral gene therapy corrects platelet phenotype and function in patients with Wiskott-Aldrich syndrome, J. Allergy Clin. Immunol., 144 (2019), 825–838. https://doi.org/10.1016/j.jaci.2019.03.012 doi: 10.1016/j.jaci.2019.03.012
|
[47]
|
A. Farini, C. Villa, D. Di Silvestre, P. Bella, L. Tripodi, R. Rossi, et al., PTX3 predicts myocardial damage and fibrosis in duchenne muscular dystrophy, Front. Physiol., 11 (2020), 403. https://doi.org/10.3389/fphys.2020.00403 doi: 10.3389/fphys.2020.00403
|
[48]
|
Y. Li, T. Jiang, W. Zhou, J. Li, X. Li, Q. Wang, et al., Pan-cancer characterization of immune-related lncRNAs identifies potential oncogenic biomarkers, Nat. Commun., 11 (2020), 1000. https://doi.org/10.1038/s41467-020-14802-2 doi: 10.1038/s41467-020-14802-2
|
[49]
|
S. Wang, S. Zhou, H. Liu, Q. Meng, X. Ma, H. Liu, et al., NcRI: a manually curated database for experimentally validated non-coding RNAs in inflammation, BMC Genomics, 21 (2020), 380. https://doi.org/10.1186/s12864-020-06794-6 doi: 10.1186/s12864-020-06794-6
|
[50]
|
C. Zhou, A. Lin, M. Cao, W. Ding, W. Mou, N. Guo, et al., Activation of the DDR pathway leads to the down-regulation of the TGFβ pathway and a better response to ICIs in patients with metastatic urothelial carcinoma, Front. Immunol., 12 (2021), 634741. https://doi.org/10.3389/fimmu.2021.634741 doi: 10.3389/fimmu.2021.634741
|
[51]
|
Y. He, Z. Jiang, C. Chen, X. Wang, Classification of triple-negative breast cancers based on Immunogenomic profiling, J. Exp. Clin. Cancer Res., 37 (2018), 327. https://doi.org/10.1186/s13046-018-1002-1 doi: 10.1186/s13046-018-1002-1
|
[52]
|
T. Li, J. Fu, Z. Zeng, D. Cohen, J. Li, Q. Chen, et al., TIMER2.0 for analysis of tumor-infiltrating immune cells, Nucleic Acids Res., 48 (2020), W509–W514. https://doi.org/10.1093/nar/gkaa407 doi: 10.1093/nar/gkaa407
|
[53]
|
A. Egeberg, J. P. Thyssen, G. H. Gislason, L. Skov, Skin cancer in patients with psoriasis, J. Eur. Acad. Dermatol. Venereol., 30 (2016), 1349–1353. https://doi.org/10.1111/jdv.13619 doi: 10.1111/jdv.13619
|
[54]
|
E. L. E. M. Abou, N. Nagui, D. Mahgoub, N. El-Eishi, M. Fawzy, A. El-Tawdy, et al., Expression of cyclin D1 and p16 in psoriasis before and after phototherapy, Clin. Exp. Dermatol., 35 (2010), 781–785. https://doi.org/10.1111/j.1365-2230.2009.03774.x doi: 10.1111/j.1365-2230.2009.03774.x
|
[55]
|
S. A. Kim, Y. W. Ryu, J. I. Kwon, M. S. Choe, J. W. Jung, J. W. Cho, Differential expression of cyclin D1, Ki‑67, pRb, and p53 in psoriatic skin lesions and normal skin, Mol. Med. Rep., 17 (2018), 735–742. https://doi.org/10.3892/mmr.2017.8015 doi: 10.3892/mmr.2017.8015
|
[56]
|
S. Choudhary, R. Anand, D. Pradhan, B. Bastia, S. N. Kumar, H. Singh, et al., Transcriptomic landscaping of core genes and pathways of mild and severe psoriasis vulgaris, Int. J. Mol. Med., 47 (2021), 219–231. https://doi.org/10.3892/ijmm.2020.4771 doi: 10.3892/ijmm.2020.4771
|
[57]
|
M. Manczinger, L. Kemény, Novel factors in the pathogenesis of psoriasis and potential drug candidates are found with systems biology approach, PLoS One, 8 (2013), e80751. https://doi.org/10.1371/journal.pone.0080751 doi: 10.1371/journal.pone.0080751
|
[58]
|
J. E. Gudjonsson, A. Aphale, M. Grachtchouk, J. Ding, R. P. Nair, T. Wang, et al., Lack of evidence for activation of the hedgehog pathway in psoriasis, J. Invest. Dermatol., 129 (2009), 635–640. https://doi.org/10.1038/jid.2008.266 doi: 10.1038/jid.2008.266
|
[59]
|
N. Cloonan, M. K. Brown, A. L. Steptoe, S. Wani, W. L. Chan, A. R. Forrest, et al., The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition, Genome Biol., 9 (2008), R127. https://doi.org/10.1186/gb-2008-9-8-r127 doi: 10.1186/gb-2008-9-8-r127
|
[60]
|
S. S. Wallace, Base excision repair: A critical player in many games, DNA Repair (Amst), 19 (2014), 14–26. https://doi.org/10.1016/j.dnarep.2014.03.030 doi: 10.1016/j.dnarep.2014.03.030
|
[61]
|
C. Liu, J. Zhao, W. Lu, Y. Dai, J. Hockings, Y. Zhou, et al., Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes, PLoS Comput. Biol., 16 (2020), e1007701. https://doi.org/10.1371/journal.pcbi.1007701 doi: 10.1371/journal.pcbi.1007701
|
[62]
|
T. Sconocchia, M. Hochgerner, E. Schwarzenberger, C. Tam-Amersdorfer, I. Borek, T. Benezeder, et al., Bone morphogenetic protein signaling regulates skin inflammation via modulating dendritic cell function, J. Allergy Clin. Immunol., 147 (2021), 1810–1822. https://doi.org/10.1016/j.jaci.2020.09.038 doi: 10.1016/j.jaci.2020.09.038
|
[63]
|
A. G. A. Farag, M. A. Shoaib, R. M. Samaka, A. G. Abdou, M. M. Mandour, R. A. L. Ibrahim, Progranulin and beta-catenin in psoriasis: An immunohistochemical study, J. Cosmet. Dermatol., 18 (2019), 2019–2026. https://doi.org/10.1111/jocd.12966 doi: 10.1111/jocd.12966
|
[64]
|
Z. Yu, Q. Yu, H. Xu, X. Dai, Y. Yu, L. Cui, et al., IL-17A Promotes psoriasis-associated keratinocyte proliferation through ACT1-dependent activation of YAP-AREG axis, J. Invest. Dermatol., (2022), https://doi.org/10.1016/j.jid.2022.02.016
|
[65]
|
G. Han, C. A. Williams, K. Salter, P. J. Garl, A. G. Li, X. J. Wang, A role for TGFbeta signaling in the pathogenesis of psoriasis, J. Invest. Dermatol., 130 (2010), 371–377. https://doi.org/10.1038/jid.2009.252 doi: 10.1038/jid.2009.252
|
[66]
|
R. N. Wang, J. Green, Z. Wang, Y. Deng, M. Qiao, M. Peabody, et al., Bone Morphogenetic Protein (BMP) signaling in development and human diseases, Genes Dis., 1 (2014), 87–105. https://doi.org/10.1016/j.gendis.2014.07.005 doi: 10.1016/j.gendis.2014.07.005
|
[67]
|
R. Hä sler, G. Jacobs, A. Till, N. Grabe, C. Cordes, S. Nikolaus, et al., Microbial pattern recognition causes distinct functional micro-RNA signatures in primary human monocytes, PLoS One, 7 (2012), e31151. https://doi.org/10.1371/journal.pone.0031151 doi: 10.1371/journal.pone.0031151
|
[68]
|
V. Patel, K. Carrion, A. Hollands, A. Hinton, T. Gallegos, J. Dyo, et al., The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-κB signaling, and inflammatory gene expression in human aortic valve cells, FASEB J., 29 (2015), 1859–1868. https://doi.org/10.1096/fj.14-257808 doi: 10.1096/fj.14-257808
|
[69]
|
T. M. Dang, W. C. Wong, S. M. Ong, P. Li, J. Lum, J. Chen, et al., MicroRNA expression profiling of human blood monocyte subsets highlights functional differences, Immunology, 145 (2015), 404-416. https://doi.org/10.1111/imm.12456 doi: 10.1111/imm.12456
|
[70]
|
L. Borska, J. Kremlacek, C. Andrys, J. Krejsek, K. Hamakova, P. Borsky, et al., Systemic Inflammation, Oxidative Damage to Nucleic Acids, and Metabolic Syndrome in the Pathogenesis of Psoriasis, Int. J. Mol. Sci., 18 (2017), https://doi.org/10.3390/ijms18112238 doi: 10.3390/ijms18112238
|
[71]
|
S. C. Weatherhead, P. M. Farr, N. J. Reynolds, Spectral effects of UV on psoriasis, Photochem Photobiol Sci., 12 (2013), 47–53. https://doi.org/10.1039/c2pp25116g doi: 10.1039/c2pp25116g
|
[72]
|
T. M. Ansary, M. R. Hossain, K. Kamiya, M. Komine, M. Ohtsuki, Inflammatory molecules associated with ultraviolet radiation-mediated skin aging, Int. J. Mol. Sci., 22 (2021), https://doi.org/10.3390/ijms22083974
|
[73]
|
J. Despotovic, S. Dragicevic, A. Nikolic, Effects of chemotherapy for metastatic colorectal cancer on the TGF-β signaling and related miRNAs hsa-miR-17-5p, hsa-miR-21-5p and hsa-miR-93-5p, Cell Biochem. Biophys., 79 (2021), 757–767. https://doi.org/10.1007/s12013-021-00980-3 doi: 10.1007/s12013-021-00980-3
|
[74]
|
B. Polini, S. Carpi, S. Doccini, V. Citi, A. Martelli, S. Feola, et al., Tumor suppressor role of hsa-miR-193a-3p and -5p in cutaneous melanoma, Int. J. Mol. Sci., 21 (2020), https://doi.org/10.3390/ijms21176183
|
[75]
|
S. Jirawatnotai, Y. Hu, D. M. Livingston, P. Sicinski, Proteomic identification of a direct role for cyclin d1 in DNA damage repair, Cancer Res., 72 (2012), 4289–4293. https://doi.org/10.1158/0008-5472.Can-11-3549 doi: 10.1158/0008-5472.Can-11-3549
|
[76]
|
R. Huang, P. K. Zhou, DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy, Signal Transduct Target Ther., 6 (2021), 254. https://doi.org/10.1038/s41392-021-00648-7 doi: 10.1038/s41392-021-00648-7
|
[77]
|
A. Gandarillas, R. Molinuevo, N. Sanz-Gómez, Mammalian endoreplication emerges to reveal a potential developmental timer, Cell Death Differ., 25 (2018), 471–476. https://doi.org/10.1038/s41418-017-0040-0 doi: 10.1038/s41418-017-0040-0
|
[78]
|
R. Molinuevo, A. Freije, I. de Pedro, S. W. Stoll, J. T. Elder, A. Gandarillas, FOXM1 allows human keratinocytes to bypass the oncogene-induced differentiation checkpoint in response to gain of MYC or loss of p53, Oncogene, 36 (2017), 956–965. https://doi.org/10.1038/onc.2016.262 doi: 10.1038/onc.2016.262
|
[79]
|
N. D. Loft, S. Vaengebjerg, L. Skov, Cancer risk in patients with psoriasis: should we be paying more attention?, Expert Rev. Clin. Immunol., 16 (2020), 479–492. https://doi.org/10.1080/1744666x.2020.1754194 doi: 10.1080/1744666x.2020.1754194
|
[80]
|
S. Esse, K. J. Mason, A. C. Green, R. B. Warren, Melanoma risk in patients treated with biologic therapy for common inflammatory diseases: A systematic review and meta-analysis, JAMA Dermatol., 156 (2020), 787–794. https://doi.org/10.1001/jamadermatol.2020.1300 doi: 10.1001/jamadermatol.2020.1300
|
[81]
|
Z. Chen, N. Zhang, H. Y. Chu, Y. Yu, Z. K. Zhang, G. Zhang, et al., Connective tissue growth factor: From molecular understandings to drug discovery, Front. Cell Dev. Biol., 8 (2020), 593269. https://doi.org/10.3389/fcell.2020.593269 doi: 10.3389/fcell.2020.593269
|
[82]
|
K. Hayakawa, K. Ikeda, M. Fujishiro, Y. Yoshida, T. Hirai, H. Tsushima, et al., Connective tissue growth factor neutralization aggravates the psoriasis skin lesion: The analysis of psoriasis model mice and patients, Ann. Dermatol., 30 (2018), 47–53. https://doi.org/10.5021/ad.2018.30.1.47 doi: 10.5021/ad.2018.30.1.47
|
[83]
|
N. N. Kulkarni, T. Takahashi, J. A. Sanford, Y. Tong, A. F. Gombart, B. Hinds, et al., Innate immune dysfunction in rosacea promotes photosensitivity and vascular adhesion molecule expression, J. Invest. Dermatol., 140 (2020), 645–655. https://doi.org/10.1016/j.jid.2019.08.436 doi: 10.1016/j.jid.2019.08.436
|
[84]
|
S. Y. Park, J. Y. Kim, S. M. Lee, J. O. Chung, K. H. Lee, C. H. Jun, et al., Expression of early growth response gene-1 in precancerous lesions of gastric cancer, Oncol. Lett., 12 (2016), 2710–2715. https://doi.org/10.3892/ol.2016.4962 doi: 10.3892/ol.2016.4962
|
[85]
|
P. L. Kuo, Y. H. Chen, T. C. Chen, K. H. Shen, Y. L. Hsu, CXCL5/ENA78 increased cell migration and epithelial-to-mesenchymal transition of hormone-independent prostate cancer by early growth response-1/snail signaling pathway, J. Cell. Physiol., 226 (2011), 1224–1231. https://doi.org/10.1002/jcp.22445 doi: 10.1002/jcp.22445
|
[86]
|
A. Krones-Herzig, E. Adamson, D. Mercola, Early growth response 1 protein, an upstream gatekeeper of the p53 tumor suppressor, controls replicative senescence, Proc. Natl. Acad. Sci. U. S. A., 100 (2003), 3233–3238. https://doi.org/10.1073/pnas.2628034100 doi: 10.1073/pnas.2628034100
|
[87]
|
I. de Belle, R. P. Huang, Y. Fan, C. Liu, D. Mercola, E. D. Adamson, p53 and Egr-1 additively suppress transformed growth in HT1080 cells but Egr-1 counteracts p53-dependent apoptosis, Oncogene, 18 (1999), 3633–3642. https://doi.org/10.1038/sj.onc.1202696 doi: 10.1038/sj.onc.1202696
|
[88]
|
W. Soonthornchai, P. Tangtanatakul, K. Meesilpavikkai, V. Dalm, P. Kueanjinda, J. Wongpiyabovorn, MicroRNA-378a-3p is overexpressed in psoriasis and modulates cell cycle arrest in keratinocytes via targeting BMP2 gene, Sci. Rep., 11 (2021), 14186. https://doi.org/10.1038/s41598-021-93616-8 doi: 10.1038/s41598-021-93616-8
|
[89]
|
W. Yao, Z. Pan, X. Du, J. Zhang, Q. Li, miR-181b-induced SMAD7 downregulation controls granulosa cell apoptosis through TGF-β signaling by interacting with the TGFBR1 promoter, J. Cell. Physiol., 233 (2018), 6807–6821. https://doi.org/10.1002/jcp.26431 doi: 10.1002/jcp.26431
|
[90]
|
C. Fan, C. Tu, P. Qi, C. Guo, B. Xiang, M. Zhou, et al., GPC6 Promotes Cell Proliferation, Migration, and Invasion in Nasopharyngeal Carcinoma, J. Cancer, 10 (2019), 3926–3932. https://doi.org/10.7150/jca.31345 doi: 10.7150/jca.31345
|
[91]
|
Y. Li, M. Li, I. Shats, J. M. Krahn, G. P. Flake, D. M. Umbach, et al., Glypican 6 is a putative biomarker for metastatic progression of cutaneous melanoma, PLoS One, 14 (2019), e0218067. https://doi.org/10.1371/journal.pone.0218067 doi: 10.1371/journal.pone.0218067
|
[92]
|
O. Noguer, J. Villena, J. Lorita, S. Vilaró, M. Reina, Syndecan-2 downregulation impairs angiogenesis in human microvascular endothelial cells, Exp. Cell Res., 315 (2009), 795–808. https://doi.org/10.1016/j.yexcr.2008.11.016 doi: 10.1016/j.yexcr.2008.11.016
|
[93]
|
H. Liu, W. Lin, Z. Liu, Y. Song, H. Cheng, H. An, et al., E3 ubiquitin ligase NEDD4L negatively regulates keratinocyte hyperplasia by promoting GP130 degradation, EMBO Rep., 22 (2021), e52063. https://doi.org/10.15252/embr.202052063 doi: 10.15252/embr.202052063
|
[94]
|
J. Li, Z. Yue, W. Xiong, P. Sun, K. You, J. Wang, TXNIP overexpression suppresses proliferation and induces apoptosis in SMMC7221 cells through ROS generation and MAPK pathway activation, Oncol. Rep., 37 (2017), 3369–3376. https://doi.org/10.3892/or.2017.5577 doi: 10.3892/or.2017.5577
|
[95]
|
P. F. Hsiao, Y. T. Huang, P. H. Lu, L. Y. Chiu, T. H. Weng, C. F. Hung, et al., Thioredoxin-interacting protein regulates keratinocyte differentiation: Implication of its role in psoriasis, FASEB J., 36 (2022), e22313. https://doi.org/10.1096/fj.202101772R doi: 10.1096/fj.202101772R
|
[96]
|
T. J. Kao, C. C. Wu, N. N. Phan, Y. H. Liu, H. D. K. Ta, G. Anuraga, et al., Prognoses and genomic analyses of proteasome 26S subunit, ATPase (PSMC) family genes in clinical breast cancer, Aging, 13 (2021), 17970. https://doi.org/10.18632/aging.203345 doi: 10.18632/aging.203345
|
[97]
|
J. M. A. Delou, G. M. Vignal, V. Í ndio-do-Brasil, M. T. S. Accioly, T. S. L. da Silva, D. N. Piranda, et al., Loss of constitutive ABCB1 expression in breast cancer associated with worse prognosis, Breast Cancer, 9 (2017), 415–428. https://doi.org/10.2147/bctt.S131284 doi: 10.2147/bctt.S131284
|
[98]
|
S. Wu, H. He, J. Huang, S. Jiang, X. Deng, J. Huang, et al., FMR1 is identified as an immune-related novel prognostic biomarker for renal clear cell carcinoma: A bioinformatics analysis of TAZ/YAP, Math. Biosci. Eng., 19 (2022), 9295–9320. https://doi.org/10.3934/mbe.2022432 doi: 10.3934/mbe.2022432
|
[99]
|
S. Pushpakom, F. Iorio, P. A. Eyers, K. J. Escott, S. Hopper, A. Wells, et al., Drug repurposing: progress, challenges and recommendations, Nat. Rev. Drug Discov., 18 (2019), 41–58. https://doi.org/10.1038/nrd.2018.168 doi: 10.1038/nrd.2018.168
|
[100]
|
Y. Zhou, F. Wang, J. Tang, R. Nussinov, F. Cheng, Artificial intelligence in COVID-19 drug repurposing, Lancet Digit Health., 2 (2020), e667–e676. https://doi.org/10.1016/s2589-7500(20)30192-8 doi: 10.1016/s2589-7500(20)30192-8
|
[101]
|
C. Y. Wang, C. C. Chiao, N. N. Phan, C. Y. Li, Z. D. Sun, J. Z. Jiang, et al., Gene signatures and potential therapeutic targets of amino acid metabolism in estrogen receptor-positive breast cancer, Am. J. Cancer Res., 10 (2020), 95–113.
|
[102]
|
M. C. Ovejero-Benito, E. Muñ oz-Aceituno, A. Reolid, M. Saiz-Rodríguez, F. Abad-Santos, E. Daudén, Pharmacogenetics and pharmacogenomics in moderate-to-severe psoriasis, Am. J. Clin. Dermatol., 19 (2018), 209–222. https://doi.org/10.1007/s40257-017-0322-9 doi: 10.1007/s40257-017-0322-9
|
[103]
|
H. Jain, A. R. Bhat, H. Dalvi, C. Godugu, S. B. Singh, S. Srivastava, Repurposing approved therapeutics for new indication: Addressing unmet needs in psoriasis treatment, Curr. Res. Pharmacol. Drug Discov., 2 (2021), 100041. https://doi.org/10.1016/j.crphar.2021.100041 doi: 10.1016/j.crphar.2021.100041
|
[104]
|
A. von Knethen, U. Heinicke, A. Weigert, K. Zacharowski, B. Brüne, Histone deacetylation inhibitors as modulators of regulatory T cells, Int. J. Mol. Sci., 21 (2020), https://doi.org/10.3390/ijms21072356
|
[105]
|
F. McLaughlin, N. B. La Thangue, Histone deacetylase inhibitors in psoriasis therapy, Curr. Drug Targets Inflamm. Allergy, 3 (2004), 213–219. https://doi.org/10.2174/1568010043343859 doi: 10.2174/1568010043343859
|
[106]
|
E. E. Hull, M. R. Montgomery, K. J. Leyva, HDAC inhibitors as epigenetic regulators of the immune system: Impacts on cancer therapy and inflammatory diseases, Biomed. Res. Int., 2016 (2016), 8797206. https://doi.org/10.1155/2016/8797206 doi: 10.1155/2016/8797206
|
[107]
|
K. Ververis, A. Hiong, T. C. Karagiannis, P. V. Licciardi, Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents, Biologics, 7 (2013), 47–60. https://doi.org/10.2147/btt.S29965 doi: 10.2147/btt.S29965
|
[108]
|
Y. L. Chung, M. Y. Lee, A. J. Wang, L. F. Yao, A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis, Mol. Ther., 8 (2003), 707–717. https://doi.org/10.1016/s1525-0016(03)00235-1 doi: 10.1016/s1525-0016(03)00235-1
|
[109]
|
N. Mishra, C. M. Reilly, D. R. Brown, P. Ruiz, G. S. Gilkeson, Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse, J. Clin. Invest., 111 (2003), 539–552. https://doi.org/10.1172/jci16153 doi: 10.1172/jci16153
|
[110]
|
M. D. Cantley, D. P. Fairlie, P. M. Bartold, V. Marino, P. K. Gupta, D. R. Haynes, Inhibiting histone deacetylase 1 suppresses both inflammation and bone loss in arthritis, Rheumatology, 54 (2015), 1713–1723. https://doi.org/10.1093/rheumatology/kev022 doi: 10.1093/rheumatology/kev022
|
[111]
|
Y. J. Hwang, J. I. Na, S. Y. Byun, S. H. Kwon, S. H. Yang, H. S. Lee, et al., Histone deacetylase 1 and sirtuin 1 expression in psoriatic skin: A comparison between guttate and plaque psoriasis, Life, 10 (2020), https://doi.org/10.3390/life10090157
|