Research article Special Issues

Mirrored dynamics of a wild mosquito population suppression model with Ricker-type survival probability and time delay


  • Received: 22 November 2023 Revised: 26 December 2023 Accepted: 29 December 2023 Published: 04 January 2024
  • Here, we formulated a delayed mosquito population suppression model including two switching sub-equations, in which we assumed that the growth of the wild mosquito population obeys the Ricker-type density-dependent survival function and the release period of sterile males equals the maturation period of wild mosquitoes. For the time-switched delay model, to tackle with the difficulties brought by the non-monotonicity of its growth term to its dynamical analysis, we employed an essential transformation, derived an auxiliary function and obtained some expected analytical results. Finally, we proved that under certain conditions, the number of periodic solutions and their global attractivities for the delay model mirror that of the corresponding delay-free model. The findings can boost a better understanding of the impact of the time delay on the creation/suppression of oscillations harbored by the mosquito population dynamics and enhance the success of real-world mosquito control programs.

    Citation: Zhongcai Zhu, Xiaomei Feng, Xue He, Hongpeng Guo. Mirrored dynamics of a wild mosquito population suppression model with Ricker-type survival probability and time delay[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 1884-1898. doi: 10.3934/mbe.2024083

    Related Papers:

  • Here, we formulated a delayed mosquito population suppression model including two switching sub-equations, in which we assumed that the growth of the wild mosquito population obeys the Ricker-type density-dependent survival function and the release period of sterile males equals the maturation period of wild mosquitoes. For the time-switched delay model, to tackle with the difficulties brought by the non-monotonicity of its growth term to its dynamical analysis, we employed an essential transformation, derived an auxiliary function and obtained some expected analytical results. Finally, we proved that under certain conditions, the number of periodic solutions and their global attractivities for the delay model mirror that of the corresponding delay-free model. The findings can boost a better understanding of the impact of the time delay on the creation/suppression of oscillations harbored by the mosquito population dynamics and enhance the success of real-world mosquito control programs.



    加载中


    [1] World Mosquito Program, Dengue, 2023. Available from: https://www.worldmosquitoprogram.org/en/learn/mosquito-borne-diseases/dengue.
    [2] W. Wang, B. Yu, X. Lin, D. Kong, J. Wang, J. Tian, et al., Reemergence and autochthonous transmission of dengue virus, eastern China, $2014$, Emerging Infect. Dis., 21 (2015), 1670–1673. https://doi.org/10.3201/eid2109.150622 doi: 10.3201/eid2109.150622
    [3] S. Sharma, T. Seth, P. Mishra, N. Gupta, N. Agrawal, B. Narendra, et al., Clinical profile of dengue infection in patients with hematological diseases, Mediterr. J. Hematol. Infect. Dis., 3 (2011), e2011039. https://doi.org/10.4084/MJHID.2011.039 doi: 10.4084/MJHID.2011.039
    [4] D. Teo, L. Ng, S. Lam, Is dengue a threat to the blood supply, Transfus. Med., 19 (2009), 66–77. https://doi.org/10.1111/j.1365-3148.2009.00916.x doi: 10.1111/j.1365-3148.2009.00916.x
    [5] S. Bhatt, P. Gething, O. Brady, J. Messina, A. Farlow, C. Moyes, et al., The global distribution and burden of dengue, Nature, 496 (2013), 504–507. https://doi.org/10.1038/nature12060 doi: 10.1038/nature12060
    [6] World Health Organization, Improving Data for Dengue. Available from: https://www.who.int/activities/improving-data-for-dengue.
    [7] L. Alphey, M. Benedict, R. Bellini, G. Clark, D. Dame, M. Service, et al., Sterile-insect methods for control of mosquito-borne diseases: An analysis, Vector-Borne Zoonotic Dis., 10 (2010), 295–311. https://doi.org/10.1089/vbz.2009.0014 doi: 10.1089/vbz.2009.0014
    [8] J. Guo, X. Zheng, D. Zhang, Y. Wu, Current status of mosquito handling, transporting and releasing in frame of the sterile insect technique, Insects, 13 (2022), 532. https://doi.org/10.3390/insects13060532 doi: 10.3390/insects13060532
    [9] R. Lees, J. Gilles, J. Hendrichs, M. Vreysen, K. Bourtzis, Back to the future: the sterile insect technique against mosquito disease vectors, Curr. Opin. Insect Sci., 10 (2015), 156–162. https://doi.org/10.1016/j.cois.2015.05.011 doi: 10.1016/j.cois.2015.05.011
    [10] A. Bartlett, R. Staten, Sterile Insect Release Method and Other Genetic Control Strategies, Radcliffe's IPM World Textbook, 1996. Available at: https://ipmworld.umn.edu/chapters/bartlett.htm.
    [11] M. Sicard, M. Bonneau, M. Weill, Wolbachia prevalence, diversity, and ability to induce cytoplasmic incompatibility in mosquitoes, Curr. Opin. Insect Sci., 34 (2019), 12–20. https://doi.org/10.1016/j.cois.2019.02.005 doi: 10.1016/j.cois.2019.02.005
    [12] T. Walker, P. Johnson, L. Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeniman, et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476 (2011), 450–453. https://doi.org/10.1038/nature10355 doi: 10.1038/nature10355
    [13] S. Soh, S. So, J. Ong, A. Seah, B. Dickens, K. Tan, et al., Strategies to mitigate establishment under the Wolbachia incompatible insect technique, Viruses-Basel, 14 (2022), 1132. https://doi.org/10.3390/v14061132 doi: 10.3390/v14061132
    [14] N. Beebe, D. Pagendam, B. Trewin, A. Boomer, M. Bradford, A. Ford, et al., Releasing incompatible males drives strong suppression across populations of wild and Wolbachia-carrying Aedes aegypti in Australia, Proc. Natl. Acad. Sci. U.S.A., 118 (2021), e2106828118. https://doi.org/10.1073/pnas.2106828118 doi: 10.1073/pnas.2106828118
    [15] R. Moretti, M. Calvitti, Issues with combining incompatible and sterile insect techniques, Nature, 590 (2021), E1–E2. https://doi.org/10.1038/s41586-020-03164-w doi: 10.1038/s41586-020-03164-w
    [16] X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu, X. Liang, et al., Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 572 (2019), 56–61. https://doi.org/10.1038/s41586-019-1407-9 doi: 10.1038/s41586-019-1407-9
    [17] C. Atyame, P. Labbe, C. Lebon, M. Weill, R. Moretti, F. Marini, et al., Comparison of irradiation and Wolbachia based approaches for sterile-male strategies targeting Aedes albopictus, PLoS One, 11 (2016), e0146834. https://doi.org/10.1371/journal.pone.0146834 doi: 10.1371/journal.pone.0146834
    [18] S. Dobson, When more is less: mosquito population suppression using sterile, incompatible and genetically modified male mosquitoes, J. Med. Entomol., 58 (2021), 1980–1986. https://doi.org/10.1093/jme/tjab025 doi: 10.1093/jme/tjab025
    [19] S. Li, J. Llibre, X. Sun, On the indices of singular points for planar bounded piecewise smooth polynomial vector field, Nonlinear Anal. Hybrid Syst., 49 (2023), 101350. https://doi.org/10.1016/j.nahs.2023.101350 doi: 10.1016/j.nahs.2023.101350
    [20] X. Sun, J. Li, G. Chen, Bifurcations, exact peakon, periodic peakons and solitary wave solutions of generalized Camassa-Holm-Degasperis-Procosi type equation, Int. J. Bifurcation Chaos, 33 (2023), 2350124. https://doi.org/10.1142/S0218127423501249 doi: 10.1142/S0218127423501249
    [21] T. Feng, Z. Qiu, Y. Kang, Recruitment dynamics of social insect colonies, SIAM J. Appl. Math., 81 (2021), 1579–1599. https://doi.org/10.1137/20M1332384 doi: 10.1137/20M1332384
    [22] R. Yan, B. Zheng, J. Yu, Existence and stability of periodic solutions for a mosquito suppression model with incomplete cytoplasmic incompatibility, Discrete Contin. Dyn. Syst. Ser. B, 28 (2022), 3172–3192. https://doi.org/10.3934/dcdsb.2022208 doi: 10.3934/dcdsb.2022208
    [23] Y. Chen, Y. Wang, J. Yu, B. Zheng, Z. Zhu, Global dynamics of a mosquito population suppression model with seasonal switching, Adv. Differ. Equations, 28 (2023), 889–920. https://doi.org/10.57262/ade028-1112-889 doi: 10.57262/ade028-1112-889
    [24] A. Ruiz-Herrera, P. Pérez, A. San Luis, Global stability and oscillations for mosquito population models with diapausing stages, J. Differ. Equations, 337 (2022), 483–506. https://doi.org/10.1016/j.jde.2022.08.016 doi: 10.1016/j.jde.2022.08.016
    [25] H. Guo, Z. Guo, Y. Li, Dynamical behavior of a temporally discrete non-local reaction-diffusion on bounded domain, Discrete Contin. Dyn. Syst. Ser. B, 29 (2023), 198–213. https://doi.org/10.3934/dcdsb.2023093 doi: 10.3934/dcdsb.2023093
    [26] H. Zhao, K. Wang, H. Wang, Basic reproduction ratio of a mosquito-borne disease in heterogeneous environment, J. Math. Biol., 86 (2023), 32. https://doi.org/10.1007/s00285-023-01867-y doi: 10.1007/s00285-023-01867-y
    [27] Y. Sun, W. Chen, S. Yao, D. Lin, Model-assisted process development, characterization and design of continuous chromatography for antibody separation, J. Chromatogr. A, 1707 (2023), 464302. https://doi.org/10.1016/j.chroma.2023.464302 doi: 10.1016/j.chroma.2023.464302
    [28] X. Zhao, L. Liu, H. Wang, M. Fan, Ecological effects of predator harvesting and environmental noises on oceanic coral reefs, Bull. Math. Biol., 85 (2023), 59. https://doi.org/10.1007/s11538-023-01166-z doi: 10.1007/s11538-023-01166-z
    [29] H. Yin, L. Chang, S. Wang, The impact of China's economic uncertainty on commodity and financial markets, Resour. Policy, 84 (2023), 103779. https://doi.org/10.1016/j.resourpol.2023.103779 doi: 10.1016/j.resourpol.2023.103779
    [30] L. Cai, S. Ai, J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math., 74 (2014), 1786–1809. https://doi.org/10.1137/13094102X doi: 10.1137/13094102X
    [31] Z. Zhang, B. Zheng, Dynamics of a mosquito population suppression model with a saturated Wolbachia release rate, Appl. Math. Lett., 129 (2022), 107933. https://doi.org/10.1016/j.aml.2022.107933 doi: 10.1016/j.aml.2022.107933
    [32] J. Li, New revised simple models for interactive wild and sterile mosquito populations and their dynamics, J. Biol. Dyn., 11 (2017), 316–333. https://doi.org/10.1080/17513758.2016.1216613 doi: 10.1080/17513758.2016.1216613
    [33] L. Hu, C. Yang, Y. Hui, J. Yu, Mosquito control based on pesticides and endosymbiotic bacterium Wolbachia, Bull. Math. Biol., 83 (2021), 58. https://doi.org/10.1007/s11538-021-00881-9 doi: 10.1007/s11538-021-00881-9
    [34] Z. Zhu, B. Zheng, Y. Shi, R. Yan, J. Yu, Stability and periodicity in a mosquito population suppression model composed of two sub-models, Nonlinear Dyn., 107 (2022), 1383–1395. https://doi.org/10.1007/s11071-021-07063-1 doi: 10.1007/s11071-021-07063-1
    [35] Z. Zhu, X. Feng, L. Hu, Global dynamics of a mosquito population suppression model under a periodic release strategy, J. Appl. Anal. Comput., 13 (2023), 2297–2314. https://doi.org/10.11948/20220501 doi: 10.11948/20220501
    [36] J. Yu, Modelling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168–3187. https://doi.org/10.1137/18M1204917 doi: 10.1137/18M1204917
    [37] J. Yu, J. Li, A delay suppression model with sterile mosquitoes release period equal to wild larvae maturation period, J. Math. Biol., 84 (2022), 14. https://doi.org/10.1007/s00285-022-01718-2 doi: 10.1007/s00285-022-01718-2
    [38] B. Zheng, Impact of releasing period and magnitude on mosquito population in a sterile release model with delay, J. Math. Biol., 85 (2022), 18. https://doi.org/10.1007/s00285-022-01785-5 doi: 10.1007/s00285-022-01785-5
    [39] L. Cai, S. Ai, G. Fan, Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes, Math. Biosci. Eng., 15 (2018), 1181–1202. https://doi.org/10.3934/mbe.2018054 doi: 10.3934/mbe.2018054
    [40] M. Huang, L. Hu, Modeling the suppression dynamics of Aedes mosquitoes with mating inhomogeneity, J. Biol. Dyn., 14 (2020), 656–678. https://doi.org/10.1080/17513758.2020.1799083 doi: 10.1080/17513758.2020.1799083
    [41] M. Huang, S. Liu, X. Song, Study of a delayed mosquito population suppression model with stage and sex structure, J. Appl. Math. Comput., 69 (2022), 89–111. https://doi.org/10.1007/s12190-022-01735-w doi: 10.1007/s12190-022-01735-w
    [42] Z. Zhu, X. He, Rich and complex dynamics of a time-switched differential equation model for wild mosquito population suppression with Ricker-type density-dependent survival probability, AIMS Math., 8 (2023), 28670–28689. https://doi.org/10.3934/math.20231467 doi: 10.3934/math.20231467
    [43] J. So, J. Yu, Global attractivity and uniform persistence in Nicholson's blowflies, Differ. Equations Dyn. Syst., 2 (1994), 11–18. https://doi.org/10.1007/BF02662882 doi: 10.1007/BF02662882
    [44] M. R. S. Kulenović, G. Ladas, Y. Sficas, Global attractivity in Nicholson's blowflies, Appl. Anal., 43 (1992), 109–124. https://doi.org/10.1080/00036819208840055 doi: 10.1080/00036819208840055
    [45] N. Becker, D. Petrić, M. Zgomba, C. Boase, M. Madon, C. Dahl, et al., Mosquitoes and Their Control, Spring-Verlag Berlin Heidelberg, 2010. Available at: https://doi.org/10.1007/978-3-540-92874-4.
    [46] H. Shu, L. Wang, J. Wu, Global dynamics of Nicholson's blowflies equation revisited: onset and termination of nonlinear oscillations, J. Differ. Equations, 255 (2013), 2565–2586. https://doi.org/10.1016/j.jde.2013.06.020 doi: 10.1016/j.jde.2013.06.020
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1110) PDF downloads(73) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog