We consider a quasi-one-dimensional Poisson-Nernst-Planck model with two cations having the same valances and one anion. Bikerman's local hard-sphere potential is included to account for ion size effects. Under some further restrictions on the boundary conditions of the two cations, we obtain approximations of the I-V (current-voltage) relations by treating the ion sizes as small parameters. Critical potentials are identified, which play critical roles in characterizing finite ion size effects on ionic flows. Nonlinear interplays between system parameters, such as boundary concentrations and diffusion coefficients, are analyzed. To provide more intuitive illustrations of our analytical results and better understanding of the dynamics of ionic flows through membrane channels, numerical simulations are performed.
Citation: Yiwei Wang, Mingji Zhang. Finite ion size effects on I-V relations via Poisson-Nernst-Planck systems with two cations: A case study[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 1899-1916. doi: 10.3934/mbe.2024084
We consider a quasi-one-dimensional Poisson-Nernst-Planck model with two cations having the same valances and one anion. Bikerman's local hard-sphere potential is included to account for ion size effects. Under some further restrictions on the boundary conditions of the two cations, we obtain approximations of the I-V (current-voltage) relations by treating the ion sizes as small parameters. Critical potentials are identified, which play critical roles in characterizing finite ion size effects on ionic flows. Nonlinear interplays between system parameters, such as boundary concentrations and diffusion coefficients, are analyzed. To provide more intuitive illustrations of our analytical results and better understanding of the dynamics of ionic flows through membrane channels, numerical simulations are performed.
[1] | B. Eisenberg, Crowded charges in ion channels, in Advances in Chemical Physics; Rice, S. A. Ed.; John Wiley & Sons: Hoboken, NJ, USA, (2011), 77–223. https://doi.org/10.1002/SERIES2007 |
[2] | J. Griffiths, C. Sansom, The Transporter Facts Book, Academic Press, 1997. |
[3] | F. Helfferich, Ion Exchange, McMgraw Hill, 1995. |
[4] | B. Hille, Textbook of Physiology, Saunders, 1989. |
[5] | D. Gillespie, Energetics of divalent selectivity in a calcium channel: the Ryanodine receptor case study, Biophys. J., 94 (2008), 1169–1184. https://doi.org/10.1529/biophysj.107.116798 doi: 10.1529/biophysj.107.116798 |
[6] | P. W. Bates, Y. Jia, G. Lin, H. Lu, M. Zhang, Individual flux study via steady-state Poisson-Nernst-Planck systems: Effects from boundary conditions, SIAM J. Appl. Dyn. Syst., 16 (2017), 410–430. https://doi.org/10.1137/16M1071523 doi: 10.1137/16M1071523 |
[7] | S. Ji, W. Liu, M. Zhang, Effects of (small) permanent charges and channel geometry on ionic flows via classical Poisson-Nernst-Planck models, SIAM J. Appl. Math., 75 (2015), 114–135. https://doi.org/10.1137/140992527 doi: 10.1137/140992527 |
[8] | P. W. Bates, J. Chen, M. Zhang, Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations, Math. Biosci. Eng., 17 (2020), 3736–3766. https://doi.org/10.3934/mbe.2020210 doi: 10.3934/mbe.2020210 |
[9] | B. Eisenberg, W. Liu, Poisson-Nernst-Planck systems for ion channels with permanent charges, SIAM J. Math. Anal., 38 (2007), 1932–1966. https://doi.org/10.1137/060657480 doi: 10.1137/060657480 |
[10] | B. Eisenberg, W. Liu, H. Xu, Reversal charge and reversal potential: case studies via classical Poisson-Nernst-Planck models, Nonlinearity, 28 (2015), 103–128. https://doi.org/10.1088/0951-7715/28/1/103 doi: 10.1088/0951-7715/28/1/103 |
[11] | S. Ji, W. Liu, Flux ratios and channel structures, J. Dyn. Differ. Equations, 31 (2019), 1141–1183. https://doi.org/10.1007/s10884-017-9607-1 doi: 10.1007/s10884-017-9607-1 |
[12] | G. Lin, W. Liu, Y. Yi, M. Zhang, Poisson-Nernst-Planck systems for ion flow with density functional theory for local hard-sphere potential, SIAM J. Appl. Dyn. Syst., 12 (2013), 1613–1648. |
[13] | W. Liu, Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems, SIAM J. Appl. Math., 65 (2005), 754–766. https://doi.org/10.1137/S0036139903420931 doi: 10.1137/S0036139903420931 |
[14] | W. Liu, One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species, J. Differ. Equations, 246 (2009), 428–451. https://doi.org/10.1016/j.jde.2008.09.010 doi: 10.1016/j.jde.2008.09.010 |
[15] | W. Liu, H. Xu, A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow, J. Differ. Equations, 258 (2015), 1192–1228. https://doi.org/10.1016/j.jde.2014.10.015 doi: 10.1016/j.jde.2014.10.015 |
[16] | J. K. Park, J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Mathematical study, SIAM J. Appl. Math., 57 (1997), 609–630. https://doi.org/10.1137/S0036139995279809 doi: 10.1137/S0036139995279809 |
[17] | Z. Wen, L. Zhang, M. Zhang, Dynamics of classical Poisson-Nernst-Planck systems with multiple cations and boundary layers, J. Dyn. Differ. Equations, 33 (2021), 211–234. https://doi.org/10.1007/s10884-020-09861-4 doi: 10.1007/s10884-020-09861-4 |
[18] | L. Zhang, B. Eisenberg, W. Liu, An effect of large permanent charge: Decreasing flux with increasing transmembrane potential, Eur. Phys. J. Spec. Top., 227 (2019), 2575–2601. https://doi.org/10.1140/epjst/e2019-700134-7 doi: 10.1140/epjst/e2019-700134-7 |
[19] | B. Eisenberg, Ion channels as devices, J. Comput. Electron., 2 (2003), 245–249. https://doi.org/10.1023/B:JCEL.0000011432.03832.22 doi: 10.1023/B:JCEL.0000011432.03832.22 |
[20] | B. Eisenberg, Proteins, channels, and crowded ions, Biophys. Chem., 100 (2003), 507–517. |
[21] | R. S. Eisenberg, Channels as enzymes, J. Membr. Biol., 115 (1990), 1–12. https://doi.org/10.1007/BF01869101 doi: 10.1007/BF01869101 |
[22] | R. S. Eisenberg, Atomic biology, electrostatics and ionic channels, in New Developments and Theoretical Studies of Proteins, R. Elber, Editor, World Scientific, Philadelphia, (1996), 269–357. |
[23] | D. Gillespie, R. S. Eisenberg, Physical descriptions of experimental selectivity measurements in ion channels, Eur. Biophys. J., 31 (2002), 454–466. https://doi.org/10.1007/s00249-002-0239-x doi: 10.1007/s00249-002-0239-x |
[24] | D. Gillespie, W. Nonner, R. S. Eisenberg, Crowded charge in biological ion channels, Nanotech, 3 (2003), 435–438. |
[25] | W. Im, B. Roux, Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory, J. Mol. Biol., 322 (2002), 851–869. https://doi.org/10.1016/S0022-2836(02)00778-7 doi: 10.1016/S0022-2836(02)00778-7 |
[26] | B. Roux, T. W. Allen, S. Berneche, W. Im, Theoretical and computational models of biological ion channels, Q. Rev. Biophys., 37 (2004), 15–103. https://doi.org/10.1017/S0033583504003968 doi: 10.1017/S0033583504003968 |
[27] | V. Barcilon, Ion flow through narrow membrane channels: Part Ⅰ, SIAM J. Appl. Math., 52 (1992), 1391–1404. https://doi.org/10.1137/0152080 doi: 10.1137/0152080 |
[28] | Y. Hyon, B. Eisenberg, C. Liu, A mathematical model for the hard sphere repulsion in ionic solutions, Commun. Math. Sci., 9 (2010), 459–475. https://doi.org/10.4310/CMS.2011.v9.n2.a5 doi: 10.4310/CMS.2011.v9.n2.a5 |
[29] | Y. Hyon, J. Fonseca, B. Eisenberg, C. Liu, Energy variational approach to study charge inversion (layering) near charged walls, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2725–2743. https://doi.org/10.3934/dcdsb.2012.17.2725 doi: 10.3934/dcdsb.2012.17.2725 |
[30] | Y. Hyon, C. Liu, B. Eisenberg, PNP equations with steric effects: a model of ion flow through channels, J. Phys. Chem. B, 116 (2012), 11422–11441. https://doi.org/10.1021/jp305273n doi: 10.1021/jp305273n |
[31] | Z. Schuss, B. Nadler, R. S. Eisenberg, Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model, Phys. Rev. E, 64 (2001), 1–14. https://doi.org/10.1103/PhysRevE.64.036116 doi: 10.1103/PhysRevE.64.036116 |
[32] | N. Abaid, R. S. Eisenberg, W. Liu, Asymptotic expansions of I-V relations via a Poisson-Nernst-Planck system, SIAM J. Appl. Dyn. Syst., 7 (2008), 1507–1526. https://doi.org/10.1137/070691322 doi: 10.1137/070691322 |
[33] | V. Barcilon, D. P. Chen, R. S. Eisenberg, Ion flow through narrow membrane channels: Part Ⅱ, SIAM J. Appl. Math., 52 (1992), 1405–1425. https://doi.org/10.1137/0152081 doi: 10.1137/0152081 |
[34] | V. Barcilon, D. P. Chen, R. S. Eisenberg, J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study, SIAM J. Appl. Math., 57 (1997), 631–648. https://doi.org/10.1137/S0036139995312149 doi: 10.1137/S0036139995312149 |
[35] | C. C. Lee, H. Lee, Y. Hyon, T. C. Lin, C. Liu, New Poisson-Boltzmann type equations: one-dimensional solutions, Nonlinearity, 24 (2011), 431–458. https://doi.org/10.1088/0951-7715/24/2/004 doi: 10.1088/0951-7715/24/2/004 |
[36] | W. Liu, A flux ratio and a universal property of permanent charges effects on fluxes, Comput. Math. Biophys., 6 (2018), 28–40. https://doi.org/10.1515/cmb-2018-0003 doi: 10.1515/cmb-2018-0003 |
[37] | A. Singer, J. Norbury, A Poisson-Nernst-Planck model for biological ion channels–an asymptotic analysis in a three-dimensional narrow funnel, SIAM J. Appl. Math., 70 (2009), 949–968. https://doi.org/10.1137/070687037 doi: 10.1137/070687037 |
[38] | A. Singer, D. Gillespie, J. Norbury, R. S. Eisenberg, Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system: applications to ion channels, Eur. J. Appl. Math., 19 (2008), 541–560. https://doi.org/10.1017/S0956792508007596 doi: 10.1017/S0956792508007596 |
[39] | X. S. Wang, D. He, J. Wylie, H. Huang, Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems, Phys. Rev. E, 89 (2014), 022722. https://doi.org/10.1103/PhysRevE.89.022722 doi: 10.1103/PhysRevE.89.022722 |
[40] | M. Zhang, Asymptotic expansions and numerical simulations of I-V relations via a steady-state Poisson-Nernst-Planck system, Rocky Mountain J. Math., 45 (2015), 1681–1708. https://doi.org/10.1216/RMJ-2015-45-5-1681 doi: 10.1216/RMJ-2015-45-5-1681 |
[41] | S. Ji, W. Liu, Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I-V relations and critical potentials. Part Ⅰ: Analysis, J. Dyn. Differ. Equations, 24 (2012), 955–983. https://doi.org/10.1007/s10884-012-9278-x doi: 10.1007/s10884-012-9278-x |
[42] | W. Liu, X. Tu, M. Zhang, Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I-V relations and critical potentials. Part Ⅱ: Numerics, J. Dyn. Differ. Equations, 24 (2012), 985–1004. https://doi.org/10.1007/s10884-012-9278-x doi: 10.1007/s10884-012-9278-x |
[43] | P. M. Biesheuvel, Two-fluid model for the simultaneous flow of colloids and fluids in porous media, J. Colloid Interface Sci., 355 (2011), 389–395. https://doi.org/10.1016/j.jcis.2010.12.006 doi: 10.1016/j.jcis.2010.12.006 |
[44] | B. Eisenberg, Y. Hyon, C. Liu, Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids, J. Chem. Phys., 133 (2010), 104104. https://doi.org/10.1063/1.3476262 doi: 10.1063/1.3476262 |
[45] | J. C. Fair, J. F. Osterle, Reverse Electrodialysis in charged capillary membranes, J. Chem. Phys., 54 (1971), 3307–3316. https://doi.org/10.1063/1.1675344 doi: 10.1063/1.1675344 |
[46] | R. J. Gross, J. F. Osterle, Membrane transport characteristics of ultra fine capillary, J. Chem. Phys., 49 (1968), 228–234. https://doi.org/10.1063/1.1669814 doi: 10.1063/1.1669814 |
[47] | V. Sasidhar, E. Ruckenstein, Electrolyte osmosis through capillaries, J. Colloid Interface Sci., 82 (1981), 439–457. https://doi.org/10.1016/0021-9797(81)90386-6 doi: 10.1016/0021-9797(81)90386-6 |
[48] | G. Wei, Differential geometry based multi-scale models, Bull. Math. Biol., 72 (2010), 1562–1622. https://doi.org/10.1007/s11538-010-9511-x doi: 10.1007/s11538-010-9511-x |
[49] | G. W. Wei, Q. Zheng, Z. Chen, K. Xia, Variational multiscale models for charge transport, SIAM Rev., 54 (2012), 699–754. https://doi.org/10.1137/110845690 doi: 10.1137/110845690 |
[50] | N. Gavish, C. Liu, B. Eisenberg, Do bistable steric Poisson-Nernst-Planck models describe single-channel gating, J. Phys. Chem. B, 122 (2018), 5183–5192. https://doi.org/10.1021/acs.jpcb.8b00854 doi: 10.1021/acs.jpcb.8b00854 |
[51] | Y. Qian, C. Wang, S. Zhou, A positive and energy stable numerical scheme for the Poisson-CNernst-CPlanck-CCahn-CHilliard equations with steric interactions, J. Comput. Phys., 426 (2021), 109908. https://doi.org/10.1016/j.jcp.2020.109908 doi: 10.1016/j.jcp.2020.109908 |
[52] | W. Nonner, R. S. Eisenberg, Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type Calcium channels, Biophys. J., 75 (1998), 1287–1305. https://doi.org/10.1016/S0006-3495(98)74048-2 doi: 10.1016/S0006-3495(98)74048-2 |
[53] | W. Liu, B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dyn. Differ. Equations, 22 (2010), 413–437. https://doi.org/10.1007/s10884-010-9186-x doi: 10.1007/s10884-010-9186-x |
[54] | B. Li, Minimizations of electrostatic free energy and the Poisson-Boltzmann equation for molecular solvation with implicit solvent, SIAM J. Math. Anal. 40 (2009), 2536–2566. https://doi.org/10.1137/100796625 doi: 10.1137/100796625 |
[55] | B. Li, Continuum electrostatics for ionic solutions with non-uniform ionic sizes, Nonlinearity, 22 (2009), 811–833. https://doi.org/10.1088/0951-7715/22/4/007 doi: 10.1088/0951-7715/22/4/007 |
[56] | J. J. Bikerman, Structure and capacity of the electrical double layer, Philos. Mag., 33 (1942), 384. https://doi.org/10.1080/14786444208520813 doi: 10.1080/14786444208520813 |
[57] | D. Gillespie, A Singular Perturbation Analysis of the Poisson-Nernst-Planck System: Applications to Ionic Channels, Rush University at Chicago, 1999. |
[58] | C. Liu, C. Wang, S. M. Wise, X. Yue, S. Zhou, A second order accurate, positivity preserving numerical method for the Poisson-Nernst-Planck system and its convergence analysis, J. Sci. Comput., 97 (2023), 23. https://doi.org/10.1007/s10915-023-02345-9 doi: 10.1007/s10915-023-02345-9 |