Research article Special Issues

Global existence and blow up of solutions for a class of coupled parabolic systems with logarithmic nonlinearity


  • Received: 21 April 2022 Revised: 27 May 2022 Accepted: 06 June 2022 Published: 13 June 2022
  • According to the difference of the initial energy, we consider three cases about the global existence and blow-up of the solutions for a class of coupled parabolic systems with logarithmic nonlinearity. The three cases are the low initial energy, critical initial energy and high initial energy, respectively. For the low initial energy and critical initial energy $ J(u_0, v_0)\leq d $, we prove the existence of global solutions with $ I(u_0, v_0)\geq 0 $ and blow up of solutions at finite time $ T < +\infty $ with $ I(u_0, v_0) < 0 $, where $ I $ is Nehari functional. On the other hand, we give sufficient conditions for global existence and blow up of solutions in the case of high initial energy $ J(u_0, v_0) > d $.

    Citation: Qigang Deng, Fugeng Zeng, Dongxiu Wang. Global existence and blow up of solutions for a class of coupled parabolic systems with logarithmic nonlinearity[J]. Mathematical Biosciences and Engineering, 2022, 19(8): 8580-8600. doi: 10.3934/mbe.2022398

    Related Papers:

  • According to the difference of the initial energy, we consider three cases about the global existence and blow-up of the solutions for a class of coupled parabolic systems with logarithmic nonlinearity. The three cases are the low initial energy, critical initial energy and high initial energy, respectively. For the low initial energy and critical initial energy $ J(u_0, v_0)\leq d $, we prove the existence of global solutions with $ I(u_0, v_0)\geq 0 $ and blow up of solutions at finite time $ T < +\infty $ with $ I(u_0, v_0) < 0 $, where $ I $ is Nehari functional. On the other hand, we give sufficient conditions for global existence and blow up of solutions in the case of high initial energy $ J(u_0, v_0) > d $.



    加载中


    [1] J. Bebernes, D. Eberly, Mathematical Problems from Combustion Theory, Springer-Verlag, New York, 1989.
    [2] H. W. Chen, Global existence and blow-up for a nonlinear reaction-diffusion system, J. Math. Anal. Appl, 212 (1997), 481–492. https://doi.org/10.1006/jmaa.1997.5522 doi: 10.1006/jmaa.1997.5522
    [3] M. Escobedo, M. A. Herrero, A semilinear parabolic system in a bounded domain, Ann. Mat. Pur. Appl., 165 (1993), 315–336. https://doi.org/10.1007/bf01765854 doi: 10.1007/bf01765854
    [4] S. Kim, K. A. Lee, Properties of generalized degenerate parabolic systems, Adv. Nonlinear Anal., 11 (2022), 1048–1084. https://doi.org/10.1515/anona-2022-0236 doi: 10.1515/anona-2022-0236
    [5] H. Chen, H. Xu, Global existence, exponential decay and blow-up in finite time for a class of finitely degenerate semilinear parabolic equations, Acta. Math. Sci., 39 (2019), 1290–1308. https://doi.org/10.1007/s10473-019-0508-8 doi: 10.1007/s10473-019-0508-8
    [6] Y. Niu, Global existence and nonexistence of generalized coupled reaction-diffusion systems, Math. Method. Appl. Sci., 42 (2019), 2190–2220. https://doi.org/10.1002/mma.5480 doi: 10.1002/mma.5480
    [7] H. Ma, F. Meng, X. Wang, High initial energy finite time blowup with upper bound of blowup time of solution to semilinear parabolic equations, Nonlinear Anal., 196 (2020), 111810. https://doi.org/10.1016/j.na.2020.111810 doi: 10.1016/j.na.2020.111810
    [8] Y. Chen, J. Han, Global existence and nonexistence for a class of finitely degenerate coupled parabolic systems with high initial energy level, Discrete Cont. Dyn-a., 14 (2021), 4179–4200. https://doi.org/10.3934/dcdss.2021109 doi: 10.3934/dcdss.2021109
    [9] R. Xu, W. Lian, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613–632. https://doi.org/10.1515/anona-2020-0016 doi: 10.1515/anona-2020-0016
    [10] H. Chen, S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differ. Equation, 258 (2015), 4424–4442. https://doi.org/10.1016/j.jde.2015.01.038 doi: 10.1016/j.jde.2015.01.038
    [11] X. Dai, J. Han, Q. Lin, X. Tian, Anomalous pseudo-parabolic Kirchhoff-type dynamical model, Adv. Nonlinear Anal., 11 (2022), 503–534. https://doi.org/10.1515/anona-2021-0207 doi: 10.1515/anona-2021-0207
    [12] M. Ebenbeck, K. F. Lam, Weak and stationary solutions to a Cahn-Hilliard-Brinkman model with singular potentials and source terms, Adv. Nonlinear Anal., 10 (2021), 24–65. https://doi.org/10.1515/anona-2020-0100 doi: 10.1515/anona-2020-0100
    [13] R. Xu, X. Wang, Y. Yang, Blowup and blowup time for a class of semilinear pseudo-parabolic equations with high initial energy, Appl. Math. Lett., 83 (2018), 176–181. https://doi.org/10.1016/j.aml.2018.03.033 doi: 10.1016/j.aml.2018.03.033
    [14] W. Lian, J. Wang, R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differ. Equation, 269 (2020), 4914–4959. https://doi.org/10.1016/j.jde.2020.03.047 doi: 10.1016/j.jde.2020.03.047
    [15] V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii, A parabolic system of quasilinear equations I, Differ. Uravn., 19 (1983), 2123–2140.
    [16] V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii, A parabolic system of quasilinear equations Ⅱ, Differ. Uravn., 19 (1985), 1544–1559.
    [17] M. Escobedo, M. A. Herrero, A semilinear parabolic system in a bounded domain, Ann. Mat. Pur. Appl., 165 (1993), 315–336. https://doi.org/10.1007/BF01765854 doi: 10.1007/BF01765854
    [18] M. Escobedo, M. A. Herrero, Boundedness and blow up for a semilinear reaction-diffusion system, J. Differ. Equation, 89 (1991), 176–202. https://doi.org/10.1016/0022-0396(91)90118-S doi: 10.1016/0022-0396(91)90118-S
    [19] S. Sato, Life span of solutions with large initial data for a semilinear parabolic system, J. Math. Anal. Appl., 380 (2011), 632–641. https://doi.org/10.1016/j.jmaa.2011.03.033 doi: 10.1016/j.jmaa.2011.03.033
    [20] T. A. Kwembe, Z. Zhang, A semilinear parabolic system with generalized Wentzell boundary condition, Nonlinear Anal., 75 (2012), 3078–3091. https://doi.org/ 10.1016/j.na.2011.12.005 doi: 10.1016/j.na.2011.12.005
    [21] R. Xu, W. Lian, Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321–356. https://doi.org/10.1007/s11425-017-9280-x doi: 10.1007/s11425-017-9280-x
    [22] Y. C. Liu, J. S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665–2687. https://doi.org/10.1016/j.na.2005.09.011 doi: 10.1016/j.na.2005.09.011
    [23] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_tt = Au+F(u)$, T. Am. Math. Soc., 192 (1974), 1–21. https://doi.org/10.1090/S0002-9947-1974-0344697-2 doi: 10.1090/S0002-9947-1974-0344697-2
    [24] F. Gazzola, T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differ. Integral. Equation, 18 (2005), 961–990. https://doi.org/die/1356060117
    [25] R. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. https://doi.org/10.1016/j.jfa.2013.03.010 doi: 10.1016/j.jfa.2013.03.010
    [26] Y. He, H. Gao, H. Wang, Blow-up and decay for a class of pseudo-parabolic p-Laplacian equation with logarithmic nonlinearity, Comput. Math. Appl., 75 (2018), 459–469. https://doi.org/10.1016/j.camwa.2017.09.027 doi: 10.1016/j.camwa.2017.09.027
    [27] J. Simon, Compact sets in the space $L^p (O, T;B)$, Ann. Mat. Pur. Appl., 146 (1986), 65–96. https://doi.org/10.1007/BF01762360 doi: 10.1007/BF01762360
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1883) PDF downloads(107) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog