This paper deals with a two-species chemotaxis-competition system involving singular sensitivity and indirect signal production:
$ \begin{equation*} \begin{cases} u_{t} = \nabla\cdot(D(u)\nabla u)-\chi_1\nabla\cdot(\frac{u}{z^{k}}\nabla z)+\mu_1 u(1-u-a_1v), &x\in\Omega,\ t>0,\\ v_{t} = \nabla\cdot(D(v)\nabla v)-\chi_2\nabla\cdot(\frac{v}{z^{k}}\nabla z)+\mu_2 v(1-v-a_2 u), &x\in\Omega,\ t>0,\\ w_{t} = \Delta w-w+u+v,&x\in\Omega,\ t>0,\\ z_{t} = \Delta z-z+w,&x\in\Omega,\ t>0,\\ \end{cases} \end{equation*} $
where $ \Omega\subset R^{n} $ is a convex smooth bounded domain with homogeneous Neumann boundary conditions. The diffusion functions $ D(u), D(v) $ are assumed to fulfill $ D(u)\geq(u+1)^{\theta_1} $ and $ D(v)\geq(v+1)^{\theta_2} $ with $ \theta_1, \theta_2 > 0 $, respectively. The parameters are $ k\in (0, \frac{1}{2})\cup (\frac{1}{2}, 1] $, $ \chi_ {i} > 0, (i = 1, 2) $. Additionally, $ \mu_{i} $ should be large enough positive constants, and $ a_i $ should be positive constants which are less than the quantities associated with $ |\Omega| $. Through constructing some appropriate Lyapunov functionals, we can find the lower bounds of $ \int_{\Omega}u $ and $ \int_{\Omega}v $. This suggests that any occurrence of extinction, if it happens, will be localized spatially rather than affecting the population as a whole. Moreover, we demonstrate that the solution remains globally bounded if $ \min\{\theta_1, \theta_2\} > 1-\frac{2}{n+1} $ for $ n\geq2. $
Citation: Dongxiu Wang, Fugeng Zeng, Lei Huang, Luxu Zhou. Persistence and boundedness in a two-species chemotaxis-competition system with singular sensitivity and indirect signal production[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 21382-21406. doi: 10.3934/mbe.2023946
This paper deals with a two-species chemotaxis-competition system involving singular sensitivity and indirect signal production:
$ \begin{equation*} \begin{cases} u_{t} = \nabla\cdot(D(u)\nabla u)-\chi_1\nabla\cdot(\frac{u}{z^{k}}\nabla z)+\mu_1 u(1-u-a_1v), &x\in\Omega,\ t>0,\\ v_{t} = \nabla\cdot(D(v)\nabla v)-\chi_2\nabla\cdot(\frac{v}{z^{k}}\nabla z)+\mu_2 v(1-v-a_2 u), &x\in\Omega,\ t>0,\\ w_{t} = \Delta w-w+u+v,&x\in\Omega,\ t>0,\\ z_{t} = \Delta z-z+w,&x\in\Omega,\ t>0,\\ \end{cases} \end{equation*} $
where $ \Omega\subset R^{n} $ is a convex smooth bounded domain with homogeneous Neumann boundary conditions. The diffusion functions $ D(u), D(v) $ are assumed to fulfill $ D(u)\geq(u+1)^{\theta_1} $ and $ D(v)\geq(v+1)^{\theta_2} $ with $ \theta_1, \theta_2 > 0 $, respectively. The parameters are $ k\in (0, \frac{1}{2})\cup (\frac{1}{2}, 1] $, $ \chi_ {i} > 0, (i = 1, 2) $. Additionally, $ \mu_{i} $ should be large enough positive constants, and $ a_i $ should be positive constants which are less than the quantities associated with $ |\Omega| $. Through constructing some appropriate Lyapunov functionals, we can find the lower bounds of $ \int_{\Omega}u $ and $ \int_{\Omega}v $. This suggests that any occurrence of extinction, if it happens, will be localized spatially rather than affecting the population as a whole. Moreover, we demonstrate that the solution remains globally bounded if $ \min\{\theta_1, \theta_2\} > 1-\frac{2}{n+1} $ for $ n\geq2. $
[1] | T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183–217. https://doi.org/10.1007/s00285-008-0201-3 doi: 10.1007/s00285-008-0201-3 |
[2] | E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5 |
[3] | D. Horstmann, G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., 12 (2001), 159–177. https://doi.org/10.1017/S0956792501004363 doi: 10.1017/S0956792501004363 |
[4] | M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Part. Differ. Equation, 35 (2010), 1516–1537. https://doi.org/10.1080/03605300903473426 doi: 10.1080/03605300903473426 |
[5] | J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differ. Equation, 258 (2015), 1158–1191. https://doi.org/10.1016/j.jde.2014.10.016 doi: 10.1016/j.jde.2014.10.016 |
[6] | T. Xiang, How strong a logistic damping can prevent blow-up for the minimal Keller-Segel chemotaxis system?, J. Math. Anal. Appl., 459 (2018), 1172–1200. https://doi.org/10.1016/j.jmaa.2017.11.022 doi: 10.1016/j.jmaa.2017.11.022 |
[7] | Y. S. Tao, M. Winkler, Persistence of mass in a chemotaxis system with logistic source, J. Differ. Equation, 259 (2015), 6142–6161. https://doi.org/10.1016/j.jde.2015.07.019 doi: 10.1016/j.jde.2015.07.019 |
[8] | M. Ding, W. Wang, S. Zhou, Global existence of solutions to a fully parabolic chemotaxis system with singular sensitivity and logistic source, Nonlinear Anal. Real, 49 (2019), 286–311. https://doi.org/10.1016/j.nonrwa.2019.03.009 doi: 10.1016/j.nonrwa.2019.03.009 |
[9] | J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. B, 20 (2015), 1499–1527. https://doi.org/10.3934/dcdsb.2015.20.1499 doi: 10.3934/dcdsb.2015.20.1499 |
[10] | N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763. https://doi.org/10.1142/S021820251550044X doi: 10.1142/S021820251550044X |
[11] | K. J. Painter, T. Hillen, Spatio-temporal chaos in a chemotaxismodel, Phys. D, 240 (2011), 363–375. https://doi.org/10.1016/j.physd.2010.09.011 doi: 10.1016/j.physd.2010.09.011 |
[12] | S. Strohm, R. C. Tyson, J. A. Powell, Pattern formation in a model for mountain pine beetle dispersal: Linking model predictions to data, Bull. Math. Biol., 75 (2013), 1778–1797. https://doi.org/10.1007/s11538-013-9868-8 doi: 10.1007/s11538-013-9868-8 |
[13] | B. Hu, Y. Tao, To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Mod. Meth. Appl. S, 26 (2016), 2111–2128. https://doi.org/10.1142/S0218202516400091 doi: 10.1142/S0218202516400091 |
[14] | J. Xing, P. Zheng, Y. Xiang, H. Wang, On a fully parabolic singular chemotaxis-(growth) system with indirect signal production or consumption, Z. Angew. Math. Phys., 72 (2021), 105. https://doi.org/10.1007/s00033-021-01534-6 doi: 10.1007/s00033-021-01534-6 |
[15] | C. Liu, G. Ren, B. Liu, Boundedness in a higher-dimensional singular chemotaxis-growth system with indirect signal production, Z. Angew. Math. Phys., 74 (2023), 119. https://doi.org/10.1007/s00033-023-02017-6 doi: 10.1007/s00033-023-02017-6 |
[16] | T. Black, J. Lankeit, M. Mizukami, On the weakly competitive case in a two-species chemotaxis model, IMA J. Appl. Math., 81 (2016), 860–876. https://doi.org/10.1093/imamat/hxw036 doi: 10.1093/imamat/hxw036 |
[17] | J. I. Tello, M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413–1425. https://doi.org/10.1088/0951-7715/25/5/1413 doi: 10.1088/0951-7715/25/5/1413 |
[18] | M. Mizukami, Y. Tanaka, Finite-time blow-up in a two-species chemotaxis-competition model with single production, Arch. Math., 59 (2023), 215–222. |
[19] | M. Mizukami, Y. Tanaka, T. Yokota, Can chemotactic effects lead to blow-up or not in two-species chemotaxis-competition models?, Z. Angew. Math. Phys., 73 (2022), 239. https://doi.org/10.1007/s00033-022-01878-7 doi: 10.1007/s00033-022-01878-7 |
[20] | X. Bai, M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553–583. https://doi.org/10.1512/iumj.2016.65.5776 doi: 10.1512/iumj.2016.65.5776 |
[21] | X. Li, Y. Wang, On a fully parabolic chemotaxis system with Lotka–Volterra competitive kinetics, J. Math. Anal. Appl., 471 (2019), 584–598. https://doi.org/10.1016/j.jmaa.2018.10.093 doi: 10.1016/j.jmaa.2018.10.093 |
[22] | S. Qiu, C. Mu, X. Tu, Global existence and boundedness to a two-species chemotaxis-competition model with singular sensitivity, J. Evol. Equation, 21 (2021), 33–62. https://doi.org/10.1007/s00028-020-00570-5 doi: 10.1007/s00028-020-00570-5 |
[23] | S. Chen, J. Shi, Global dynamics of the diffusive Lotka–Volterra competition model with stage structure, Calculus Var. Partial Differ. Equations, 59 (2020), 33. https://doi.org/10.1007/s00526-019-1693-y doi: 10.1007/s00526-019-1693-y |
[24] | Y. Xiang, P. Zheng, On a two-species chemotaxis-competition system with indirect signal consumption, Z. Angew. Math. Phys., 73 (2022), 50. https://doi.org/10.1007/s00033-022-01680-5 doi: 10.1007/s00033-022-01680-5 |
[25] | Y. Xiang, P. Zheng, J. Xing, Boundedness and stabilization in a two-species chemotaxis-competition system with indirect signal production, J. Math. Anal. Appl., 507 (2022), 125825. https://doi.org/10.1016/j.jmaa.2021.125825 doi: 10.1016/j.jmaa.2021.125825 |
[26] | X. Tu, C. Mu, S. Qiu, Boundedness and convergence of constant equilibria in a two-species chemotaxis-competitionsystem with loop, Nonlinear Anal., 198 (2020), 111923. https://doi.org/10.1016/j.na.2020.111923 doi: 10.1016/j.na.2020.111923 |
[27] | D. Wang, F. Zeng, M. Jiang, Global existence and boundedness of solutions to a two-species chemotaxis-competition system with singular sensitivity and indirect signal production, Z. Angew. Math. Phys., 74 (2023), 33. https://doi.org/10.1007/s00033-022-01921-7 doi: 10.1007/s00033-022-01921-7 |
[28] | T. Black, Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals, Discrete Contin. Dyn. B, 22 (2017) 1253–1272. https://doi.org/10.3934/dcdsb.2017061 |
[29] | L. Wang, C. Mu, A new result for boundedness and stabilization in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 4585–4601. https://doi.org/10.3934/dcdsb.2020114 doi: 10.3934/dcdsb.2020114 |
[30] | X. Tu, C. Mu, P. Zheng, K. Lin, Global dynamics in a two-species chemotaxis-competition system with two signals, Discrete Contin. Dyn. A, 38 (2018), 3617–3636. https://doi.org/10.3934/dcds.2018156 doi: 10.3934/dcds.2018156 |
[31] | M. Winkler, Global classical solvability and generic infinite-time blow-up in quasilinear Keller–Segel systems with bounded sensitivities, J. Differ. Equaiton, 266 (2019), 8034–8066. https://doi.org/10.1016/j.jde.2018.12.019 doi: 10.1016/j.jde.2018.12.019 |
[32] | Y. Tao, M. Winkler, A chemotaxis-haptotaxis model: the roles of nonlinear diffusion and logistic source, SIAM. J. Math. Anal., 43 (2011), 685–704. https://doi.org/10.1137/100802943 doi: 10.1137/100802943 |
[33] | J. Zhao, A quasilinear parabolic-parabolic chemotaxis model with logistic source and singular sensitivity, Discrete Contin. Dyn. Syst. B, 27 (2022), 3487–3513. https://doi.org/10.3934/dcdsb.2021193 doi: 10.3934/dcdsb.2021193 |
[34] | D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equation, 215 (2005), 52–107. https://doi.org/10.1016/j.jde.2004.10.022 doi: 10.1016/j.jde.2004.10.022 |
[35] | E. Lankeit, J. Lankeit, Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption, Nonlinear Anal. Real World Appl., 46 (2019), 421–445. https://doi.org/10.1016/j.nonrwa.2018.09.012 doi: 10.1016/j.nonrwa.2018.09.012 |
[36] | C. Stinner, C. Surulescu, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969–2007. https://doi.org/10.1137/13094058X doi: 10.1137/13094058X |
[37] | Y. Li, J. Lankeit, Boundedness in a chemotaxis–haptotaxis model with nonlinear diffusion, Nonlinearity, 29 (2016), 1564–1595. https://doi.org/10.1088/0951-7715/29/5/1564 doi: 10.1088/0951-7715/29/5/1564 |
[38] | T. Hillen, K. Painter, M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Mod. Meth. Appl. S, 23 (2013), 165–198. https://doi.org/10.1142/S0218202512500480 doi: 10.1142/S0218202512500480 |
[39] | N. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Commun. Part. Differ. Equation, 4 (1979), 827–868. https://doi.org/10.1080/03605307908820113 doi: 10.1080/03605307908820113 |
[40] | T. Xiang, Finite time blow-up in the higher dimensional parabolic-elliptic-ODE minimal chemotaxis-haptotaxis system, J. Differ. Equation, 336 (2022), 44–72. https://doi.org/10.1016/j.jde.2022.07.015 doi: 10.1016/j.jde.2022.07.015 |
[41] | S. Qiu, C. Mu, L. Wang, Boundedness in the higher-dimensional quasilinear chemotaxis-growth system with indirect attractant production, Comput. Math. Appl., 75 (2018), 3213–3223. https://doi.org/10.1016/j.camwa.2018.01.042 doi: 10.1016/j.camwa.2018.01.042 |