
http://www.aimspress.com/journal/mbe

MBE, 20(12): 21382–21406.
DOI: 10.3934/mbe.2023946
Received: 04 August 2023
Revised: 25 October 2023
Accepted: 27 November 2023
Published: 01 December 2023

Research article

Persistence and boundedness in a two-species chemotaxis-competition
system with singular sensitivity and indirect signal production

Dongxiu Wang, Fugeng Zeng*, Lei Huang and Luxu Zhou

School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025,
China

* Correspondence: Email: zengfugeng@foxmail.com.

Abstract: This paper deals with a two-species chemotaxis-competition system involving singular
sensitivity and indirect signal production:

ut = ∇ · (D(u)∇u) − χ1∇ · ( u
zk∇z) + µ1u(1 − u − a1v), x ∈ Ω, t > 0,

vt = ∇ · (D(v)∇v) − χ2∇ · ( v
zk∇z) + µ2v(1 − v − a2u), x ∈ Ω, t > 0,

wt = ∆w − w + u + v, x ∈ Ω, t > 0,
zt = ∆z − z + w, x ∈ Ω, t > 0,

where Ω ⊂ Rn is a convex smooth bounded domain with homogeneous Neumann boundary conditions.
The diffusion functions D(u),D(v) are assumed to fulfill D(u) ≥ (u + 1)θ1 and D(v) ≥ (v + 1)θ2 with
θ1, θ2 > 0, respectively. The parameters are k ∈ (0, 1

2 ) ∪ ( 1
2 , 1], χi > 0, (i = 1, 2). Additionally, µi

should be large enough positive constants, and ai should be positive constants which are less than the
quantities associated with |Ω|. Through constructing some appropriate Lyapunov functionals, we can
find the lower bounds of

∫
Ω

u and
∫
Ω

v. This suggests that any occurrence of extinction, if it happens,
will be localized spatially rather than affecting the population as a whole. Moreover, we demonstrate
that the solution remains globally bounded if min{θ1, θ2} > 1 − 2

n+1 for n ≥ 2.

Keywords: persistence; boundedness; singular sensitivity; chemotaxis-competition system

1. Introduction

Chemotaxis refers to the process by which cells move directionally along a concentration gradients
of chemical stimuli [1]. The classic Keller-Segel model, along with its numerous variations, has
undergone extensive investigations and analyses by numerous researchers following the
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groundbreaking work of Keller and Segel. The mechanisms underlying this model, including aspects
such as cell diffusion, chemotaxis sensitivity, and cell growth and death, have been deeply explored.

The pioneering system for single-species, single-stimulus chemotaxis was as follows:
ut = d1∆u − ∇ · (uχ(v)∇v) + f (u), x ∈ Ω, t > 0,
vt = d2∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν
= ∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

(u, v)(x, 0) = (u0, v0)(x), x ∈ Ω,

(1.1)

where f (u) represents logistic sources. If χ(v) = χ is a positive constant, then d1 = 1, d2 = 1, and
f (u) = 0; this is the most primitive chemotactic model presented by Keller and Segel [2], dating back
to 1970. In this case, the solution of the system (1.1), especially in high dimensional space, may exhibit
a blow-up phenomenon in either finite or infinite time [3]. However, in the event of the logistic source
f (u) = µ0u − µ1u2, Winkler has demonstrated that it possesses globally bounded solutions in high-
dimensional systems for a sufficiently large µ1 > 0 [4]. Additionally, it has a classical solution in three
dimensions for any µ1 > 0, provided that µ0 is not too large [5]. The findings indicate that the blow-up
phenomenon can be effectively mitigated by implementing a suitable logistic source term. Importantly,
these results hold true even when considering the conditions where d1 > 0, d2 > 0 [6]. Additionally,
Tao and Winkler established the mass persistence of system (1.1) by constructing an energy function,
which explains the persistence of the population as a whole, and the fact that any extinction must occur
within a localized spatial region [7]. Apart from that, if χi(w) is a nonlinear chemotaxis sensitivity
function given by χi(v) = χ

v , then it indicates that the sensitivity to chemotaxis is inversely proportional
to the density of the signal function. Furthermore, the global existence and boundedness of classical
solutions have been established in [8], as well as the global existence of weak solutions under various
conditions. For more comprehensive information regarding the qualitative dynamics of system (1.1)
and its variants, please consult [9–11] and the references therein.

In the aforementioned systems, the signal are directly generated by the cells themselves; however,
in realistic situations, signal production may be indirect or multiple by different mechanisms. For
instance, Strohm et al. [12] examined the reproductive and accumulation patterns of mountain pine
beetles in forest habitats, where flying mountain pine beetles were attracted towards signals secreted
by nesting mountain pine beetles, which served as indirect signals. A single-stimulus chemotaxis
system with indirect signal production is presented by the following:

ut = ∆u − ∇ · (uχ(v)∇v) + f (u), x ∈ Ω, t > 0,
vt = ∆v + h(v,w) x ∈ Ω, t > 0,
wt = ε∆w − δw + u, x ∈ Ω, t > 0,
∂u
∂ν
= ∂v

∂ν
= ∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

(u, v,w)(x, 0) = (u0, v0,w0)(x), x ∈ Ω.

(1.2)

Under the conditions f (u) = ru − µu2, χ(v) = χ and ε = 0, Hu et al. [13] investigated the boundedness
and exponential convergence of solutions. For the case where χ(v) = χ

v , ε = 1 and δ = 1, Xing
et al. [14] proved that the solution of the system (1.2) is globally bounded in two dimensions and
converges exponentially to the steady state if h(v,w) = −v + w and f (u) = 0. For the case where
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χ(v) = χ

vk , f (u) = ru− µu2 and ε = δ = 1, [15] obtained the global boundedness of classical solution of
the system (1.2).

On the other hand, there is often an interaction between multiple populations and multiple
chemicals that simultaneously occur in a particular environment, thus resulting in competition among
them. Therefore, we proceed to directly introduce the following chemotaxis system that incorporates
two-species single-stimulus competitive kinetics without indirect signal production:

ut = ∆u − ∇ · (uχ1(w)∇w) + µ1u(1 − u − a1v), x ∈ Ω, t > 0,
vt = ∆v − ∇ · (vχ2(w)∇w) + µ2v(1 − a2u − v), x ∈ Ω, t > 0,
τwt = ∆w − λw + b1u + b2v, x ∈ Ω, t > 0,
∂u
∂ν
= ∂v

∂ν
= ∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

(u, v,w)(x, 0) = (u0, v0,w0)(x), x ∈ Ω,

(1.3)

where λ, ai, bi, µi > 0 for i = 1, 2, τ = 0 or 1. For the case where χi(w) = χi > 0, if τ = 0, the
coexisting equilibrium state for n ≥ 1 can be found in [16]. Tell and Winkler [17] proved the global
asymptotic stability of system (1.3) in high-dimensional scenarios, thus indicating that species groups
can coexist under appropriate conditions. Moreover, some blow-up phenomena of system (1.3) can
be found in [18, 19]. If τ = 1, then the large-time behavior and global existence of the system have
been extensively investigated in numerous studies [20, 21]. For the case where χi(w) = χi

w , Mizukami
obtained the asymptotic stability of system (1.3) if a1, a2 ∈ (0, 1) under n ≥ 2. Qiu et al. demonstrated
in [22] that under appropriate parameter conditions, after substituting wt = ∆w − (αu + βv)w into the
third equation, the system possesses a unique globally uniform bounded solution. Furthermore, related
variations of system (1.3) have been investigated to understand the asymptotic behavior of diffused
Lotka-Volterra competition models. For more details, please refer to [23].

Now we are in the position to introduce the two-species chemotaxis-competition system involving
indirect signal production:

ut = d1∆u − ∇ · (uχ1(z)∇z) + µ1u(1 − u − a1v), x ∈ Ω, t > 0,
vt = d2∆v − ∇ · (vχ2(z)∇z) + µ2v(1 − v − a2u), x ∈ Ω, t > 0,
τwt = ∆w − w + u + v, x ∈ Ω, t > 0,
τzt = ∆z + h(w, z), x ∈ Ω, t > 0,
∂u
∂ν
= ∂v

∂ν
= ∂w

∂ν
= ∂z

∂ν
= 0, x ∈ ∂Ω, t > 0,

(u, v,w, z)(x, 0) = (u0, v0,w0, z0)(x), x ∈ Ω,

(1.4)

where τ can be either 0 or 1. For the case where χi(z) = χi, when h(w, z) = −wz and τ = 1, the
boundedness of solution for µ1, µ2 > 0 and n ≤ 2 is obtained. Furthermore, the asymptotic stabilization
of solutions in two dimensions has been shown if a1, a2 ∈ (0, 1) along with a1 = 1 > a2 > 0 [24].
The boundedness and stabilization of system (1.4) for h(w, z) = −z + w and τ ∈ {0, 1} were derived
in [25]. Tu et al. [26] studied the global boundedness and regularity of the classical solution of the
system, for τ = 1, and the third and fourth equations of the system (1.4) are replaced with wt =

∆w − λ1w + α11u + α12v, zt = ∆z − λ2z + α21u + α22v. For the case where χi(z) = χi
z and τ = 1, if

0 < max{χ1, χ2} <
2
n , n ≥ 2 or χi > 0, n = 2, then system (1.4) exhibits a unique global solution.

Furthermore, if τ = 0, then the boundedness of solution is also established in two-dimensional systems
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[27]. For the latest research on the well-posedness behavior for two-competing-species two-stimuli
chemotaxis models, please refer to the relevant literature [28–30] and their references.

From both mathematical and biological perspectives, it is of great interest to investigate whether
populations persist and remain limited in size. To the best of our knowledge, there are few findings
on the persistence of mass and boundedness in multi-species and multi-chemicals issues, particularly
those involving chemotaxis singular sensitivity functions χi(z) = χi

zk (k > 0). In addition, the nonlinear
diffusion functions D(u),D(v) are expected to prevent blow-up solutions in chemotaxis systems [31,
32]. Consequently, we deal with the following two-species two-chemicals chemotaxis-competition
system involving singular sensitivity and indirect signal production:

ut = ∇ · (D(u)∇u) − χ1∇ · ( u
zk∇z) + µ1u(1 − u − a1v), x ∈ Ω, t > 0,

vt = ∇ · (D(v)∇v) − χ2∇ · ( v
zk∇z) + µ2v(1 − v − a2u), x ∈ Ω, t > 0,

wt = ∆w − w + u + v, x ∈ Ω, t > 0,
zt = ∆z − z + w, x ∈ Ω, t > 0,
∂u
∂ν
= ∂v

∂ν
= ∂w

∂ν
= ∂z

∂ν
= 0, x ∈ ∂Ω, t > 0,

(u, v,w, z)(x, 0) = (u0, v0,w0, z0)(x), x ∈ Ω,

(1.5)

which is associated with smooth boundary ∂Ω in a bounded convex domain Ω ⊂ Rn; the nonlinear
diffusion functions D(u) and D(v) satisfy the following:

D(u),D(v) ∈ C2([0,∞)), (1.6)

D(u) ≥ (u + 1)θ1 , for all u > 0 (1.7)

and
D(v) ≥ (v + 1)θ2 , for all v > 0 (1.8)

with θ1, θ2 > 0. The initial data (u0, v0,w0, z0) satisfy the following:

0 < u0 ∈ C0(Ω̄), 0 < v0 ∈ C0(Ω̄), 0 < w0 ∈ W1,∞(Ω), 0 < z0 ∈ W1,∞(Ω). (1.9)

In this scenario, u and v represent the population densities of two competing species, while w and z
denote the concentrations of chemical substances. Importantly, both biological species from the two
competing populations are attracted to the same chemical signal z. It is worth noting that z is secreted
by w, which in turn is secreted by u and v.

In the current paper, we aim to delve deeper into the fundamental questions mentioned above. The
main results are presented as follows.

Theorem 1.1. (Persistence) Consider that Ω ⊂ Rn(n ≥ 2) is a bounded convex domain with a smooth
boundary. Suppose that D(u) and D(v) satisfy (1.6), (1.7) and (1.8). Let the parameters χi > 0, 0 <

a1 <
|Ω|

m2
, 0 < a2 <

|Ω|

m1
, k ∈ (0, 1

2 ) ∪ ( 1
2 , 1] and µi = µi(χi, k, ai,Ω, u0, v0,w0, z0)(i = 1, 2) be large enough.

If that the initial data (u0, v0,w0, z0) satisfy (1.9) and for any choice of constants Cw,Cz > 0,K > 0 and
S > 0 satisfying ∫

Ω

u0 ≤ m1,

∫
Ω

v0 ≤ m2,

∫
Ω

w2
0 ≤ Cw,

∫
Ω

z2
0 ≤ Cz,
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and ∫
Ω

ln u0 ≥ −K,
∫
Ω

ln v0 ≥ −K,
∫
Ω

ln z0 ≥ −S ,

where m1 := max{
∫
Ω

u0, |Ω|}, m2 := max{
∫
Ω

v0, |Ω|}, then for all t ∈ (0,Tmax), we can find positive
constants mu(m1,m2,Cw,Cz,K, S , χ1, µ1, a1),mv(m1,m2,Cw,Cz,K, S , χ2, µ2, a2) such that∫

Ω

u ≥ mu and
∫
Ω

v ≥ mv.

Remark 1.1. In Section 3, we intricately classify our discussion into three separate cases depending
on the value range of k, namely k ∈ (0, 1

2 ), k ∈ (1
2 , 1) and k = 1. It is worth mentioning that handling

the second term on the right-hand side of inequality (3.13), specifically when k = 1
2 , poses a

significant challenge in finding a suitable differential inequality related to
∫
Ω

|∇z|2

z . Consequently, this
aspect remains an open problem that requires further investigation.

Theorem 1.2. (Boundedness) Consider a bounded convex domain Ω ⊂ Rn(n ≥ 2) with a smooth
boundary, and assume that the conditions are the same as those within Theorem 1.1. Moreover, it is
required that θ > 1 − 2

n+1 . Then, system (1.5) has a unique classical solution that remains globally
bounded.

Remark 1.2. Based on the result in Theorem 1.1, it becomes feasible to establish a lower bound for z.
Since inf

x∈Ω
z(x, t) ≥ δ with δ independent of t, the system (1.5) has a globally bounded solution.

2. Preliminaries

Lemma 2.1. Consider a bounded domain Ω ⊂ Rn(n ≥ 1) with a smooth boundary, and the parameters
ai, µi, χi(i = 1, 2) are assumed to be positive. Let the initial data (u0, v0,w0, z0) satisfy condition (1.9).
For any q > n, there exist Tmax ∈ (0,∞] and a unique quadruple (u, v,w, z) of nonnegative functions
fulfilling the following:

u ∈ C0
(
Ω̄ × [0,Tmax)

)
∩C2,1

(
Ω̄ × (0,Tmax)

)
,

v ∈ C0
(
Ω̄ × [0,Tmax)

)
∩C2,1

(
Ω̄ × (0,Tmax)

)
,

w ∈ C0
(
Ω̄ × [0,Tmax)

)
∩C2,1

(
Ω̄ × (0,Tmax)

)
∩ L∞loc

(
[0,Tmax); W1,q(Ω)

)
,

z ∈ C0
(
Ω̄ × [0,Tmax)

)
∩C2,1

(
Ω̄ × (0,Tmax)

)
∩ L∞loc

(
[0,Tmax); W1,q(Ω)

)
,

(2.1)

which classically solve (1.5) in Ω × [0,Tmax).
Additionally, if Tmax < ∞, it follows that

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥L∞(Ω) + ∥w(·, t)∥W1,q(Ω) + ∥z(·, t)∥W1,q(Ω) → ∞ as t ↗ ∞. (2.2)

Proof. Based on the parabolic regularity theory and the standard contraction mapping argument
described in [34, 35], the local existence of the classical solution to (1.5) can be similarly derived. □

To obtain the upper bound for
∫
Ω

w2, it is necessary to utilize the following auxiliary lemma that
ensures the boundedness of solutions to a linearly damped ordinary differential equation with an
inhomogeneity.
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Lemma 2.2. [36] Let us consider the assumption where f is a nonnegative absolutely continuous
function on [0, τ), and g is a nonnegative function belonging to C0[0, τ). They satisfy the following
conditions:

f ′(t) + α f (t) ≤ g(t), a.e. t ∈ (0, τ),∫ t+1

t
g(s)ds ≤ β, t ∈ [0, τ − 1),

where α > 0 and β > 0. Under these assumptions, we can then conclude that for 0 < t < τ,

f (t) ≤ max{ f (0) + β,
β

α
+ 2β}.

Subsequently, we present a number of well-established findings regarding the lower bound of
∫
Ω

lnψ

in accordance with
∫
Ω

|∇ψ|2

ψ2 , where ψ ∈ C1(Ω̄) is positive. Additionally, the results provide quantitative
information regarding the magnitude of the point set and a variation of the Poincaré inequality. For
detailed proofs of these results, we refer to [7].

Lemma 2.3. [7] Let α, β > 0 and φ ∈ L2(Ω) be a nonnegative function satisfying the following:∫
Ω

φ ≥ α and
∫
Ω

φ2 ≤ β.

Then,

|{x ∈ Ω|φ(x) ≥
α2

2|Ω|
}| ≥

α2

4β
.

Lemma 2.4. [7] There exists a constant C(γ) > 0 for any γ > 0 such that the inequality∫
Ω

ψ2 ≤ C(γ)
∫
Ω

|∇ψ|2

holds for every ψ ∈ W1,2(Ω) satisfying

|{x ∈ Ω|ψ = 0}| ≥ γ.

Lemma 2.5. [7] Suppose ψ > 0 belong to C1(Ω̄) and |{x ∈ Ω|ψ ≥ ξ}| ≥ γ for every ξ > 0, γ > 0. Then,∫
Ω

lnψ ≥ |Ω| ln ξ −

√
C(γ)|Ω| ·

∫
Ω

|∇ψ|2

ψ2

with the C(γ) taken from Lemma 2.4.

Next, we employ a generalized form of Gagliardo-Nirenberg inequality [37].

Lemma 2.6. [37] Consider a bounded domain Ω ⊂ Rn(n ≥ 1) with a smooth boundary. Let 0 < r <
p < ∞, and let λ ∈ (0, 1) be determined by the following identity:

−
n
p
= (1 −

n
2

)λ −
n
r

(1 − λ);

then, there exists a positive constant C such that

∥ϕ∥Lp(Ω) ≤ C(∥∇ϕ∥λL2(Ω)∥ϕ∥
1−λ
Lr(Ω) + ∥ϕ∥Lr(Ω))

for all ϕ ∈ W1,2(Ω) ∩ Lr(Ω).

Mathematical Biosciences and Engineering Volume 20, Issue 12, 21382–21406.



21388

3. Lower bounds for
∫
Ω

u and
∫
Ω

v

First, we establish the L1 boundedness of the solution.

Lemma 3.1. Let n ≥ 1, for all t ∈ (0,Tmax); the solution of system (1.5) satisfies the following
properties: ∫

Ω

u(·, t) ≤ m1 := max{
∫
Ω

u0, |Ω|}, (3.1)∫
Ω

v(·, t) ≤ m2 := max{
∫
Ω

v0, |Ω|}, (3.2)∫
Ω

w(·, t) ≤ m3 := m1 + m2 +

∫
Ω

w0 (3.3)

and ∫
Ω

z(·, t) ≤ m4 := m3 +

∫
Ω

z0. (3.4)

Proof. By integrating the first equation of (1.5), it follows that

d
dt

∫
Ω

u = µ1

∫
Ω

u − µ1

∫
Ω

u2 − µ1a1

∫
Ω

uv. (3.5)

Invoking the Hölder inequality, we derive the following:

d
dt

∫
Ω

u ≤ µ1

∫
Ω

u − µ1

∫
Ω

u2 ≤ µ1

∫
Ω

u −
µ1

|Ω|
(
∫
Ω

u)2, (3.6)

for all t ∈ (0,Tmax). Next, by utilizing an ODE comparison argument, we can deduce (3.1). Similarly,
employing the same method, we can easily obtain (3.2)–(3.4). □

Subsequently, we present the following result concerning the size of specific time sets where
∫
Ω

u2

is large.

Lemma 3.2. Suppose t0 ≥ 0, L > 0 and T ∈ (0,Tmax − t0) > 0. Then,

|{t ∈ (t0, t0 + T )|
∫
Ω

u2 > L}| ≤
µ1m1T + m1

µ1L
(3.7)

and ∫ t0+T

t0

∫
Ω

u2 +

∫ t0+T

t0

∫
Ω

v2 ≤
µ1m1T + m1

µ1
+
µ2m2T + m2

µ2
(3.8)

where m1,m2 are given by (3.1) and (3.2), respectively.

Proof. Integrating in time for (3.6), we derive the following:

µ1

∫ t0+T

t0

∫
Ω

u2 ≤ µ1

∫ t0+T

t0

∫
Ω

u +
∫
Ω

u(·, t0) −
∫
Ω

u(·, t0 + T )

≤ µ1

∫ t0+T

t0

∫
Ω

u +
∫
Ω

u(·, t0)

≤ µ1m1T + m1.

(3.9)
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Similarly, we can obtain the following:

µ2

∫ t0+T

t0

∫
Ω

v2 ≤ µ2m2T + m2.

Setting

G1 := {t ∈ (t0, t0 + T )|
∫
Ω

u2 > L},

we have ∫ t0+T

t0

∫
Ω

u2 ≥

∫
G1

∫
Ω

u2 ≥ L|G1|.

In view of (3.9), this readily yields (3.7). □

In the following process of establishing differential inequalities, we will often use the boundedness
of

∫
Ω

w2 and
∫
Ω

z2.

Lemma 3.3. There exist two constants Cz,Cw > 0, for all t ∈ (0,Tmax); the components w and z of the
solution satisfy ∫

Ω

w2 ≤ Cw (3.10)

and ∫
Ω

z2 ≤ Cz. (3.11)

Proof. Invoking the Poincaré inequality, we have the following:∫
Ω

h2 ≤ c1

∫
Ω

|∇h|2 +
1
|Ω|

(
∫
Ω

h)2

for all h ∈ W1,2(Ω), where c1 > 0. Therefore, by utilizing (3.3), we derive the following:∫
Ω

|∇w|2 ≥
1
c1

∫
Ω

w2 −
1

c1|Ω|
m2

3. (3.12)

By multiplying the third equation of (1.5) by w, combining Young’s inequality, and integrating by
parts, we have the following:

1
2

d
dt

∫
Ω

w2 = −

∫
Ω

|∇w|2 +
∫
Ω

(−w2 + wu + wv)

≤ −

∫
Ω

|∇w|2 +
1
2

∫
Ω

(u2 + v2).

By substituting (3.12) into the inequality mentioned above, we derive the following:

d
dt

∫
Ω

w2 +
2
c1

∫
Ω

w2 ≤

∫
Ω

(u2 + v2) +
2m2

3

c1|Ω|
.

The inequality (3.8) yields the following:∫ t+1

t

{∫
Ω

u2(·, s) +
∫
Ω

v2(·, s) +
2m2

3

c1|Ω|

}
≤
µ1m1 + m1

µ1
+
µ2m2 + m2

µ2
+

2m2
3

c1|Ω|
.
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Invoking Lemma 2.2, it follows that∫
Ω

w2 ≤ max{
∫
Ω

w2
0 + c2,

c1c2

2
+ 2c2} := Cw.

for all t > 0, where c2 > 0. This concludes the proof of (3.10).
Next, by testing the fourth equation of (1.5) with 2z and applying Young’s inequality, we can deduce

the following:

d
dt

∫
Ω

z2 = 2
∫
Ω

(z∆z − z2 + zw)

≤ −2
∫
Ω

|∇z|2 − 2
∫
Ω

z2 +

∫
Ω

z2 +
1
4

∫
Ω

w2

= −

∫
Ω

z2 +
Cw

4
.

Furthermore, we derive the following:∫
Ω

z2 ≤ max{
∫
Ω

z2
0,

Cw

4
} := Cz.

□

Lemma 3.4. For a sufficiently small ϵ > 0, for all t ∈ (0,Tmax), the solution of (1.5) satisfies the
following:

d
dt

∫
Ω

ln u ≥
4ϵ

1 + 4ϵ

∫
Ω

|∇u|2

u2 −
1 + 4ϵ

4
χ2

1

∫
Ω

|∇z|2

z2k + µ1|Ω| − µ1

∫
Ω

u − a1µ1m2. (3.13)

Proof. By multiplying the first equation of (1.5) by 1
u and applying integration by parts, we derive the

following:

d
dt

∫
Ω

ln u =
∫
Ω

∇(D(u)∇u)
u

− χ1

∫
Ω

∇( u
zk∇z)

u
+

∫
Ω

µ1(1 − u − a1v)

=

∫
Ω

D(u)|∇u|2

u2 − χ1

∫
Ω

∇u
u
·
∇z
zk + µ1|Ω| − µ1

∫
Ω

u − a1µ1

∫
Ω

v.
(3.14)

Employing Young’s inequality, we have the following:∫
Ω

∇u
u
·
∇z
zk ≤

1
(1 + 4ϵ)χ1

∫
Ω

|∇u|2

u2 +
1 + 4ϵ

4
χ1

∫
Ω

|∇z|2

z2k .

Combining (1.7) and (3.14), we derive the following:

d
dt

∫
Ω

ln u ≥
4ϵ

1 + 4ϵ

∫
Ω

|∇u|2

u2 −
1 + 4ϵ

4
χ2

1

∫
Ω

|∇z|2

z2k + µ1|Ω| − µ1

∫
Ω

u − a1µ1m2.

□
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Lemma 3.5. For all t ∈ (0,Tmax), it follows that

d
dt

∫
Ω

z2−2k = −2(1 − k)(1 − 2k)
∫
Ω

|∇z|2

z2k − 2(1 − k)
∫
Ω

z2−2k + 2(1 − k)
∫
Ω

z1−2kw. (3.15)

Proof. By multiplying the fourth equation of (1.5) by z1−2k and integrating by parts, we readily derive
equation (3.15). □

Next, we combine Lemmas 3.4 and 3.5, along with the boundedness of
∫
Ω

z2 and
∫
Ω

w2 to establish
the Lyapunov functional, which directly affects the estimation of the integral

∫
Ω

u time set and provide
the fundamental groundwork for proving the integral’s lower bound. Based on (3.15), the range of k
influences the estimation of d

dt

∫
Ω

z2−2k. Therefore, we will examine this issue in three distinct cases:
k ∈ (0, 1

2 ), k ∈ (1
2 , 1) and k = 1.

Case 1: In this case, we consider the scenario where k ∈ (0, 1
2 ). This allows us to obtain 1 − 2k ∈

(0, 1), 1 − k ∈ ( 1
2 , 1); then,

d
dt

∫
Ω

z2−2k ≤ −2(1 − k)(1 − 2k)
∫
Ω

|∇z|2

z2k + 2(1 − k)
∫
Ω

z1−2kw. (3.16)

Lemma 3.6. Let n ≥ 1, χ1 > 0, 0 < a1 <
|Ω|

m2
, µ1 = µ1(χ1, k, a1,Ω, u0, v0,w0, z0) be a large enough

positive constant, k ∈ (0, 1
2 ) and D(u) satisfy (1.6),(1.7). Then, for all t ∈ (0,Tmax), the solution of (1.5)

satisfies the following:

d
dt

{∫
Ω

ln u − B
∫
Ω

z2−2k

}
≥

4ϵ
1 + 4ϵ

∫
Ω

|∇u|2

u2 − µ1

∫
Ω

u + A|Ω|, (3.17)

where A, B > 0.

Proof. From (3.13) and (3.16), we can derive the following:

d
dt

{∫
Ω

ln u −
(1 + 4ϵ)χ2

1

8(1 − k)(1 − 2k)

∫
Ω

z2−2k

}
≥

4ϵ
1 + 4ϵ

∫
Ω

|∇u|2

u2 − µ1

∫
Ω

u −
(1 + 4ϵ)χ2

1

4(1 − 2k)

∫
Ω

z1−2kw + µ1|Ω| − a1µ1m2.

Invoking Young’s inequality, (3.10), (3.11) and considering the condition k ∈ (0, 1
2 ), we derive the

following:

(1 + 4ϵ)χ2
1

4(1 − 2k)

∫
Ω

z1−2kw

≤
(1 + 4ϵ)χ2

1

4(1 − 2k)

{
(1 − 2k)|Ω|

2Cz

∫
Ω

z2 +
(1 + 2k)Cz

2|Ω|

∫
Ω

w
2

1+2k

}
≤

(1 + 4ϵ)χ2
1

8
|Ω| +

(1 + 4ϵ)χ2
1(1 + 2k)Cz

8(1 − 2k)|Ω|

{
(1 − 2k)|Ω|
(1 + 2k)Cz

|Ω| +
2kCz

(1 + 2k)(1 − 2k)

∫
Ω

w2
}

≤
(1 + 4ϵ)χ2

1

4
|Ω|

(
1 +

χ2
1C

2
z Cw

(1 − 2k)2|Ω|2

)
.
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Combining the above inequality, we can obtain the following:

d
dt

{∫
Ω

ln u −
(1 + 4ϵ)χ2

1

8(1 − k)(1 − 2k)

∫
Ω

z2−2k

}
≥

4ϵ
1 + 4ϵ

∫
Ω

|∇u|2

u2 − µ1

∫
Ω

u +
[(

1 −
a1m2

|Ω|

)
µ1 −

(1 + 4ϵ)χ2
1

4
|Ω|

(
1 +

χ2
1C

2
z Cw

(1 − 2k)2|Ω|2

)]
.

Since µ1 > 0, 0 < a1 <
|Ω|

m2
, we fix ϵ > 0 such that it is sufficiently small to satisfy the following:

A :=
(
1 −

a1m2

|Ω|

)
µ1 −

(1 + 4ϵ)χ2
1

4
|Ω|

(
1 +

χ2
1C

2
z Cw

(1 − 2k)2|Ω|2

)
> 0.

Furthermore, let B := (1+4ϵ)χ2
1

8(1−k)(1−2k) > 0, it can readily yield that (3.17) holds. □

Lemma 3.7. Let n ≥ 1, χ1 > 0, 0 < a1 <
|Ω|

m2
, µ1 = µ1(χ1, k, a1,Ω, u0, v0,w0, z0) be a large enough

positive constant, k ∈ (0, 1
2 ) and D(u) satisfy (1.6),(1.7). Suppose t0 ≥ 0 , K0 ≥ 0 satisfies the following:∫

Ω

ln u(·, t0) ≥ −K0 (3.18)

and for any T ∈ (0,Tmax − t0) > 0 fulfills the following:

T ≥
K0 + m1 + BC1

1
2 A|Ω|

(3.19)

with m1 and C1 given by (3.1) and (3.25); we can derive∫ t0+T

t0

∫
Ω

u dxdt ≥
AT |Ω|
2µ1

, (3.20)

along with ∣∣∣∣∣∣
{

t ∈ (t0, t0 + T )|
∫
Ω

u(·, t) ≥ ε
}∣∣∣∣∣∣ ≥ εT

m1
, (3.21)

where ε is defined as

ε := min{
A|Ω|
4µ1

,m1}. (3.22)

Proof. By integrating (3.16) in time from t0 to t0 + T , we can derive the following:∫
Ω

ln u(·, t0 + T ) −
∫
Ω

ln u(·, t0) − B
∫
Ω

z2−2k(·, t0 + T ) + B
∫
Ω

z2−2k(·, t0)

≥
4ϵ

1 + 4ϵ

∫ t0+T

t0

∫
Ω

|∇u|2

u2 − µ1

∫ t0+T

t0

∫
Ω

u + AT |Ω|.

Since u, z are positive and (3.18), we deduce the following:

µ1

∫ t0+T

t0

∫
Ω

u ≥
∫
Ω

ln u(·, t0) −
∫
Ω

ln u(·, t0 + T ) + B
∫
Ω

z2−2k(·, t0 + T )

− B
∫
Ω

z2−2k(·, t0) + AT |Ω|

≥ −

∫
Ω

ln u(·, t0 + T ) − B
∫
Ω

z2−2k(·, t0) − K0 + AT |Ω|.

(3.23)
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Considering that ln ξ < ξ for ξ > 0, we can conclude that

−

∫
Ω

ln u(·, t0 + T ) ≥ −
∫
Ω

u(·, t0 + T ) ≥ −m1. (3.24)

By utilizing Lemma 3.3 and Young’s inequality, we can derive the following:∫
Ω

z2−2k ≤

∫
Ω

z2 + |Ω|(1 − k)
1−k

k k := C1, (3.25)

where C1 > 0.
Therefore, invoking (3.19), (3.24) and (3.25), the inequality (3.23) can be restated as follows∫ t0+T

t0

∫
Ω

u ≥
1
µ1

(A|Ω|T − K0 − m1 − BC1)

≥
A|Ω|T
2µ1

,

which yields (3.20). Next, let

G2 :=
{

t ∈ (t0, t0 + T )|
∫
Ω

u(·, t) ≥ ε
}

;

it follows that ∫ t0+T

t0

∫
Ω

u =
∫

G2

∫
Ω

u +
∫

(t0,t0+T )\G2

∫
Ω

u

≤ m1|G2| + εT.

Thanks to (3.20), we derive the following:

|G2| ≥
A|Ω|T
2µ1m1

−
εT
m1
.

The proof of Lemma 3.7 has been completed. □

For another application of (3.17), we can get the size of the time set where
∫
Ω

|∇u|2

u2 is big enough.

Lemma 3.8. Let n ≥ 1, T ∈ (0,Tmax − t0) > 0, χ1 > 0, 0 < a1 <
|Ω|

m2
, µ1 = µ1(χ1, k, a1,Ω, u0, v0,w0, z0)

be a large enough positive constant, k ∈ (0, 1
2 ) and D(u) satisfy (1.6),(1.7), suppose that (3.13) is true.

Then, we have the following:∣∣∣∣∣∣
{

t ∈ (t0, t0 + T )|
∫
Ω

|∇u|2

u2 > M
}∣∣∣∣∣∣ ≤ (1 + 4ϵ)(m1 + K0 + BC1 + µ1m1T )

4ϵM
(3.26)

where M > 0.
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Proof. Integrating (3.16) over t ∈ (t0, t0 + T ), we derive the following:

4ϵ
1 + 4ϵ

∫ t0+T

t0

∫
Ω

|∇u|2

u2 ≤

∫
Ω

ln u(·, t0 + T ) −
∫
Ω

ln u(·, t0) − B
∫
Ω

z2−2k(·, t0 + T )

+B
∫
Ω

z2−2k(·, t0) + µ1

∫ t0+T

t0

∫
Ω

u − AT |Ω|.

Hence, by utilizing (3.18), (3.25) and positive of z, we have the following:

4ϵ
1 + 4ϵ

∫ t0+T

t0

∫
Ω

|∇u|2

u2 ≤ m1 + K0 + BC1 + µ1m1T. (3.27)

We define

G3 :=
{

t ∈ (t0, t0 + T )|
∫
Ω

|∇u|2

u2 > M
}

;

then,
4ϵ

1 + 4ϵ

∫ t0+T

t0

∫
Ω

|∇u|2

u2 ≥
4ϵ

1 + 4ϵ

∫
G3

∫
Ω

|∇u|2

u2 ≥
4ϵ

1 + 4ϵ
M|G3|.

Combining with (3.27), it yields the following:

|G3| ≤
m1 + K0 + BC1 + µ1m1T

4ϵ
1+4ϵ M

.

□

By applying the aforementioned lemmas, we can combine the time sets concerning
∫
Ω

u,
∫
Ω

u2,

and
∫
Ω

|∇u|2

u2 to obtain an upper bound on
∫
Ω

ln u. The following proof process is based on the method
described in [7].

Lemma 3.9. Let n ≥ 1, T ∈ (0,Tmax − t0) > 0, χ1 > 0, 0 < a1 <
|Ω|

m2
, µ1 = µ1(χ1, k, a1,Ω, u0, v0,w0, z0)

be a large enough positive constant, k ∈ (0, 1
2 ) and D(u) satisfy (1.6), (1.7), if (u0, v0,w0, z0) satisfy

initial condition and ∫
Ω

u0 ≤ m1,

∫
Ω

w2
0 ≤ Cw,

∫
Ω

z2
0 ≤ Cz,

∫
Ω

ln u0 ≥ −K0. (3.28)

Then, there exist constants K1 and a sequence (ti)i∈N ⊂ [0,∞) fulfills ti → ∞ as i → ∞ and ti < ti+1 <

ti + T along with ∫
Ω

ln u(·, ti) ≥ −K1 for all i ∈ N. (3.29)

Proof. Let

ε := min{
A|Ω|
4µ1

,m1} (3.30)

be defined in Lemma 3.7; we choose L > 0, M > 0 such that

m1

L
<

ε

4m1
(3.31)
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and
(1 + 4ϵ)µ1m1

ϵM
<

ε

2m1
. (3.32)

Furthermore, we can choose

γ :=
ε2

4L
(3.33)

and
ξ :=

ε

2|Ω|
. (3.34)

To demonstrate that (3.29) can be achieved through a suitably selected sequence (ti)i∈N ⊂ [0,∞) fulfills
ti → ∞ as i → ∞, we define ti inductively. Initially, let t1 := 0 and for every i ≥ 1 and with the
assumption that t1, · · · , ti possess the following property∫

Ω

ln u(·, tk) ≥ −K1 (3.35)

for all k ∈ {1, · · · , i}, where

K1 := max{K0,−|Ω| ln ξ +
√

C(γ)|Ω|M}, (3.36)

then one can find ti+1 ∈
(
ti +

εT
4m1
, ti + T

)
such that (3.35) holds for j = i + 1.

Let

Q1 :=
{

t ∈ (ti, ti + T )|
∫
Ω

u(·, t) ≥ ε
}
,

Q2 :=
{

t ∈ (ti, ti + T )|
∫
Ω

u2(·, t) ≤ L
}
,

Q3 :=
{

t ∈ (ti, ti + T )|
∫
Ω

|∇u(·, t)|2

u2(·, t)
≤ M

}
,

we need to ensure that ∣∣∣∣∣∣Q1 ∩ Q2 ∩ Q3 ∩

(
ti +

εT
4m1

, ti + T
)∣∣∣∣∣∣ > 0. (3.37)

Prior to proving it, we fix T > 0 enough such that it satisfies

m1

µ1L
<

εT
4m1

, (3.38)

(1 + 4ϵ)(m1 + K1 + BC1)
ϵM

<
εT
2m1

, (3.39)

and
T >

K1 + m1 + BC1
1
2 A|Ω|

. (3.40)

Clearly, we can set K0 := K1 and t0 := ti. By (3.35) and (3.40), we can infer (3.18) and (3.19).
Furthermore, invoking Lemma 3.7, we can directly derive the following:

|Q1| >
εT
m1
, (3.41)
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where ε is defined in (3.30). Subsequently, combining (3.28) and (3.31), we can employ Lemma 3.2
with t0 := ti to obtain the following:

|Q2| = T −

∣∣∣∣∣∣
{

t ∈ (ti, ti + T )|
∫
Ω

u2(·, t) > L
}∣∣∣∣∣∣

≥ T −
µ1Tm1 + m1

µ1L

= (1 −
m1

L
)T −

m1

µ1L

> (1 −
ε

2m1
)T,

(3.42)

where 1− ε
2m1

> 0. Notably, due to (3.22), we have ε ≤ m1. With this observation in mind, considering
(3.29) (3.32) (3.39), and using Lemma 3.8, we obtain the following:

|Q3| = T −

∣∣∣∣∣∣
{

t ∈ (ti, ti + T )|
∫
Ω

|∇u(·, t)|2

u2(·, t)
> M

}∣∣∣∣∣∣
≥ T −

(1 + 4ϵ)µ1Tm1

4ϵM
−

(1 + 4ϵ)(m1 + K0 + BC1)
4ϵM

> T −
εT
8m1
−
εT
8m1

> (1 −
ε

4m1
)T.

Given (3.41) and (3.42), it yields the following:

|Q1 ∩ Q2| >
εT
2m1

.

Therefore, it follows that

|Q1 ∩ Q2 ∩ Q3| >
εT
2m1
+ (1 −

ε

4m1
)T − T

=
εT
4m1

,

which clearly yields (3.37).
Utilizing (3.37) and setting t0 = 0, we can find a t1 > t0 +

εT
4m1

such that t1 ∈ Q1 ∩ Q2 ∩ Q3.
Subsequently, by Lemmas 2.3 and 2.5 and (3.36), we derive the following:∫

Ω

ln u(·, t1) ≥ −K1,

where Lemma 2.5 is applied according to the definitions (3.33) and (3.34) of γ and ξ.
Similarly, we can also find t2 > t1 +

εT
4m1

such that∫
Ω

ln u(·, t2) ≥ −K1.
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Therefore, we can find a sequence {ti} satisfying

ti + T > ti+1 > ti +
εT
4m1

and ∫
Ω

ln u(·, ti) ≥ −K1,

without a loss of the fact ti → ∞ as i→ ∞. □

Case 2: In this case, we consider the scenario where k ∈ ( 1
2 , 1). This allows us to obtain the

following:

1 − 2k ∈ (−1, 0), 1 − k ∈ (0,
1
2

);

then,
d
dt

∫
Ω

z2−2k ≥ 2(1 − k)(2k − 1)
∫
Ω

|∇z|2

z2k − 2(1 − k)
∫
Ω

z2−2k. (3.43)

Lemma 3.10. Let n ≥ 1, χ1 > 0, 0 < a1 <
|Ω|

m2
, µ1 = µ1(χ1, k, a1,Ω, u0, v0,w0, z0) be a large enough

positive constant, k ∈ ( 1
2 , 1) and D(u) satisfy (1.6),(1.7). Then, for all t ∈ (0,Tmax), the solution of (1.5)

satisfies the following:

d
dt

{∫
Ω

ln u + D
∫
Ω

z2−2k

}
≥

4ϵ
1 + 4ϵ

∫
Ω

|∇u|2

u2 − µ1

∫
Ω

u + E|Ω|, (3.44)

where D, E > 0.

Proof. We can use Young’s inequality to obtain the following:∫
Ω

z2−2k ≤ 2(1 − k)
∫
Ω

z + (2k − 1)|Ω| ≤ 2(1 − k)m4 + (2k − 1)|Ω|.

By combining (3.13) and (3.43), we can obtain the following:

d
dt

{∫
Ω

ln u +
(1 + 4ϵ)χ2

1

8(1 − k)(2k − 1)

∫
Ω

z2−2k

}
≥

4ϵ
1 + 4ϵ

∫
Ω

|∇u|2

u2 − µ1

∫
Ω

u + µ1|Ω|
(1 + 4ϵ)χ2

1

4
|Ω| −

2(1 + 4ϵ)χ2
1(1 − k)m4

4(2k − 1)
− a1µ1m2

≥
4ϵ

1 + 4ϵ

∫
Ω

|∇u|2

u2 − µ1

∫
Ω

u +
[(

1 −
a1m2

|Ω|

)
µ1 −

(1 + 4ϵ)χ2
1

4

(
1 +

m4

2k − 1

)]
|Ω|.

Since µ1 > 0 is large enough and 0 < a1 <
|Ω|

m2
, we fix ϵ > 0 sufficiently small such that

E :=
(
1 −

a1m2

|Ω|

)
µ1 −

(1 + 4ϵ)χ2
1

4

(
1 +

m4

2k − 1

)
> 0.

Thus, let D := (1+4ϵ)χ2
1

8(1−k)(2k−1) > 0, which entails (3.44). □
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By using a similar method in proving Lemmas 3.7–3.9, we can obtain a lower bounded estimate of∫
Ω

ln u(·, ti), ti → ∞ as i→ ∞. We have omitted some details here.

Case 3: Finally, we consider the case of k = 1, it follow from (3.13) that

d
dt

∫
Ω

ln u ≥
4ϵ

1 + 4ϵ

∫
Ω

|∇u|2

u2 −
1 + 4ϵ

4
χ2

1

∫
Ω

|∇z|2

z2 + µ1|Ω| − µ1

∫
Ω

u − a1µ1m2.

Utilizing the fourth equation of (1.5), we can derive the following:

d
dt

∫
Ω

ln z =
∫
Ω

|∇z|2

z2 − |Ω| +
w
z
≥

∫
Ω

|∇z|2

z2 − |Ω|,

for all t ∈ (0,Tmax). We can combine the above two inequality to obtain the following:

d
dt

{∫
Ω

ln u +
1 + 4ϵ

4
χ2

1

∫
Ω

ln z
}
≥

4ϵ
1 + 4ϵ

∫
Ω

|∇u|2

u2 − µ1

∫
Ω

u + F|Ω|, (3.45)

where F := µ1 −
a1µ1m2
|Ω|
− 1+4ϵ

4 χ2
1 > 0. Because we chose a large enough µ1 > 0 and 0 < a1 <

|Ω|

m2
, we can

also select a small enough value for ϵ > 0 in order to achieve the following:

µ1 >
(1 + 4ϵ)χ2

1|Ω|

4(|Ω| − a1m2)
.

Then, we will structure the lower bound for
∫
Ω

ln z.

Lemma 3.11. There exists a constant S > 0, for all t ∈ (0,Tmax); the component z of the solution
satisfies the following: ∫

Ω

ln z ≥ −S .

Proof. By employing a similar methodology to that presented in Lemma 2.3 of [33], we can easily
establish the validity of Lemma 3.11. However, in the interest of brevity, we refrain from providing the
details here. □

By applying the method of discussing k ∈ (0, 1
2 ), combining with the reconstructed functional

(3.45) and Lemma 3.11, we can also find a lower bound for
∫
Ω

ln u(·, ti), ti → ∞ as i→ ∞.

Proof of Theorem 1.1 We infer from (3.5) that
d
dt

∫
Ω

u(·, t) ≤ µ1

∫
Ω

u(·, t).

By applying Lemmatas 3.9–3.11, it indicates that∫
Ω

u(·, t) ≥
∫
Ω

u(·, ti)e−µ1(ti−t) ≥ εe−µ1(ti−t), (3.46)

where t ∈ [0, ti) and i ∈ N. Consequently, we directly obtain
∫
Ω

u(·, t) ≥ εe−µ1t1 . We observe that
the inequality ti+1 < ti + T holds for all i ≥ 1 and large values of t. Hence, we can denote (3.46) as∫
Ω

u(·, t) ≥ εe−2µ1T for all t ∈ [ti, ti+1). Notably, without a loss of generality, ti → ∞ as i → ∞, this
implies that it possesses a lower bound mu := min{εe−µ1t1 , εe−2µ1T } for

∫
Ω

u. Through constructing some
other Lyapunov functionals, we can then utilize the same methodology to determine lower the bound
mv for

∫
Ω

v.
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4. Boundedness of solutions

Assuming that Ω ⊂ Rn(n ≥ 2) is a bounded convex domain with a smooth boundary, for the sake of
convenience, we define θ := min{θ1, θ2}. First, we establish a lower bound for z based on Theorem 1.1;
other approach details can be also found in [40].

Lemma 4.1. Assuming that the conditions in Theorem 1.1 hold and t ∈ [0,Tmax); then, we can find a
constant δ > 0 independent of t such that

inf
x∈Ω

z(x, t) ≥ δ > 0. (4.1)

Proof. By taking the positivity of u and applying the comparison principle, we can infer from the fourth
equation of system (1.5) that

z(x, t) ≥ δ(t) := inf
y∈Ω

z0(y)e−t. (4.2)

Let us fix δ1 =
1
2 inf

x∈Ω
z0(x); then, there exists a t0 > 0 such that z(x, t) > δ1 for t ∈ [0, t0]. To conclude

the proof, it is sufficient to show that t ∈ [t0,Tmax). By referencing the established result of Lemma 3.1
in [38] and for all nonnegative φ ∈ C0(Ω̄), we can derive the following:

et∆φ ≥
1

(4πt)
n
2
e−

(diamΩ)2
4t

∫
Ω

φdx. (4.3)

By virtue of the variation of constants formula and Theorem 1.1, we derive the following:

w(x, t) = et(∆−1)w0 +

∫ t

0
e(t−s)(∆−1)(u(x, t) + v(x, t))ds

≥

∫ t

0

1
(4π(t − s))

n
2
e−(t−s)− (diamΩ)2

4(t−s)

∫
Ω

(u(x, t) + v(x, t))dxds

≥ (mu + mv)
∫ t0

0

1
(4πs)

n
2
e−s− (diamΩ)2

4s ds

=: c > 0.

(4.4)

Reusing the variation of constants formula to z and (4.4), we deduce the following:

z(x, t) = et(∆−1)z0 +

∫ t

0
e(t−s)(∆−1)w(x, t)ds

≥

∫ t

0

1
(4π(t − s))

n
2
e−(t−s)− (diamΩ)2

4(t−s)

∫
Ω

w(x, t)dxds

≥ c|Ω|
∫ t0

0

1
(4πs)

n
2
e−s− (diamΩ)2

4s ds

=: δ2 > 0.

Now, we can set δ := min{δ1, δ2} to complete the proof. □
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In order to more conveniently utilize the Gagliardo-Nirenberg inequality in Lemma 4.7, we need to
select some parameters in advance. For any p > 1 and q > 1, we define

α1 =
2(p + 1)

1 + θ
, (4.5)

α2 =
2(p + 1)(q − 1)

p − 1
, (4.6)

λi =
q − q

αi

q + 1
n −

1
2

(4.7)

and
fi =

αi

q
λi =

αi − 1
q + 1

n −
1
2

(4.8)

for i = 1, 2.

Lemma 4.2. Let n ≥ 2; then, for θ > 1 − 2
n+1 and a sufficiently large p > 1, there exists a q > 1 such

that
λi ∈ (0, 1) and fi < 2, for i = 1, 2. (4.9)

Proof. First, a simple calculation reveals that the first inequality in (4.9) is equivalent to the following:

0 < q −
q
αi
< q +

1
n
−

1
2
, for i = 1, 2. (4.10)

Regarding the above inequality , we can obtain αi > 1 and q > αi
2 −

1
n . Additionally, fi < 2 is equivalent

to αi − 1 < 2(q + 1
n −

1
2 ), which means that q > αi

2 −
1
n . Therefore, we can conclude that (4.9) holds if

αi > 1 and q > αi
2 −

1
n . Moreover, we need to make sure

p >
1 + θ

2
− 1, q >

p − 1
2(p + 1)

+ 1,
p + 1
1 + θ

−
1
n
< q <

p + 1
2
+

p − 1
2n

.

Thus, the existence of q is dependent on p+1
1+θ <

p+1
2 +

p−1
2n +

1
n , which can be easily derived thanks to

θ > 1 − 2
n+1 . Thus, when p is large enough, we can choose a q such that the inequality (4.10) makes

sense. As a result, we can conclude that (4.9) is valid. □

Lemma 4.3. Let n ≥ 2; there is a constant C1 > 0 such that

∥∇z(·, t)∥L1(Ω) ≤ C1, for all t ∈ (0,Tmax). (4.11)

Proof. By applying integration by parts and Young’s inequality, we can obtain the following result
when testing the fourth equation of (1.5) with −2∆z:

d
dt

∫
Ω

|∇z|2 = −2
∫
Ω

(|∆z|2 + |∇z|2 + w∆z)

≤ −2
∫
Ω

|∆z|2 − 2
∫
Ω

|∇z|2 + 2
∫
Ω

|∆z|2 +
1
2

∫
Ω

w2

= −2
∫
Ω

|∇z|2 +
1
2

∫
Ω

w2.
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By applying (3.10) and the ODE comparison principle, we have
∫
Ω
|∇z|2 ≤ c1, where c1 > 0 is a

constant. By utilizing Young’s inequality once more, we obtain
∫
Ω
|∇z| ≤

∫
Ω
|∇z|2 + 1

4 |Ω| ≤ c2, where
c2 > 0 is a constant. Therefore, we can easily derive (4.11). □

Lemma 4.4. Assuming that the conditions stated in Theorem 1.1 hold, we can conclude that for any
p > 1, for all t ∈ (0,Tmax), there exist positive constants C2,C3 that are independent of t, such that

d
dt

∫
Ω

up +

∫
Ω

up ≤ −µ1

∫
Ω

up+1 +C2

∫
Ω

|∇z|
2(p+1)

1+θ +C2 (4.12)

and
d
dt

∫
Ω

vp +

∫
Ω

vp ≤ −µ2

∫
Ω

vp+1 +C3

∫
Ω

|∇z|
2(p+1)

1+θ +C3. (4.13)

Proof. By multiplying the first equation of (1.5) by up−1 and performing integration by parts, we derive
the following:

1
p

d
dt

∫
Ω

up =

∫
Ω

up−1∇(D(u)∇u) − χ1

∫
Ω

up−1∇(
u
zk∇z) + µ1

∫
Ω

up(1 − u − a1v)

≤ −(p − 1)
∫
Ω

up−2+θ|∇u|2 +
χ1(p − 1)

δk

∫
Ω

up−1∇u · ∇z + µ1

∫
Ω

up − µ1

∫
Ω

up+1 − µ1a1

∫
Ω

upv,

(4.14)

where δ is from Lemma 4.1. By applying Young’s inequality twice, we deduce the following:∫
Ω

up−1∇u · ∇z ≤
δk

2χ1

∫
Ω

up−2+θ|∇u|2 +
µ1δ

k

2χ1 p(p − 1)
up+1 + c3

∫
Ω

|∇z|
2(p+1)

1+θ , (4.15)

where c3 > 0 is a constant. Invoking the Young’s inequality once more, we have the following:

(µ1 +
1
p

)
∫
Ω

up ≤
(2p − 3)µ1

2p

∫
Ω

up+1 + c4, (4.16)

where c4 > 0. Together (4.14)–(4.16), we can derive (4.12). Furthermore, a similar argument used to
obtain the inequality in (4.12) implies that (4.13) also holds. □

To obtain the first term on the right side of inequalities (4.12) and (4.13), we introduce a differential
inequality about

∫
Ω

wp+1 for any p > 1.

Lemma 4.5. Assuming that the conditions stated in Theorem 1.1 hold, for all t ∈ (0,Tmax), the solution
of the system (1.5) satisfies the following:

d
dt

∫
Ω

wp+1 +

∫
Ω

wp+1 ≤ 2p
∫
Ω

up+1 + 2p
∫
Ω

vp+1. (4.17)

Proof. By multiplying the third equation in (1.5) with (p + 1)wp and Young’s inequality, we have the
following:

d
dt

∫
Ω

wp+1 = −p(p + 1)
∫
Ω

wp−1|∇w|2 − (p + 1)
∫
Ω

wp+1 + (p + 1)
∫
Ω

wpu + (p + 1)
∫
Ω

wpv

≤ −

∫
Ω

wp+1 + 2p
∫
Ω

up+1 + 2p
∫
Ω

vp+1,

which implies (4.17). □
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To hand the second term on the right side of inequalities (4.12) and (4.13), we will outline the
properties of the component solution z of system (1.5).

Lemma 4.6. Assuming that the conditions stated in Theorem 1.1 hold, for all t ∈ (0,Tmax), for any
q > 1, there exists C4 > 0 independent of t such that

d
dt

∫
Ω

|∇z|2q + 2q
∫
Ω

|∇z|2q ≤ −
2(q − 1)

q

∫
Ω

|∇|∇z|q|2 +
1
2

∫
Ω

wp+1 +C4

∫
Ω

|∇z|
2(p+1)(q−1)

p−1 . (4.18)

Proof. The result is a well-established inequality, which can be found in Lemma 4.2 of [41].
Therefore, we have omitted the proof process, and interested readers are encouraged to refer to the
original literature and the references therein for further details. □

By invoking the above four lemmas, we can provide a bound for Lp norm of u for any p > 1.

Lemma 4.7. Let n ≥ 2. Assuming that the conditions stated in Theorem 1.1 hold, and considering
θ > 1 − 2

n+1 , then for all t ∈ (0,Tmax) and any p > 1, we can find a constant C5 > 0 independent of t
such that ∫

Ω

up ≤ C5 and
∫
Ω

vp ≤ C5. (4.19)

Proof. Combing (4.12), (4.13), (4.17) and (4.18), we can derive the following:

d
dt

{
2p

µ1

∫
Ω

up +
2p

µ2

∫
Ω

vp +

∫
Ω

wp+1 +

∫
Ω

|∇z|2q

}
+

2p

µ1

∫
Ω

up +
2p

µ2

∫
Ω

vp +
1
2

∫
Ω

wp+1 + 2q
∫
Ω

|∇z|2q +
2(q − 1)

q

∫
Ω

|∇|∇z|q|2

≤c5

∫
Ω

|∇z|α1 + c6

∫
Ω

|∇z|α2 + c7,

(4.20)

where c5, c6, c7 > 0 and α1, α2 are defined in (4.5) and (4.6). In view of the Gagliardo-Nirenberg
inequality, there exists constants c8, c9 > 0 such that

c5

∫
Ω

|∇z|α1 = c5∥|∇z|q∥
α1
q

L
α1
q (Ω)
≤ c8∥∇|∇z|q∥

λ1α1
q

L2(Ω)∥|∇z|q∥
α1
q (1−λ1)

L
1
q (Ω)

+ c8∥|∇z|q∥
α1
q

L
1
q (Ω)

,

c6

∫
Ω

|∇z|α2 = c6∥|∇z|q∥
α2
q

L
α2
q (Ω)
≤ c9∥∇|∇z|q∥

λ2α2
q

L2(Ω)∥|∇z|q∥
α2
q (1−λ2)

L
1
q (Ω)

+ c9∥|∇z|q∥
α2
q

L
1
q (Ω)

,

where λi(i = 1, 2) are defined in (4.7) and λi ∈ (0, 1) from Lemma 4.2. Thus, thanks to ∥|∇z|q∥
L

1
q (Ω)
=

∥∇z∥q
L1(Ω) and applying Young’s inequality, we can infer from Lemma 4.3 that

c5

∫
Ω

|∇z|α1 ≤
q − 1

q

∫
Ω

|∇|∇z|q|2 + c10, (4.21)

c6

∫
Ω

|∇z|α2 ≤
q − 1

q

∫
Ω

|∇|∇z|q|2 + c11, (4.22)

where c10, c11 > 0. Substituting (4.21), (4.22) into (4.20), we obtain f ′(t) + c12 f (t) ≤ c13, where
f (t) := 2p

µ1

∫
Ω

up + 2p

µ2

∫
Ω

vp +
∫
Ω

wp+1 +
∫
Ω
|∇z|2q, c12 := min{ 12 , 2q}, c13 > 0.

Therefore, employing the standard ODE comparison principle, we can infer that (4.19) is valid. □
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Proof of Theorem 1.2 Due to (4.19) and Lemma 4.1 in [34], for all t ∈ (0,Tmax), we can readily deduce
that for all σ > 1,

∥w(·, t)∥W1,σ(Ω) ≤ C6,

where C6 > 0 is a constant.
By applying some parabolic regularity and utilizing Lemma 4.3, for all t ∈ (0,Tmax), we obtain the

following result:
∥w(·, t)∥W1,∞(Ω) + ∥z(·, t)∥W1,∞(Ω) ≤ C7,

where C7 > 0. Taking advantage of a standard Alikakos-Moser iteration [39] and Lemma 4.6, for all
t ∈ (0,Tmax), there exists a constant C8 > 0 such that

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥L∞(Ω) ≤ C8.

By combining with Lemma 2.1, we can establish the validity of Theorem 1.2.
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