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Abstract: Here, we formulated a delayed mosquito population suppression model including two
switching sub-equations, in which we assumed that the growth of the wild mosquito population obeys
the Ricker-type density-dependent survival function and the release period of sterile males equals the
maturation period of wild mosquitoes. For the time-switched delay model, to tackle with the difficulties
brought by the non-monotonicity of its growth term to its dynamical analysis, we employed an essential
transformation, derived an auxiliary function and obtained some expected analytical results. Finally,
we proved that under certain conditions, the number of periodic solutions and their global attractivities
for the delay model mirror that of the corresponding delay-free model. The findings can boost a better
understanding of the impact of the time delay on the creation/suppression of oscillations harbored by
the mosquito population dynamics and enhance the success of real-world mosquito control programs.
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1. Introduction

Dengue fever is a mosquito-borne viral disease caused by any of the four dengue virus serotypes
that spread between humans and Aedes mosquitoes, primarily Aedes aegypti. Its clinical symptoms
include high fever, severe headache, vomiting, muscle and joint pain and rash [1,2]. In some cases, the
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disease can develop into life-threatening dengue shock syndrome, which may result in hypotension,
marked thrombocytopenia, plasma leakage, leucopenia, hepatomegaly, hypoproteinemia, circulatory
failure and mortality in 1–5% of infected individuals [3, 4]. Nowadays, the emergency and global
incidence of the disease are rapidly increasing, as shown in Figure 1. According to [5], the disease
may cause an estimated 400 million infections and 100 million symptomatic cases worldwide every
year, posing a serious threat to human health and life security [6].

Figure 1. The global rising trend of dengue cases from 1990 to 2019.

The sterile insect technique (SIT) [7–10] and the incompatible insect technique (IIT) [11–14], which
aim at suppressing the indigenous mosquito population, are two effective and eco-friendly weapons for
combating the disease. SIT (IIT) relies on massive production and remarkable release of the radiation-
treated (the endosymbiotic bacterium Wolbachia-infected) male mosquitoes (we refer to these two
kinds of male mosquitoes as sterile mosquitoes hereafter) reared in the labs or mosquito factories to
sterilize wild female mosquitoes and, hence, to lower the density of the wild mosquito population
[15–18].

Mathematics, as a tool discipline, can provide in-depth insights into many problems that are chal-
lenging to be dealt with in many other disciplines [19–29]. Once sterile mosquitoes are released into
the target environment, these two types of mosquitoes will spontaneously give rise to interactions.
To study the interactive dynamics between wild and sterile mosquitoes and to aid in seeking opti-
mal release strategies, a body of mathematical models have been formulated and dissected; we refer
to [30–35] for ordinary differential models, [36–41] for delay differential models and the references
cited therein.

Very recently, Z. Zhu and X. He [42] developed the next ordinary differential equation model

dw
dt
=

aw2

w + g
e−bw − µw (1.1)

to explore the impact of the Ricker-type density-dependent survival probability e−bw of wild mosquitoes
(in the aquatic stages) on the suppression effect. Here, w = w(t), g = g(t) denote the numbers of wild
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and sexually active sterile mosquitoes at time t, respectively, a > 0 represents the per capita daily
egg production rate, 1/b > 0 estimates the size at which the population reproduces at its maximum
rate [43, 44] and µ > 0 describes the density-independent death rate of wild mosquitoes. The authors
assumed that the energetic sterile mosquitoes are released in a periodic and impulsive manner, such
that a constant amount c of sterile mosquitoes is released after a constant waiting period T . That is,
the sterile mosquitoes are released periodically and impulsively at discrete time points Ti = iT, i =
0, 1, 2, · · · , and the sexual lifespan of the sterile mosquitoes T̄ is less than the release period T , under
which g(t) has the following structure of the form

g(t) =

c, t ∈ [iT, iT + T̄ ),
0, t ∈ [iT + T̄ , (i + 1)T ),

i = 0, 1, 2, · · · . (1.2)

By injecting (1.2) into (1.1), the authors obtained the following switched ordinary differential equations

dw
dt
=

aw2

w + c
e−bw − µw, t ∈ [iT, iT + T̄ ) (1.3)

and
dw
dt
= awe−bw − µw, t ∈ [iT + T̄ , (i + 1)T ), (1.4)

where i = 0, 1, 2, · · · . After the identifications of an implicit threshold c∗, together with two explicit
thresholds

c∗∗ =
a − µ

bµ
(> c∗) and T ∗ =

a
a − µ

T̄ , (1.5)

the authors investigated the model dynamics and compared it with that of [34], then they asserted
that, under some specific conditions, model (1.1) drives a more satisfactory suppression effect while
possessing a much lower cost.

It is widely known that the growth of a mosquito in each stage requires time [45]. Thus, the pop-
ulation densities of wild and sterile mosquitoes at some previous time t − τ play significant roles in
determining the population size of wild adults at time t. Here, τ is the average waiting time from parent
mating to the emergence of the reproductive offspring. Therefore, models that take the maturation time
of the mosquito species into account are more realistic and meaningful. Such models can exhibit much
richer and more complex dynamics than those delay-free models [34, 36–38].

Based on the above consideration and by incorporating the maturation delay into (1.1), we obtain
the following delay differential equation model

w′(t) =
aw2(t − τ)

w(t − τ) + g(t − τ)
e−bw(t−τ) − µw(t), t > 0. (1.6)

The initial condition for the model is

w(s) = φ(s), s ∈ [−τ, 0], (1.7)

where φ : [−τ, 0]→ [0,+∞) is continuous.
Once the eggs are laid, it takes 1–2 days for an egg to hatch into a larva. The larva enters the pupal

stage within 7–10 days, then it takes 2–3 days for the pupa to develop into an adult [37]. It is worth

Mathematical Biosciences and Engineering Volume 21, Issue 2, 1884–1898.



1887

noting that the maturation period of sterile mosquitoes is almost the same as that of wild mosquitoes.
For the sake of saving manpower and cost, we further assume in this paper that the waiting period
between two consecutive releases is exactly the maturation period; that is, T = τ. This scenario results
in Eq (1.6) being transformed into the following three sub-equations

w′(t) = aw(t − τ)e−bw(t−τ) − µw(t), t ∈ [0,T ), (1.8)

w′(t) =
aw2(t − τ)

w(t − τ) + c
e−bw(t−τ) − µw(t), t ∈ [iT, iT + T̄ ) (1.9)

and
w′(t) = aw(t − τ)e−bw(t−τ) − µw(t), t ∈ [iT + T̄ , (i + 1)T ), (1.10)

where i = 1, 2, · · · .
The rest of the work is organized as follows. Section 2 mainly gives a lemma, which acts as a

bridge to our main results. In Section 3, based on whether the solution of model (1.7)–(1.10) oscillates,
we first adopt an ingenious transformation, which turns (1.6) into an equivalent equation. Next, our
attention is focused on the exploration of the solution of that equation. Subsequently, by investigating
the qualitative properties of the solution’s limit superior and limit inferior, we derive the expected
theoretical results. Finally, Section 4 offers some discussions, expansions and conjectures about the
theoretical results of the delay model.

2. Preliminaries

When c > c∗ and T > T ∗, Theorem 3.1 of [42] manifests that the time-switched ordinary differential
equations model (1.3)–(1.4) possesses a unique periodic solution denoted by w̄(t); it then follows that
the associated delay differential equations model (1.7)–(1.10) also admits w̄(t) as the unique periodic
solution.

For the attractivity of w̄(t), we introduce the change of variables

w(t) = w̄(t) +
1
b

x(t), (2.1)

under which (1.6) can be transformed to

x′(t)+µx(t)+abe−bw̄(t−τ)
{

w̄2(t − τ)
w̄(t − τ) + g(t − τ)

−
[bw̄(t − τ) + x(t − τ)]2

b
[
bw̄(t − τ) + x(t − τ) + bg(t − τ)

]e−x(t−τ)
}
= 0. (2.2)

In the following, we will turn to explore some qualitative properties of x(t). First, for the boundedness
of x(t), we have the next lemma.

Lemma 2.1. The function x(t) is bounded.

Proof. We only prove that x(t) is bounded from above (the proof of x(t) bounded from below is similar
and, hence, omitted). Otherwise, there exists a sequence of points {tn} such that

lim
n→+∞

tn = +∞, lim
n→+∞

x(tn) = +∞
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and
x′(tn) ≥ 0, n = 1, 2, · · · ,

which, together with Eq (2.2), gives

µx(tn) ≤ abe−bw̄(tn−τ)

[
w̄(tn − τ) + 1

b x(tn − τ)
]2

w̄(tn − τ) + 1
b x(tn − τ) + g(t − τ)

e−x(tn−τ)

< abe−bw̄(tn−τ)
[
w̄(tn − τ) +

1
b

x(tn − τ)
]

e−x(tn−τ);

that is,
x(tn) <

a
µ

e−bw̄(tn−τ) [bw̄(tn − τ) + x(tn − τ)] e−x(tn−τ).

In view of lim
n→+∞

x(tn) = +∞, we have

lim
n→+∞

{
a
µ

e−bw̄(tn−τ) [bw̄(tn − τ) + x(tn − τ)] e−x(tn−τ)
}
= +∞,

which, in fact, is impossible since

lim
n→+∞

{
a
µ

e−bw̄(tn−τ) [bw̄(tn − τ) + x(tn − τ)] e−x(tn−τ)
}

= lim
n→+∞

{
a
µ

e−bw̄(tn−τ) · bw̄(tn − τ)e−x(tn−τ)
}
+ lim

n→+∞

{
a
µ

e−bw̄(tn−τ)x(tn − τ)e−x(tn−τ)
}

< lim
n→+∞

{
a
µe

e−x(tn−τ)
}
+ lim

n→+∞

{
a
µe

e−bw̄∗

}
=

a
µe

e−bw̄∗ < +∞,

where w̄∗ = min
0≤t≤T

w̄(t). The proof is completed.

3. Global attractivity of the unique periodic solution

From Section 2, we have already known that model (1.7)–(1.10) has a unique periodic solution w̄(t)
provided that c > c∗ and T > T ∗. Furthermore, the boundedness of x(t) implies that there exists two
constants x∗ and x∗ such that x∗ ≤ x(t) ≤ x∗ holds for all t ≥ 0.

In this section, we aim at proving the global attractivity of w̄(t). To this end, we first define

l = l(c∗∗) =
1 − bc∗∗ +

√
b2(c∗∗)2 + 6bc∗∗ + 1

2
,

where c∗∗ is specified in (1.5). (Clearly, we have l > 1.) Under the following hypotheses

(H1) w̄∗ ≥ b̄ = l/b ;
(H2) a

µ
≤

m1lel

m2(2l+|x∗ |) (m1,m2 ∈ Z+ and m1 < m2);

(H3) γ := a(1 − e−µT )
/
µ , 1,
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we derive the following theorem.

Theorem 3.1. Assume that the release period T and release amount c satisfy c > c∗ and T > T ∗,
respectively, then model (1.7)–(1.10) has a unique T-periodic solution w̄(t). Furthermore, if the release
intensity c satisfies c∗ < c < c∗∗ and the above hypotheses (H1)–(H3) hold, then for any positive
solution w(t), we have

lim
t→+∞

[w(t) − w̄(t)] = 0. (3.1)

Proof. On the basis of the above, we only need to prove that under the conditions c∗ < c < c∗∗ and
T > T ∗ and the hypotheses (H1)–(H3), w̄(t) is globally attractive, which in view of (2.1), is equivalent
to show lim

t→+∞
x(t) = 0.

To that effect, we distinguish the following two cases.
Case 1: Suppose that the function x(t) is oscillatory about 0, that is, the equation x(t) = 0 possesses
arbitrarily large roots.

Let a sequence of points {ξn} satisfying τ ≤ ξ1 < ξ2 < · · · < ξn < · · · and lim
n→+∞

ξn = +∞ be the roots
of x(t) = 0, and x(t) assumes sign-changing in each interval (ξn, ξn+1). For each n ≥ 1, we set tn and sn

as the points belonging to (ξn, ξn+1), such that

x(tn) = max
ξn≤tn≤ξn+1

x(t), x(sn) = min
ξn≤tn≤ξn+1

x(t). (3.2)

Undoubtedly, the relations x(tn) > 0, x′(tn) = 0 and x(sn) < 0, x′(sn) = 0 hold for each n ≥ 1. We first
demonstrate that the following statements

x(t) = 0 admits a root αn ∈ [ξn, tn) ∩ [tn − τ, tn) (3.3)

and
x(t) = 0 admits a root βn ∈ [ξn, sn) ∩ [sn − τ, sn) (3.4)

are valid for each n ≥ 1. See Figure 2 for illustration.

Figure 2. A schematic diagram for illustrating (3.3) and (3.4).

In fact, if (3.3) is not true, then we have ξn < tn − τ < ξn+1 and x(tn − τ) > 0. However, combining
the fact x′(tn) = 0 and (2.2), we obtain

µx(tn)+abe−bw̄(tn−τ)
{

w̄2(tn − τ)
w̄(tn − τ) + g(tn − τ)

−
[bw̄(tn − τ) + x(tn − τ)]2

b
[
bw̄(tn − τ) + x(tn − τ) + bg(tn − τ)

]e−x(tn−τ)
}
= 0. (3.5)
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Define

Ξ(u) =
v2

v + g
−

(bv + u)2

b(bv + u + bg)
e−u(v ≥ b̄).

Clearly, Ξ(0) = 0,Ξ(+∞) = v2
/
(v + g) > 0, and

Ξ′(u) =
(bv + u)e−u

b(bv + u + bg)2 [u2 + (2bv + bg − 1)u + (bv)2 + (bg − 1)bv − 2bg],

where g = g(t − τ) is defined in (1.2).
Set

κ(u) = u2 + (2bv + bg − 1)u + (bv)2 + (bg − 1)bv − 2bg, v ≥ b̄,

then it is easy to see that κ(u) > 0 holds for u > 0. Thus, Ξ(u) > 0, u > 0. Choosing v = w̄(tn−τ) ≥ w̄∗ ≥
b̄ (as the hypothesis (H1) holds) and u = x(tn − τ) > 0, we observe that equality (3.5) is impossible.

On the other hand, if (3.4) is not valid, then we obtain ξn < sn − τ < ξn+1 and x(sn − τ) < 0. Since
x′(sn) = 0, we have from (2.2) that

µx(sn) + abe−bw̄(sn−τ)
{

w̄2(sn − τ)
w̄(sn − τ) + g(sn − τ)

−
[bw̄(sn − τ) + x(sn − τ)]2

b
[
bw̄(sn − τ) + x(sn − τ) + bg(sn − τ)

]e−x(sn−τ)
}
= 0,

which gives

µx(sn) + abe−bw̄(sn−τ) w̄2(sn − τ)
w̄(sn − τ) + g(sn − τ)

= abe−bw̄(sn−τ)

[
w̄(sn − τ) + 1

b x(sn − τ)
]2

w̄(sn − τ) + 1
b x(sn − τ) + g(sn − τ)

e−x(sn−τ)

> abe−bw̄(sn−τ)

[
w̄(sn − τ) + 1

b x(sn − τ)
]2

w̄(sn − τ) + g(sn − τ)
e−x(sn−τ)

> abe−bw̄(sn−τ)

[
w̄(sn − τ) + 1

b x(sn − τ)
]2

w̄(sn − τ) + g(sn − τ)
.

Further computations offer

x(sn) > 2
a
µ

e−bw̄(sn−τ) w̄(sn − τ)
w̄(sn − τ) + g(sn − τ)

x(sn − τ)

≥ 2
a
µ

e−bw̄(sn−τ)x(sn − τ) ≥
a
µ
·

2
el · x(sn − τ)

> x(sn − τ),

since x(sn − τ) < 0 and the hypothesis (H2) holds. Hence, we get x(sn) > x(sn − τ), which is a
contradiction to the second equality of (3.2).

Next, let

Θ(t, u) = abe−bw̄(t−τ)
{

w̄2(t − τ)
w̄(t − τ) + g(t − τ)

−
[bw̄(t − τ) + u]2

b
[
bw̄(t − τ) + u + bg(t − τ)

]e−u

}
,
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and by choosing v = w̄(t − τ) = w̄(t)(≥ w̄∗ ≥ b̄), then we have

∂Θ(t, u)
∂u

= abe−bvΞ′(u),

and (2.2) becomes
x′(t) + µx(t) + Θ(t, x(t − τ)) − Θ(t, 0) = 0.

The mean value theorem implies that the above equation can be written as

x′(t) + µx(t) + ζ(t)x(t − τ) = 0, (3.6)

where
ζ(t) =

∂Θ(t, u)
∂u

∣∣∣∣∣
u=η(t)

= abe−bvΞ′(η(t)),

and η(t) is located between 0 and x(t − τ), which results in

min{0, x(t − τ)} ≤ η(t) ≤ max{0, x(t − τ)}.

In view of x(t − τ) > −bw̄(t − τ) = −bw̄(t), we gain η(t) > −bw̄(t).
Note that

|Ξ′(u)| =
∣∣∣∣∣ (bv + u)e−u

b(bv + u + bg(t − τ))2 [u2 + (2bv + bg(t − τ) − 1)u + (bv)2 + (bg(t − τ) − 1)bv − 2bg(t − τ)]
∣∣∣∣∣

<

∣∣∣∣∣1b (bv + u)e−u
∣∣∣∣∣ < 1

b
ebv,

then by setting u = η(t)(> −bv), we have

|ζ(t)| ≤ abe−bw̄(t−τ) ·
1
b

ebw̄(t−τ) = a. (3.7)

Multiplying Eq (3.6) by eµt and then integrating over [αn, tn] and [βn, sn], we obtain

x(tn) =
∫ tn

αn

−ζ(s)eµ(s−tn)x(s − τ)ds, (3.8)

and
−x(sn) =

∫ sn

βn

ζ(s)eµ(s−sn)x(s − τ)ds, (3.9)

respectively.
Denote

λ̄ = lim sup
t→+∞

x(t) = lim sup
n→+∞

x(tn), λ = lim inf
t→+∞

x(t) = lim inf
n→+∞

x(sn). (3.10)

Now, for any given ε > 0, there exists a sufficiently large n0 such that for any t ≥ n0, we have
x(t − τ) < λ̄ + ε and x(t − τ) > λ − ε, i.e., −x(t − τ) < −λ + ε. Thus, |x(t − τ)| < M + ε, t ≥ n0, where
M = max{λ̄,−λ}. Injecting this into (3.8) and (3.9) together with the facts that tn − τ ≤ αn, sn − τ ≤ βn

and (3.7), we get

0 ≤ x(tn) <
(∫ tn

tn−τ
aeµ(s−tn)ds

)
(M + ε) = γ(M + ε)
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and

0 ≤ −x(sn) <
(∫ sn

sn−τ

aeµ(s−sn)ds
)

(M + ε) = γ(M + ε);

that is,
0 ≤ x(tn) < γ(M + ε) (3.11)

and
0 ≤ −x(sn) < γ(M + ε). (3.12)

Considering the fact that ε > 0 is arbitrary and taking lim sup as n → +∞ in (3.11) and (3.12), we
arrive at

0 ≤ lim sup
n→+∞

x(tn) = λ̄ ≤ γM (3.13)

and
0 ≤ lim sup

n→+∞
(−x(sn)) = − lim inf

n→+∞
(x(sn)) = −λ ≤ γM. (3.14)

Finally, combining (3.13) and (3.14), we get 0 ≤ M ≤ γM. It then follows from the hypothesis (H3)
that M = 0; thus, λ̄ = λ = 0, so lim

t→+∞
x(t) = 0.

Case 2: Suppose that the function x(t) is not oscillatory about 0. Without loss of generality, we assume
that x(t) is eventually positive; in other words, there exists t0 ≥ 0 such that

x(t) > 0, t ≥ t0.

Now, assume by contradiction that (3.1) does not hold. Revisit (2.2) and we find that lim
t→+∞

x(t) = 0
as long as the limit of x(t) exists. Thus, the limit of x(t) does not exist, so

0 < λ̄ ≡ lim sup
t→+∞

x(t) > lim inf
t→+∞

x(t).

Hence, there is a sequence of points {tn} satisfying tn ≥ t0 + τ and

lim
n→+∞

tn = +∞, λ̄ = lim
n→+∞

x(tn),

and
x′(tn) ≥ 0, n = 1, 2, · · · . (3.15)

Clearly, we have the following inequality:

lim sup
n→+∞

x(tn − τ) ≤ λ̄.

Combining (2.2) and (3.15), we get

µx(tn) + abe−bw̄(tn−τ) w̄2(tn − τ)
w̄(tn − τ) + g(tn − τ)

≤abe−bw̄(tn−τ)

[
w̄(tn − τ) + 1

b x(tn − τ)
]2

w̄(tn − τ) + 1
b x(tn − τ) + g(tn − τ)

e−x(tn−τ)

<abe−bw̄(tn−τ)

[
w̄(tn − τ) + 1

b x(tn − τ)
]2

w̄(tn − τ) + g(tn − τ)
,
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and further computations provide

x(tn) <
a
µ
·

2w̄(tn − τ) + 1
b x(tn − τ)

w̄(tn − τ) + g(tn − τ)
e−bw̄(tn−τ) · x(tn − τ). (3.16)

Let
L(u) =

2u + p
u + g

e−bu, u ≥ b̄, p > 0,

where g = g(t − τ) is defined in (1.2), then

L′(u) =
[
−(2bu + bp − 2)(u + g) − (2u + p)

]
e−bu

(u + g)2 , u ≥ b̄, p > 0.

Clearly, L′(u) < 0 holds for u ≥ b̄ and p > 0, which implies that the function L(u) is strictly decreasing
for u ≥ b̄ and p > 0. Letting u = w̄(tn − τ) = w̄(tn)(≥ w̄∗ ≥ b̄) and p = 1

b x(tn − τ)(> 0) in L(u), we gain

2w̄(tn − τ) + 1
b x(tn − τ)

w̄(tn − τ) + g(tn − τ)
e−bw̄(tn−τ)

≤
2b̄ + 1

b x∗

b̄ + g(tn − τ)
e−l

≤
2l + x∗

l
e−l,

which, together with the hypothesis (H2), reduces (3.16) to x(tn) < m1
m2

x(tn − τ). Thus

lim sup
n→+∞

x(tn) = λ̄ ≤
m1

m2
lim sup

n→+∞
x(tn − τ) ≤

m1

m2
λ̄.

This contradicts the facts λ̄ > 0,m1,m2 ∈ Z+ and m1 < m2 and establishes the proof.

4. Discussion

Based on [42], in which a time-switched wild mosquito population suppression model with Ricker-
type density-dependent survival probability was proposed and investigated, focusing more on the bi-
ological sense, here we introduced the maturation delay of the mosquito species into that model and
obtained the core model (1.6). Meanwhile, by adopting the specific and critical release strategy that
the release period T of sterile males equals the maturation period τ of wild mosquitoes [37], we got
the resulting time-switched delay differential equations model (1.7)–(1.10). Note that, regarding the
core model, its growth term lacked monotonicity, which considerably obstructed the mathematical
exploration of its dynamical features as there was no existing broad-spectrum route to investigate.
Nevertheless, via an ingenious transformation presented in (2.1), we gained an equivalent equation
(2.2) of the core model. Subsequently, through concentrating our attention on (2.2) and studying the
qualitative properties of the limit superior and limit inferior of its solution, we derived the mirrored dy-
namics elucidated in Theorem 3.1. The findings in the current work can not only act as a supplement
to the theoretical study of the impact of time delay on the dynamical features harbored by the mosquito
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population suppression models, but also aid in designing more cost-effective strategies for preventing
and controlling dengue fever and other vector-borne diseases.

It should be stressed here that it was the periodically release, not the time lag, that made the delay
model admit w̄(t) as the unique periodic solution. This assertion can be inferred from the fact that
the corresponding delay-free model also admitted w̄(t) as the unique periodic solution. In fact, the
mirrored dynamics must be driven by the specific release strategy of T = τ, and it will disappear as
long as this release strategy is slightly changed such that T , τ. Furthermore, inspired by the findings
in [39] and [46] together with the accumulated knowledge about the dynamical features of the model,
we guessed that there were two thresholds τ∗ and τ∗∗ that played a central role in determining the
changing trend of the size of the amplitude of the periodic solution. More precisely, with τ increasing,
whether the amplitude was being increased depended on the relation between τ and the two thresholds:
It was increasing when τ was less than τ∗ and it was decreasing if τ was between τ∗ and τ∗∗, while it
exhibited no clear-cut regularity once τ exceeded τ∗∗.

Last but not least, we’d like to point out here that we only offered some theoretical insights into
the Ricker-type time-switched delay differential equations model (1.7)–(1.10), and there was neither
suitable data nor numerical examples provided to support and illustrate the analytical results. A pos-
sible reason is that model (1.7)–(1.10) contained the unimodal and non-monotonic population growth
term, the time delay and the periodic switches, each of which can induce extremely rich and rather
complicated model dynamics together with the resulting effects of the combination of the hypotheses
(H1)–(H3). Nevertheless, with a strong belief, we are sure that in the near future, the expected data
will be found in either a specific ecological environment of wild mosquitoes or some other disciplines.
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44. M. R. S. Kulenović, G. Ladas, Y. Sficas, Global attractivity in Nicholson’s blowflies, Appl. Anal.,
43 (1992), 109–124. https://doi.org/10.1080/00036819208840055
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