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Abstract: This paper establishes the existence of globally bounded classical solutions to a predator-
prey model with attraction-repulsion taxis in a smooth bounded domain of any dimensions with
Neumann boundary conditions. Moreover, the global stabilization of solutions with convergence rates
to constant steady states is obtained. Using the local time integrability of the L?>-norm of solutions,
we build up the basic energy estimates and derive the global boundedness of solutions by the Moser
iteration. The global stability of constant steady states is established based on the Lyapunov functional
method.
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1. Introduction and main results

A taxis is the movement of an organism in response to a stimulus such as chemical signal or the
presence of food. Taxes can be classified based on the types of stimulus, such as chemotaxis, prey-
taxis, galvanotaxis, phototaxis and so on. According to the direction of movements, the taxis is said
to be attractive (resp. repulsive) if the organism moves towards (resp. away from) the stimulus. In
the ecosystem, a widespread phenomenon is the prey-taxis, where predators move up the prey density
gradient, which is often referred to as the direct prey-taxis. However some predators may approach
the prey by tracking the chemical signals released by the prey, such as the smell of blood or specific
odo, and such movement is called indirect prey-taxis (cf. [1]). Since the pioneering modeling work
by Kareiva and Odell [2], prey-taxis models have been widely studied in recent years (cf. [3—12]),
followed by numerous extensions, such as three-species prey-taxis models (cf. [13—15]) and predator-
taxis models (cf. [16, 17]). The indirect prey-taxis models have also been well studied (cf. [18-20]).

Recently, a predator-prey model with attraction-repulsion taxis mechanisms was proposed by Bell
and Haskell in [21] to describe the interaction between direct prey-taxis and indirect chemotaxis, where
the direct prey-taxis describes the predator’s directional movement towards the prey density gradient,
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while the indirect chemotaxis models a defense mechanism in which the prey repels the predator by
releasing odour chemicals (like a fox breaking wind in order to escape from hunting dogs). The model
reads as

u, = dAu + u(a; — au — azv), xeQ, >0,

v, = V- (Vv + xvWw —&Vu) + pv(1 —v) + eazuv, xeQ, t>0,

w; = nAw + ru — yw, xeQ, t>0, (1.1)
Vu-v=Vv.-v=Vw.v =0, x€o0Q,t>0,
(u, v, w)(x,0) = (up, vy, wo)(x), x e,

where the unknown functions u(x, t), v(x, ) and w(x, ) denote the densities of the prey, predator and
prey-derived chemical repellent, respectively, at position x € Q and time ¢ > 0. Here, Q ¢ R" is a
bounded domain (habitat of species) with smooth boundary 0Q, and v is the unit outer normal vector
of 0Q. The parameters d, n, x, &, a1, az, as, e, p, r, y are all positive, where y > 0 and & > 0
denote the (attractive) prey-taxis and (repulsive) chemotaxis coefficients, respectively. The predator
v is assumed to be a generalist, so that it has a logistic growth term pv(1 — v) with intrinsic growth
rate p > 0. More modeling details with biological interpretations are referred to in [21]. We remark
that the predator-prey model with attraction-repulsion taxes has some similar structures to the so-
called attraction-repulsion chemotaxis model proposed originally in [22], where the species elicit both
attractive and repulsive chemicals (see [23-26] and references therein for some mathematical studies).
The initial data satisfy the following conditions:

vo € CUQ), ug, wo € WH(Q), and ug, vo, wo 2 0in Q. (1.2)

In [21], the global existence of strong solutions to (1.1) was established in one dimension (n = 1),
and the existence of nontrivial steady state solutions alongside pattern formation was studied by the
bifurcation theory. The main purpose of this paper is to study the global dynamics of (1.1) in higher
dimensional spaces, which are usually more physical in the real world. Specifically, we shall show
the existence of global classical solutions in all dimensions and explore the global stability of constant
steady states, by which we may see how parameter values play roles in determining these dynamical
properties of solutions.

The first main result is concerned with the global existence and boundedness of solutions to (1.1).
For the convenience of presentation, we let

a
K, = max {a—l, ||M0||Loo(Q)} , K, = max {Cl]K] + asz,a3K1} (13)
2

and

K3(z) =

2% 7 (n +2(z - DK?

o (1.4)
22 — 12\ 1

d: 741

Then, the result on the global boundedness of solutions to (1.1) is stated as follows.
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Theorem 1.1 (Global existence). Let Q C R"(n > 1) be a bounded domain with smooth boundary and
parameters d, n, x, &, ay, ay, as, e, p, 1, y be positive. If

>0, n<?2,

P > 21<3([g]+1)’ n> 2.

[5]+1
where K5(p) is defined in (1.4), then for any initial data (uy, vy, wo) satisfying (1.2), the system (1.1)
admits a unique classical solution (u,v,w) satisfying

u, v, w € COQ x [0, +00)) N C*'(Q x (0, +00)),
and u,v,w > 0in Q X (0, +00). Moreover, there exists a constant C > 0 independent of t such that
llee(, Dllwreoy + [IVEs Dll=@) + IWC, Dllwie) < C - forallt > 0.

Our next goal is to explore the large-time behavior of solutions to (1.1). Simple calculations show
the system (1.1) has four possible homogeneous equilibria as classified below:

(Oa 0’ O)’ (09 17 0)9 (Z_;a 09 %)9 ifal < as,
(0,0,0), (0,1,0), (5,0, 72), (s, viows),  ifay > as,
with
_ pla; — a3) _ eaas + pas _ rp(a; — as) (1.5)
" opaytedd T payted’ T y(pap + ed '

where the trivial equilibrium (0, 0, 0) is called the extinction steady state, (0, 1, 0) is the predator-only
steady state, and (u., v., w,) is the coexistence steady state. We shall show that if a; > a3, then the
coexistence steady state is globally asymptotically stable with exponential convergence rate, provided
that &€ and y are suitably small, while if a; < a3, the predator-only steady state is globally asymptotically
stable with exponential or algebraic convergence rate when & and y are suitably small. To state our
results, we denote

4d - 2 a’K?(pa, + ea?
=— p(a) — az) 0= # e, _ YN 32 12(p 2 3) (1.6)
K#(eayas + pa) a3 dp*r*(a; — a3)
and ) 6
& ed, 16nya
A = - B = ) D= b 17
4d a r? (1.7)

where K is defined in (1.3). Then, the global stability result is stated in the following theorem.

Theorem 1.2 (Global stability). Let the assumptions in Theorem 1.1 hold. Then, the following results
hold.
(1) Let ay > a3. If € and x satisfy
(Cy = £)(=y* + 20y - %)

&< F(d) + V02 — ez) and y* < ¥ max ,
yela.b] y

2
where a = max{‘%,(l) - VO?2 - ¢2},b = ® + VO? — ¢, then there exist some constants T,, C,
a > 0 such that the solution (u,v,w) obtained in Theorem 1.1 satisfies for all t > T,

e+, 1) — wallz (@) + V(5 1) = Villzo@) + IWC5 D) = Wiy < Ce™.
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(2) Let a; < a3, If € and y satisfy

ddea,
aj

£ < and )(2<D(A+B—2\/fﬁ),

then there exist some constants T, C, B > 0 such that the solution (u,v,w) obtained in Theorem
1.1 satisfies, forall t > T,

Ce™P ifa) < as,

(-, Dl + IVC, 1) = o) + [WC, Dl o) <
L>(Q) L>(Q) L*(Q) C(t+ 1)—1 l‘fal = a;.

Remark 1.1. In the biological view, the relative sizes of a; and a, determine the coexistence of the
system. The results indicated that a large Z—; facilitates the coexistence of the species.

The rest of this paper is organized as follows. In Section 2, we state the local existence of solutions
to (1.1) with extensibility conditions. Then, we deduce some a priori estimates and prove Theorem 1.1
in Section 3. Finally, we show the global convergence to the constant steady states and prove Theorem
1.2 in Section 4.

2. Preliminary

For convenience, in what follows we shall use C;(i = 1,2, - - - ) to denote a generic positive constant
which may vary from line to line. For simplicity, we abbreviate fot fg f(, s)dxds and fg f(,Hdx as

fot fQ f and fQ f, respectively. The local existence and extensibility result of problem (1.1) can be
directly established by the well-known Amman’s theory for triangular parabolic systems (cf. [27,28]).
Below, we shall present the local existence theorem without proof for brevity, and we refer to [21] for
the proof in one dimension as a reference.

Lemma 2.1 (Local existence and extensibility). Let Q C R" be a bounded domain with smooth
boundary. The parameters d, n, x, &, ay, as, as, e, p, 1, 'y are positive. Then, for the initial data
(uo, vo, wo) satisfying (1.2), there exists T, € (0,00] such that the system (1.1) admits a unique
classical solution (u,v,w) satisfying

1, v, w € CAQX [0, Tax)) N C*'(Q X (0, Ta)),
and u,v,w > 0in Q X (0, T,,.c). Moreover, we have

either Tyax = +00 or Timsup (-, Dy + VG Dllz=@ + WC, Do) = +oo.
[/Tmax

We recall some well-known results which will be used later frequently. The first one is an uniform
Gronwall inequality [29].

Lemma 2.2. Let T,y > 0, T € (0, T)0x). Suppose that ¢y, c,, y are three positive locally integrable
functions on (0, T,,..) such that y' is locally integrable on (0, T,,.,) and satisfies

V(@) < ci(Oy@®) + cat)  forall t € (0, Tyar).
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If
I+T 1+T 1+T
f c; < Cy, f ¢ < Oy, f y<Cs forallte|0,Tu, —1),
t t t

where Ci(i = 1,2, 3) are positive constants, then
C
() < (—3 + Cz) et forallt € [1, T nax)-
T

Next, we recall a basic inequality [30].

Lemma 2.3. Let p € [1, ). Then, the following inequality holds:

2(p+1 2 2 2(p-1 2 12
f VulPPD < 2(4p% + 1)l o f IVul?P~D| Dyl
Q Q

for any u € C*(Q) satisfying % = 0 on 0Q, where D*u denotes the Hessian of u.
The last one is a Gagliardo-Nirenberg type inequality shown in [31, Lemma 2.5].
Lemma 2.4. Let Q be a bounded domain in R* with smooth boundary. Then, for any ¢ € W**(Q)
satisfying %lag = 0, there exists a positive constant C depending only on Q such that
1 1
Vel < CUAE o IV o, + IVelz)). @1

3. Global existence

In this section, we establish the global boundedness of solutions to the system (1.1). To this end,
we will proceed with several steps to derive a priori estimates for the solution of the system (1.1). The
first one is the uniform-in-time L*(£2) boundedness of u.

Lemma 3.1. Let (u, v, w) be the solution of (1.1) and K, be as defined in (1.3). Then, we have
lullz=) < K1 forall t € (0, Thax) -

Furthermore, there is a constant C > 0 such that for any 0 < v < min{T,,.., 1}, it follows that
+T
f Vul> < C forall t € (0, T4 — 7).
t

Proof. The result is a direct consequence of the maximum principle applied to the first equation in
(1.1). Indeed, if we let # = max {Z_;’ ||u0||Lm(Q)}, then u satisfies

i, =z dAiu+u(a, —axit —asv), x€Q,t>0,
Vi-v=0, x€e o, t>0,
u(x,0) > up(x), x €.

Apparently, the comparison principle of parabolic equations gives u < iz on Q X (0, Tyax).
Next, we multiply the first equation of (1.1) by u and integrate the result to get

d
—fu2+df|Vu|2:alfuz—fu(azu+a3v)S01K12|Q|-
dt Jo Q Q Q

Then, the integration of the above inequality with respect to ¢ over (¢, + T7) completes the proof by
noting that [, u3 is bounded.
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Having at hand the uniform-in-time L*(2) boundedness of u, the a priori estimate of w follows
immediately.

Lemma 3.2. Let (u, v, w) be the solution of (1.1). We can find a constant C > 0 satisfying
Wllwie) < C  forallt € (0, Tpay) .

Proof. Noting the boundedness of [|u||;~q) from Lemma 3.1, we get the desired result from the third
equation of (1.1) and the regularity theorem [32, Lemma 1].

Now, the a priori estimate of v can be obtained as below.

Lemma 3.3. Let (u, v, w) be the solution of (1.1). Then, there exists a constant C > 0 such that

fv <C forallte (0,T), 3.1
Q

and

1+T
f f V< C forallt e (0, Ty — 7). (3.2)
t Q

where T is a constant such that 0 < v < min{7T .., 1}.

Proof. Integrating the second equation of (1.1) over Q by parts, using Young’s inequality and Lemma
3.1, we find some constant C; > 0 such that

i o= [ f e |
— |l v=p | v=p | v+eas | uv
dt Jo Q Q Q
<(,0+€Cl3 sup ||u||L°°(Q))fV_pr2 (3.3)
te(OaTmax) Q Q

o 2Ja

Hence, (3.1) is obtained by the Gronwall inequality. Integrating (3.3) over (z,t + 7), we get (3.2)
immediately.

Due to the estimates of «# and v obtained in Lemmas 3.1 and 3.3 respectively, we have the following
improved uniform-in-time L?(Q) boundedness of Vu and the space-time L? boundedness of Au when
n=2.

Lemma 3.4. Let (u,v,w) be the solution of (1.1). If n = 2, then we can find a constant C > 0 such that

f IVul> < C  forallt € (0, Tpax) (3.4)
Q

and

I+T
f f Aul> < C  forallt e (0, Tper —T), (3.5)
t Q

where T is defined in Lemma 3.3.
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Proof. Integrating the first equation of (1.1) by parts and using Lemma 3.1, we find a constant C; > 0

such that 4
—fqu|2:2fVu-Vu,:—2fu,Au
dt Jg o 0

=-2 f Au (dAu +aju — ayu® — a3uv) (3.6)
Q

< -2d f |Aul> + C, f v+ D|Au| forallz e (0, Ty
Q Q

The Gagliardo-Nirenberg inequality in Lemma 2.4, Young’s inequality and Lemma 3.1 yield some
constants C;, C3 > 0 satisfying

d
2 2 2 2
fIVMI = [IVullp ) < G2 (IIAullem)llulle(g) + IIMIILM(Q)) <5 | 1AulT+ G
Q Q

and
d
C, f(v+1)|Au|<—flAu|2+C3fv2+C3 forall 7 € (0, Ty
Q 2 Q Q

which along with (3.6) imply

d
— f IVul> + f IVul> + d f |Aul®> < C; f Vv +2C; forallre (0,T,,,). (3.7)
dt Jo 0 0 0

Then, applications of Lemma 2.2, 3.1 and 3.3 give (3.4). Finally, (3.5) can be obtained by integrating
(3.7) over (¢, + 7).

Now, the uniform-in-time boundedness of v in L?(Q) can be established when n = 2.

Lemma 3.5. Let (u, v, w) be the solution of (1.1). If n = 2, then there exists a constant C > 0 such that

f V< C forallte0,Tpa).
Q

Proof. Multiplying the second equation of (1.1) by v, integrating the result by parts and using Young’s
inequality, we have

d
—fv2+2f|Vv|2:—2vaVv-Vw+2§vau-Vv
dt Q Q Q Q
+2pfv2—2pfv3+26a3fuv2
Q Q Q
< f Vv + 27 IVl e f v+ 287 f Vi |Vul?
Q Q Q
+2pfv2—2pfv3+2€a3||u||LoO(Q)fv2,
Q Q Q

which along with Lemma 3.1 and Lemma 3.2 gives some constant C; > 0 such that

d
— f v+ f IVv]* < 282 f VIVul> + C, f v —2p f v forall f € (0, Ty - (3.8)
dt O Q Q Q Q
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Using Lemmas 3.1 and 3.3, Holder’s inequality, Lemma 2.4 and Young’s inequality, we find some
constants C,, C3, C4 > 0 such that

2 2 2 2
Zé:fv |VM| < 2§||V||L4(Q)”VM”L4(Q)
Q

1

1 1 2 1 1 2
<Ca (V¥ Mgy + M) (180 g g+ il )

(3.9
<C3(||VV||L2(Q)||V||L2(Q)||Au||L2(Q) + ||VV||L2(Q)”V||L2(Q)
Azl g, + P2 )
<UVVIE g, + Ca (1 + AUl ) M, forall £ € (0, Toua)
Furthermore, Young’s inequality yields some constant Cs > 0 such that
C, fvz -2p f v < Cs forallte (0, ). (3.10)
Q Q

Substituting (3.9) and (3.10) into (3.8), we get

d

2 2 2
7). < Cy (14 1Aul, ) VP, ) + Cs - forall £ € (0, Tas) .

L

which alongside Lemma 2.2, Lemma 3.3 and Lemma 3.4 completes the proof.

To get the global existence of solutions in any dimensions, we derive the following functional
inequality which gives an a priori estimate on Vu.

Lemma 3.6. Let (u, v, w) be the solution of (1.1) and g > 2. If n > 1, then there exists a constant C > 0

such that
d 2q 2(g-1)1n2,,12
7 Vul|“? + dg |Vu| |D~u|
Q Q

+2(g - 1)K?
<q(n (Z, NK; f(vz " 1) IVul?™D + C forallt € (0, Ty,
Q

where K, is defined in (1.3).
Proof. From the first equation of (1.1) and the fact 2Vu - VAu = A|Vul* — 2|D?ul?, it follows that

d
— | IVul* =2¢ | |VuP“""Vu - Vu,
dt
Q Q
:2qf IVu[24 vy . v (dAu +aju — au® - a3uv)
Q

=dg f IVul? T DAIVu)* - 2dq f |Vu|?9=D|D?ul?
Q Q

+ 2(][ IVu[*4~YVy . v (alu —au’ - a3uv)
Q
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which implies

d
— f IVu™ + 2dgq f V29D D?
dt Jo Q

:dqf IVul?=DAVul]?® + 2qf IVu[*4YVy . v (alu — au’ — (13MV)
Q Q

=:1L1+1, forallte (0,T,.).

(3.11)

Now, we estimate the right hand side of (3.11). Choosing s € (0, %) and

6=2"71 "9,
374
we get
1 s+3 1 1
S =0(=-=|+1-0)q,
2 n (2 n) ( U

which, along with the Gagliardo-Nirenberg inequality, Young’s inequality and the embedding
W*32(Q) ¢ WH(0Q) c L2(9),

gives some constants Cy, C,, C3, C4 > 0 such that

O|Vul? 2
2Ag-DZL7 7 2q9 _ q
2 5 <Ci | IVu = Co[[IVad]| 2

0Q

2
q
<Co[IVaut?|[ 12,

260
vt

<C3||V|V”|q”L2(Q)

20g-1)
q2

2(1-6)
Lé Q)

+Cy forallte (0,7,

+ C3|||Vu|q||i%(g)

R LA

()
Therefore, it holds that
A|Vul?
I, =dq f |vu|2<q-1>ﬂ—dq f V|Vu|*™D . V|Vul?
0 dv Q

2d(g — 1 4d(g — 1
2l f VIVUlP + Cydg — 244 =D f VIVl
q Q q Q

2d(q -1
<_ 2d(g—-1) f IVIVul?l* + Cadg for all ¢ € (0, Tpar)-
q Q

Owning to the fact |Au| < +/n|D?ul, Young’s inequality and Lemma 3.1, we have
L =-2q(g-1) f (alu —au® — aguv) IVul* 2V |Vul)® - Vu
Q

- 2qf (alu —au® — (13MV) [Vu|9DAu
Q
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<2q(q - DK, f v + DIVul2 |V|VuP| [Vl
Q
+2g Vnk, f (v + D|Vu?=V|D?y|
Q

d(g -1 24(q - DK
944D (g e gl + 2297 D8 e e
2 le) d Q

nk?
+dg f Va2 DD + £222 f (v + 1) [Var
d Ja

Zd
2dg - 1) f VIVl + dg f VUl D
q Q Q

N q(n +2(q - 1)K;
d

f (v2 + 1) IVul?D  forall t € (0, Tpyy),
Q

where K is defined in (1.3). Hence, substituting the estimates /; and /, into (3.11), we finish the proof
of the lemma.

Now, we show the following functional inequality to derive the a priori estimate on v in any
dimensions.

Lemma 3.7. Let (u,v,w) be the solution of (1.1) and q > 2. If n > 1, we can find a constant C > 0

such that
d 2(g -1 q|?
—qu+(q—)f‘Vv2 +quvq+1<q(q—1)§2qu|Vu|2+Cqu
dt Jo q Q Q Q Q

forallt € (0, T,.,).
Proof. Utilizing the second equation of (1.1) and integration by parts, we get

ve :qf vi-ly, = qf vI=H (V- (Vv + xvVw — &vVu) + v (o(1 — v) + easu))
Q Q Q

:—q(q—l)fv"_levlz—/\(q(q—l)fv"_IVw-Vv (3.12)
Q Q

+§61(q—1)fqu_1Vu-Vv+pqu"—pqu"“+ea3q‘fguvq.

Now, we estimate the right hand side of (3.12). An application of Young’s inequality and Lemma
3.2 yields some constant C; > 0 such that

—valg—1) f VT Ve <xg(@— 1) sup [Vl f V1|V
Q Q

1€(0,Tax)

1
U f VWP £ C f ¥
4 Q Q

fqlg—1) f VIV W < "(q4 D f VIR + glg - DE f VIV,
Q Q Q
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which along with (3.12), Lemma 3.1 and the fact

i 4 .p
V2 = = |va

q2

gives a constant C, > 0 such that

d 2(g -1 q
4 (e, Ha-D f ‘va
dt Jo q Q

<q(q - D& f VIIVul® + (pg + Cl)qu —qu‘vq+1 + 6613quth
Q Q Q Q

<q(q - D& f V| Vul? —,oqfvqul +C, f vl forallz € (0, Thay) -
Q Q Q

Hence, we finish the proof of the lemma.

2

Combining Lemmas 3.6 and 3.7, we have the following inequality which can help us to achieve the
global existence of solutions in any dimensions.

Lemma 3.8. Let (u,v,w) be the solution of (1.1)and p > 2. If n > 1, we can find a constant C > 0

such that
d 2p -1 12
—(fIVu|2”+fv”)+(p—)f'Vv2 +f|Vu|2”+fv”
dr \Jg Q p Q Q Q

< (K3(p) - %) f v 1 € forallt € (0, Ty,
Q

where K5(p) is defined in (1.4).

Proof. Combining Lemmas 3.6 and 3.7, we see for any p = g > 2 there exists a constant C; > 0 such

that for all ¢ € (0, T4y)
2
+dp f IVul**~D|D?ul® + pp f v
Q Q

2(p -1 »
i(f |Vu|2”+fv”)+ (P )f‘sz
dt \ Jo Q p Q

+2(p — 1)K;
LSOO [ v s pip- g [ v (313
Q Q

+C, f IVul**~Y + C, f v+ C.
Q Q

Now, we estimate the right hand side of the above inequality. Indeed, owing to Lemma 2.3 and
Young’s inequality, for all ¢ € (0, T',,,), we have

2
p(n+2(p = 1)K; f P
d Q

< - dp 5 f|Vu|2(p+l)
8(4p +n)||u||Loo(Q) Q

_pl prl
b2 [ dp(p + 1) ) 2(p<n+2<p—1>>1<§)2 f
P+ 180 — P + millEeg d o

p+l
2

) ((p—l)(4p2+n)K12)% fg yp!

I p (n+2(p - DK?
<C{Tpf|Vu|2(p_l)|D2u|2+ 2 p(n (p~ DK
Q

dar p+1
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and

p(p—l)f2 f V|Vl

f | 2(p+l)
Ss@p+ n)||u||m)

p dpp+ ) \” O
+p+1[8<4pZ+n>||un ] (p(p = 1E) fg"

L=(Q)

(p =D& !
flvu|2(p 1)|D2u|2 d; (Pp_'_lf) ((4p2+n)K12)”fvp+1,

Q
where K; and K, are defined in (1.3). Similarly, we can find a constant C, > 0 such that

f|VM|2(p D ¢ dp fl u|2(p+l)+C2
Q 8(4p +n)”u||Loo(Q)

d
<TP f IVul*PD|\D*ul* + C, forallt e (0, Tpax) -
Q

Substituting the above estimates into (3.13), we get

2(p-1 r|2
i(f|Vu|2p+fv”)+Mf‘Vv2
dt Q p Q

d

+ prVulz(’7 DID*ul? +ppfv"’Jrl
4 Ja Q

<K3(p)fv”+1 + C, fv” +C,+C, forallte (0,T ),
Q Q

(3.14)

where K3(p) is given in (1.4). Furthermore, we can use Young’s inequality and Lemma 2.3 to get a

constant Cz > 0 such that

and

d
f Vu?? < p f VUl 4 ¢,
Q 8(4P +”)||M||LM(Q)

<T f [Vul* P Y|D?ul> + C; forallt e (0,7,
Q

which together with (3.14) finishes the proof.

Next, we shall deduce a criterion of global boundedness of solutions for the system (1.1) inspired

by an idea of [33].
Lemma 3.9. Let n > 1. If there exist M > 0 and po > 5 such that

f\/’po <M for all t € (0, Tyax)
Q

then T,,,, = +0o. Moreover, there exists C > 0 such that

lluC-, Dllwre@) + IVC, Dlle@) + W Dllwie@) < € forall 1> 0.

(3.15)
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Proof. We divide the proof into two steps.
Step 1: We claim that there exists a constant C; > 0 such that

f v <€y forallfe (0, Ty .
Q

Indeed, due to Lemma 3.8, for any p = 2p,, there exists a constant C, > 0 such that

d 2py — 1
_(f |Vul4po+fv2po)+po—f|vvpo|2+flvu|4po+fv2p0
dr \Jo Q Po Q o o (3.16)

<(K3(2po) — ppo) f VP4 €, forall 1 € (0, Tan)-
Q

Let
n 2py+2

T+ 22p0+ 1

€ (0,1).

Then, 2’;0“9 < I due to pg > 3. By the Gagliardo-Nirenberg inequality, Young’s inequality and

(3.15), we can find some constants Cz, C4 > 0 such that

2])O+l
2 1
(K5(2po) — ppo) f v = (K3(2po) = ppo) IVl o,
Q L0 (Q)
2p0+l( -0) 2p0+19 2pp+l
<C’3 (HVPOHLI(Q) ”VVPOHLZ(Q) + ||vp0||Ll(Q))
2pg +l(1 9) 2’;0+1 2pg+1
P0 "0
<C3 M 7o ||V ||L2(Q) +M Po
2po — 1
< f VPP + Cy forall £ € (0, T ),
Q

which along with (3.16) implies

( f |Vul*" + f 2170) f |Vul*" + f VP < Cy+ Cy forall 7 € (0, Thgy)
Q

Therefore, the claim follows from the Gronwall inequality applied to the above inequality.

Step 2: Thanks to the regularity theorem [32, Lemma 1], we can find a constant C5 > 0 such that
IVull =y < Cs due to 2py > n. With (3.12) and Lemmas 3.1 and 3.2, we get a constant Cg > 0 such
that for any p > 2

7 VP+P(P—1)fV" 2|VVI2<P(P—1)(C6X+Cs§)fvp IIVVI+P(P+€asK1)fvp (3.17)

Thanks to Young’s inequality, we find a constant C; > 0 such that

p(p = D)(Cox + Csd) f vl < 221 f ATV + Coplp - 1) f W,
Q

which together with (3.17) implies

2 -1 »
d e pp=1) f p-D f VAR < plp - DGy f W, (3.18)
dt p 0 o
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with Cs = C7 + p + ea3K; + 1. Applying 1 + p" < (1 + p)" and the following inequality [34]
1117, < ellVAIZ. + Co(l + & DI,

2_ we find a constant C;o > 0 such that

P2C8 ’

2(p -1
p(p—l)Cgfup<(p—)f‘Vug
Q P Q

Substituting (3.19) into (3.18), we have

d o\
d—fu”ﬂ)(p—l)fu”<Clop(p—1)(1+p)"(fu2) :
tJa Q Q

Then, employing the standard Moser iteration in [35] or a similar argument as in [34], we can prove
that there exists a constant C;; > 0 such that

with f =v? and & =

2
2+Clop(P—1)(1+P")(f ug) : (3.19)
Q

IVllzo@) < Ci1 - for all £ € (0, Typa)-
Thus, with the help of Lemma 3.2, we finish the proof.

Now, utilizing the criterion in Lemma 3.9, we prove the global existence and boundedness of
solutions for the system (1.1).

Proof of Theorem 1.1. If n < 2, then the conclusion of the theorem can be obtained by Lemmas 3.3,

3.5and 3.9. If n > 3 and
| 2K (|2]+1)

2] +1
then according to Lemma 3.8, by fixing p = [5] + 1 we can find a constant C; > 0 such that

d n n n n
—( f \Vul21+2 4 f v[2]+1)+ f \Vul21+2 4 f el < ¢, forallt € (0,T,,,),
dt\Ja Q 0 Q

which along with the Gronwall inequality gives a constant C, > 0,

b

fv[;]_H < C2 forall t € (0, Tmax)’
Q

Together with Lemma 3.9, we finish the proof by Lemma 2.1.
4. Stabilization

In this section, we will employ suitable Lyapunov functionals to study the large-time behavior of u,
v and w. We first improve the regularity of the solution.

Lemma 4.1. There exist constants 01,0,,6; € (0, 1) and C > 0 such that

oy + ||V||C2+92,]+62 + [[wl| <C forallt>1.

|| _ _ o _
T Qxe+1]) 7 (Qx[t,t+1]) 1 Q1))

In particular, one can find C > 0 such that
”VMHLw(Q) + ||VV||L°<7(Q) + ”VWHLw(Q) <C fOI" allt > 1.
Proof. The conclusion is a consequence of the regularity of parabolic equations in [36].

We split our analysis into two cases: a; > a3 and a; < as.
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4.1. Coexistence: a, > as

We know that there are four homogeneous equilibria (0,0, 0), (0, 1,0), (%, 0, %) and (u., v, w,)
when a; > as, where u,, v, and w, are defined in (1.5). In this case, we shall prove the coexistence
steady state (u.,v.,w.) is globally exponentially stable under certain conditions. Define an energy
functional for (1.1) as follows:

Q U, Q Vi 2 Q

where £; and &, are to be determined below.

Proof of Theorem 1.2—(1). We complete the proof in four steps.
Step 1: The parameters €; and &, can be chosen in the following way. First, we recall from (1.5)

and (1.6) that

4du, 2 asK?
r=0b =220, g TIN01 1)
Kv, a; dp*riu,
Let 5 24 s 5
YTy &)=y +20y—¢)
f) = , y>0.

y
It is clear that f € C%((0, +0)). Then, if

2
F<®+ Vo2 - ¢?,

the following holds:

*Kiv. 2 2
&K < a2p+e+_ azp%+e. 4.2)
4du, a% as ag
Under (4.2), we leta = max{%,d) - Vo2 - e2} and b = ® + VO? — ¢2 with a < b. Then, f(y) is
continuous on [a, b] with f(a) = f(b) = 0, and consequently f(y) must attain the maximum at some
point, say &, in (a, b), namely f(g) = m[ai(] f(). Then, a < & < b, or equivalently (see (4.1))
y€la,

2utv, 2 2 2 2
max §uv’ a2p+e__ azp@+e <81<ﬂ+€+— azp%+e. 4.3)
ddu. ~ a3 as a3 a3 as a

Next, we assume y > 0 is suitably small such that

a’K? (4du, 2
)(2<f(,91):y77 3 1 ( i —52)(—8%+2( Z§p+e)81—ez)

dor*u.e; \ v.K? :
2 2
as(e; —e) )
- 2

4
M (4du*8] - fzv*Klz) (a2p81 - )

dpr?u,v.&

which implies

dy*u,v’e - 4y ( 05(81 - 6)2)
— lappe, — ——|.
n (4du*v*81 - fznglz) pr? 4
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Hence, there exists a constant &, > 0 such that

duviel o | e - e>2)
<& < — |@per - ————
n (4d”*v*81 - szfo) pr 4
which along with Lemma 3.1 yields
duvien & e - o
: S o R 4.4
n (4du*v*81 - fzvzuz) & pr_z P& 1 (4.4)

Step 2: We claim
l — wllz) + IV = villzo) + W = Wellzo@) = 0 ast — +oo.

Indeed, using the equations in system (1.1) along with integration by parts, we have

d u u-—u,
E‘ (M—M*—M*IHM—*)ZL » U;
V 2
=—du fl i f(u—u*)(al—azu—aw)
V 2
:—du*fl;l —azf(u—u*)Z—agf(u—u*)(v—v*).
Q Q Q
Similarly, we obtain
d ( n v) fv—v*
— v—v,—v.In—| = vy
dt Jo Vi
Vv|? VvV Vu-V
=—y, | ‘;l —)(v*f v W f uevv f(v—v*)(p—pv+ea3u)
Q V Q Q Q
o [

|Vv|2 va VW Vu Vv
=—v, — XV«

—Pf(v—v*) +easf(u—u)(v—v*)

if(w—w*)z :ZI(W—W*)W,:Zf(w—w*)(nAw+ru—yw)
dt Jgo Q Q

:—2nf|Vw|2+2rf(u—u*)(w—w*)—2yf(w—w*)2 for all ¢ > 0.
Q Q Q

and

Then, it follows that

d Vul? Vvl?
—T(t):—du*slfl u v*fl v| —n82f|VW|2
dt Q M2
va Vw fVu Vv
_)(v*
Q Q

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13458—13482.
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—a281f(u—u*)z—;of(v—v*)z—Vszf(w—w*)2
Q

Q Q
—asz(e; —e) f(u —u)(v—v.) +re; f(u —u)(w—w,)
Q 0
=:-X'SX-Y'TY,
where X = (Vu, Vv, Vw), Y = (u — u.,v —v,,w —w,), and
du, 3 _
a2 0 wo 2 o
_ SV Vi X Vs — az(er—e
S=1-% ¢ w73 p 0
-= 0 V&

0 L e

Note that (4.3) yields
dM*V*S] _ fzvi > V% (4du*8 _ égZ) > 0’
w2 442 442 K12
and (4.4) gives
ndu.v.£,&, dy*uvie, névie >0
4uy? 4y2 '

122
The above results indicate that matrix S is positive definite. Using (4.3) and (4.4) again, we observe

that ) )
as(e; —e
e SO0

and ) )
ove. e przeg ayy(e; —e) & >0

2PYE182 4 4 .

which imply that matrix 7 is positive definite. Therefore, one can choose a constant C; > 0 such that

i?‘(r) <-C ( f (u—u)’ + f (v =)+ f (w— w*)z) forall # > 0. (4.5)
dt Q Q Q

Integrating the above inequality with respect to time, we get a constant C, > 0 satisfying

foof(u_u*)z_'_foo (v_v*)2+foof(w_w*)2<c2’
1 Q 1 Q 1 Q

which together with the uniform continuity of u, v and w due to Lemma 4.1 yields
f(u —u)’ + f(v —v)t+ f(w -w,)? >0, ast— +oo. (4.6)
Q Q Q
By the Gagliardo-Nirenberg inequality, we can find a constant C3 > 0 such that
n_ 2
el — 7 (4.7)

||I/t - M*HL"“(Q) < C3||I/l - u*”wl,oo(g)
4.8)

2
n+2

Volume 19, Issue 12, 13458—13482.
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and ,
which along with (4.6) and Lemma 4.1 prove the claim.

Step 3: From the L’Hopital rule, it holds that for any 55 > 0

' s—so—soln% ‘ 1—S—S0 | 1
lim > =lim ——=1Iim — = —,
550 (s —s9) s—s0 2(8 — §g)  s—s0 28 28

which gives a constant 7 > 0 such that for all |s — so| <77

1
(5= 50> <5 —50—soln— < —(s5 — s0)>. (4.10)
4S0 S0 S0

By (4.6), there exists T; > 1 such that

ll — wllr=y + IV = villzo) + W = wellpo) <mp forallz > T;.

Therefore, by (4.10), we get

1 1
f(u—u*)2<f(u—u*—u*lnl)<—f(u—u*)z forall 1 > T, 4.11)
4M* Q Q u Q

* u*

1 1
f(v ) < f(v v, —v.In 1) <— f(v— v forallr>T,. 4.12)
4V* [e) Q Vi Ve Jo

Step 4: From (4.11) and (4.12), it follows that

F (1) <max{ﬂ,l,@}(f(u—u*)%f(v—v*)%f(w—w*)z),
u, v, 2 Q Q Q

which alongside (4.5) yields a constant C4 > 0 such that

and

d
ET(I) < —-CsF(t) forallt>T,.
This immediately gives a constant Cs > 0 such that
F (1) < Cse ' forallt>T).

Hence, utilizing (4.11) and (4.12) again, one obtains a constant Cg > 0 such that

f(u —u) + f(v —-v.)? + f(w —w,)? < Cee™ forallt>T;.
Q Q Q

Finally, by (4.7)—(4.9) and Lemma 4.1, we get the decay rates of |lu — w.||z=q, [V = V.= and
Ilw — w.llz=), as claimed in Theorem 1.2—(1).
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13476
4.2. Predator-only: a; < a3

In this case, there are three homogeneous equilibria (0, 0, 0), (0, 1,0) and (‘“ 0, m') and we shall
show that the steady state (0, 1,0) is global asymptotically stable, where the convergence rate is
exponential if a; < a3 and algebraic if a; = a;. Define an energy functional for (1.1) as follows

G(t)—efu+§1fu +f(v—1—lnv)+%fw2,
where ¢ and ¢, will be determined below.

Proof of Theorem 1.2—(2). We divide the proof into five steps

Step 1: We shall choose the appropriate parameters ¢; and {,. By the definitions of A and B in (1.7)
since A < B, we have

£\ _Eeay _(ea)
4d 4da, a |’
Let

1

(4.13)

2
165y (dy — §)(ear — ary) 2 ea
g) = = : R Y
dr y 4d a
Then, g € C! ((fL - )) and g(y) > 0in (% a—lz) We further observe that

g(g 2‘2) D(A+B-2VAB)

which along with y? < D (A +B-2 \/AB) implies

2 o8 [e
X<g(2 dal)'

2
1 (—da1 ‘8 efz) =0,
4y;

which alongside (4.13) gives yg = g /% € (52 &

By the definition of g, one has

g (o) =

) Thus, g(y) is increasing in £ & fem) g

44’ a; ) > 8V g 4d> 2 day

decreasing in (% N ) We can find a constant ¢; > 0 such that
a1’ ap

f eay ea

< < — 4.14
l a 1 1 ( )
and

ea, ea
0=g|—|<x’ <g({1)<gf —.
ap 2 ddl
With the definition of g, we get

d 2
)(—5152 < —Z(eaz —a1{1),
dndé—35) "
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which implies that there exists ¢, > 0 such that

dy*? 4
X—&gz << —Z(eaz —a1dy).
4dn(ds, - T r

One can verify that
d 2 2
ndes - X6 - %5, > 0,

and i
r
(eay — a1)pylr — pT{% > 0.
Thanks to (4.13) and (4.14), one obtains

Step 2: We claim
el zo() + IV = Ulzo@) + [Wllo@) — 0 ast — +oo.

Indeed, if (u, v, w) is the solution of system (1.1), then we get

—lu=a | u-—a | u—as | uv,
dr Jo Q Q Q

d
_fu2:2fuut:—2df|Vu|2+2a1fu2—2a2fu3—2a3fuzv,
dt Jo Q Q Q Q Q

d v—1
Efg(v—l—lnv)zfQ ” 2

V2 Vv-V Vu-V
- _ 4_ f v W+§f “ V+f(v—1)(p—pv+ea3u)
Q VvV Q v Q v Q

Vv Vv-V Vu-V
=— | z| —Xf Y W+§f “ v—pf(v—l)2+ea3fuv—ea3fu
Q Vv Q v Q v Q Q Q
d 2 2 2
— | w=21 ww,==-2n| |IVW+2r | uw—-2y | w forall¢>0.
dt Jg Q Q Q Q

Then, combining (4.20), (4.21), (4.22) and (4.23), we have from the definition of G(¢) that

d [Vv|?
d—G(t)<—d§1f|VM|2—f 5 —77§2f|VW|2
t Q Q Vv Q

Vv - Vw Vu - Vv
-X + & +e(a; — as) u
Q v Q v Q

—(eaz—alél)fu2—pf(v—1)2—7§sz2+r§zfuw
Q Q Q Q

=: -XT"PX -YTQY + e(a; — a3) f u,
Q

(4.15)

(4.16)

4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13458—13482.



13478

where X = (Vu, Vv, Vw), Y = (u,v — 1, w),

i, -£ 0 eay—aily 0 -2
p=|-£ L < and Q= 0 p 0
0 £ b -2 0 b

It can be checked that (4.16) and (4.18) ensure that the matrix P is positive definite while (4.17)
and (4.18) guarantee that the matrix Q is positive definite. Thus, there is a constant C; > 0 such that if

a) < as, then
4a _ > e 2
G@) < -C u+ | uw+ | v=1D"+ | w forall r > 0, (4.25)
dt Q Q Q Q

and if a; = a3, then
4 _ > 0 )
G < -C uw+ |-+ | w forall £ > 0. (4.26)
dt Q Q Q

Integrating the above inequalities with respect to time, we find a constant C, > 0 satisfying

+00 +00 +00
f fu2+f f(v—1)2+f fwkcz,
1 Q 1 Q 1 Q

which together with the uniform continuity of #, v and w due to Lemma 4.1 yields

fu2+f(v—1)2+fw2—>0, ast — +oo. (4.27)
Q Q Q

Thus, (4.19) 1s obtained by the Gagliardo-Nirenberg inequality and Lemma 4.1.
Step 3: By the L'Hopital rule, we get

i s—1—Ins i 1-1 B
m-——-—— = 1m =lim— =
s> (5—1)2 s—>12(s—=1) =125 2]

which gives a constant £ > 0 such that
—(s—l) s—1-Ins<(s—1)* forall |s—1]< (4.28)
By (4.19), there exists 77 > 0 such that
el + v = =) + [Wll=) < & forall £ > T;. (4.29)

Therefore, it follows from (4.28) that

1
—f(v—1)2<f(v—1—lnv)<f(v—l)2 forallt > T. (4.30)
4 Jo Q Q

Step 4: If a; < as, from the definition of G(¢) and (4.30), one has

G(n) < max {1(2 (fu+fu+f(v—1)+f)
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which along with (4.25) yields a constant C3 > 0 such that
d
EG(I) < —-C3G(t) forallt > T.
This gives a constant C4 > 0 such that
G(t) < C4e™™" forallt > T).

Hence, utilizing (4.30) again, we find a constant Cs > 0 such that

fu2+f(v—1)2+fw2<C5e_C3’ forallt > T;.
Q ) o

Then, by the Gagliardo-Nirenberg inequality and Lemma 4.1, we get the exponential convergence

for [[ull =) + IV = Ulr=@) + IWllL>0)-
Step 5: If a; = a3, we use (4.29), (4.30) and Young’s inequality to find a constant C¢ > O:

2
Gz(t)<C6(fu+fu2+f(v—l)2+fw2)
Q Q Q Q
2
<C6(8+1)2(fu+f(v—l)+fw)
Q Q Q
<3C6(8+l)zlﬂl(fu2+f(v—l)2+fw2) forallz > Ty,

Q Q Q

which alongside (4.26) implies some constant C; > 0
d 2
EGU) < -C;G*(t) forallt>T,.
Solving the above inequality directly yields a constant Cg > 0 such that
G < Cg(t+ 1) forallz>T).

Similar to the case a; < a3, we can use (4.30), the Gagliardo-Nirenberg inequality and Lemma 4.1
to get the convergence rate of ||ul|;~q) + [V — llz=@) + IWllL=@)-
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