Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Dirichlet and Neumann boundary value problems for bi-polyanalytic functions on the bicylinder

  • Applying the Cauchy-Pompeiu formula and the properties of the singular integral operators on the unit disc, the specific representation of the solutions to the boundary value problems with the Dirichlet boundary conditions for bi-polyanalytic functions are obtained on the bicylinder. Also, the mixed-type boundary value problems of higher order for bi-polyanalytic functions were investigated. In addition, a system of complex partial differential equations with respect to polyanalytic functions with Neumann boundary conditions was discussed. On this foundation, the solutions to Neumann boundary value problems for bi-polyanalytic functions on the bicylinder were obtained. These results provide a favorable method for discussing other boundary value problems of bi-polyanalytic functions and the related systems of inhomogeneous complex partial differential equations of higher order in spaces of several complex variables.

    Citation: Yanyan Cui, Chaojun Wang. Dirichlet and Neumann boundary value problems for bi-polyanalytic functions on the bicylinder[J]. AIMS Mathematics, 2025, 10(3): 4792-4818. doi: 10.3934/math.2025220

    Related Papers:

    [1] Yanyan Cui, Chaojun Wang . Systems of two-dimensional complex partial differential equations for bi-polyanalytic functions. AIMS Mathematics, 2024, 9(9): 25908-25933. doi: 10.3934/math.20241265
    [2] Yanyan Cui, Chaojun Wang . The inhomogeneous complex partial differential equations for bi-polyanalytic functions. AIMS Mathematics, 2024, 9(6): 16526-16543. doi: 10.3934/math.2024801
    [3] Santiago Cano-Casanova . Positive weak solutions for heterogeneous elliptic logistic BVPs with glued Dirichlet-Neumann mixed boundary conditions. AIMS Mathematics, 2023, 8(6): 12606-12621. doi: 10.3934/math.2023633
    [4] Tynysbek Kalmenov, Nurbek Kakharman . An overdetermined problem for elliptic equations. AIMS Mathematics, 2024, 9(8): 20627-20640. doi: 10.3934/math.20241002
    [5] Andrey Muravnik . Wiener Tauberian theorem and half-space problems for parabolic and elliptic equations. AIMS Mathematics, 2024, 9(4): 8174-8191. doi: 10.3934/math.2024397
    [6] Arivazhagan Anbu, Sakthivel Kumarasamy, Barani Balan Natesan . Lipschitz stability of an inverse problem for the Kawahara equation with damping. AIMS Mathematics, 2020, 5(5): 4529-4545. doi: 10.3934/math.2020291
    [7] Xuqiong Luo . A D-N alternating algorithm for exterior 3-D problem with ellipsoidal artificial boundary. AIMS Mathematics, 2022, 7(1): 455-466. doi: 10.3934/math.2022029
    [8] Zhanwei Gou, Jincheng Shi . Blow-up phenomena and global existence for nonlinear parabolic problems under nonlinear boundary conditions. AIMS Mathematics, 2023, 8(5): 11822-11836. doi: 10.3934/math.2023598
    [9] Abdissalam Sarsenbi, Abdizhahan Sarsenbi . Boundary value problems for a second-order differential equation with involution in the second derivative and their solvability. AIMS Mathematics, 2023, 8(11): 26275-26289. doi: 10.3934/math.20231340
    [10] Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen . The existence and stability results of multi-order boundary value problems involving Riemann-Liouville fractional operators. AIMS Mathematics, 2023, 8(5): 11325-11349. doi: 10.3934/math.2023574
  • Applying the Cauchy-Pompeiu formula and the properties of the singular integral operators on the unit disc, the specific representation of the solutions to the boundary value problems with the Dirichlet boundary conditions for bi-polyanalytic functions are obtained on the bicylinder. Also, the mixed-type boundary value problems of higher order for bi-polyanalytic functions were investigated. In addition, a system of complex partial differential equations with respect to polyanalytic functions with Neumann boundary conditions was discussed. On this foundation, the solutions to Neumann boundary value problems for bi-polyanalytic functions on the bicylinder were obtained. These results provide a favorable method for discussing other boundary value problems of bi-polyanalytic functions and the related systems of inhomogeneous complex partial differential equations of higher order in spaces of several complex variables.



    Bi-analytic functions arise from the research on systems of some partial differential equations and play an important role in studying elasticity problems. In 1961, Sander [1] studied a system of partial differential equations of first order:

    {uxvy=θ,uy+vx=ω,(k+1)θx+ωy=0,(k+1)θyωx=0,

    for kR,k1, and introduced the concept of bi-analytic functions of type k. He extended the elementary properties of analytic functions to bi-analytic functions and extended the related problems of the plane strain, the generalized plane stress, and the flow of viscous fluids to the theory of bi-analytic functions.

    Later, Lin and Wu [2] introduced a more extensive class of functions, i.e., bi-analytic functions of type (λ,k), which are defined by the system of equations:

    {1kuxvy=θ,uy+1kvx=ω,kθx+λωy=0,kθyλωx=0,

    where f(z)=u+iv, λ,k are real constants with λ0,1,k2 and 0<k<1. The complex form of the system of equations is

    k+12fˉzk12fz=λk4λφ(z)+λ+k4λ¯φ(z),

    in which φ(z)=kϑiλω is analytic and is called the associated function of f(z). Lin and Wu [2] obtained the general expression and some properties of bi-analytic functions of type (λ,k), including the Cauchy integral theorem and formula, the Morera theorem, the Weierstrass theorem, and the power series expansions.

    Hua et al. [3,4] investigated the systems of partial differential equations of second order, which have close association with (λ,k) bi-analytic functions, and showed that (λ,k) bi-analytic functions provide a powerful tool to deal with problems of plane elasticity.

    Mu [5] obtained the Cauchy integral representation, the removable singularity theorem, the Weierstrass theorem, and the mean value theorem of bi-analytic functions of type (λ,k) in the complex plane. Wen et al. [6,7] studied various types of boundary value problems for elliptic complex equations and systems, including boundary problems of (λ,k) bi-analytic functions. Begehr and Lin [8] studied a mix-contact problem by applying (λ,k) bi-analytic functions and singular integral operators. In addition, Lin and Zhao [9] reviewed the work on the applications of bi-analytic functions in elasticity, especially for solving the basic boundary value problems of plane elasticity (in isotropic or orthotropic cases). In [10], Lai investigated the properties of the vector-valued bi-analytic functions of type (λ,k) in a complex couple Banach space and obtained the solution of the corresponding Dirichlet problem.

    The special case of bi-analytic functions of type (λ,k) for k=1 is

    fˉz=λ+14λϕ(z)+λ14λ¯ϕ(z),ϕˉz=0,

    which means

    (1λ)2fˉz2+(1+λ)¯2fzˉz=0.

    Thus, bi-analytic functions are different from bianalytic functions (which only satisfy 2fˉz2=0) in the sense of Bitsadze [11]. The generalization of a bianalytic function f is nfˉzn=0(n1), which is called a polyanalytic function [12]. Obviously, bi-analytic functions can be similarly generalized.

    In [13], Kumar extended bi-analytic functions on bounded simply connected domains. He considered the system of complex equations:

    fˉz=λ+14λϕ(z)+λ14λ¯ϕ(z),nϕˉzn=0(n1),

    where f is called bi-polyanalytic functions, and obtained the expressions of solutions to the corresponding boundary value problems on the unit disc. In [13], the systems

    fˉz=λ+14λϕ(z)+λ14λ¯ϕ(z),nϕˉzn=h(z,ϕ,f,fz),fˉz=λ+14λϕ(z)+λ14λ¯ϕ(z),nϕˉzn=h(z,ϕ,ϕz,f),

    and the associated boundary problems were also discussed.

    Begehr et al. [14,15] investigated boundary value problems for bi-polyanalytic functions in the upper half plane and on the unit disc. Similar researches can also be found in the reference [16].

    In 2022, Lin and Xu [17] successfully obtained the solutions of Riemann problems of (λ,k) bi-analytic functions. In 2023, Lin [18] discussed a type of inverse boundary value problems for (λ,1) bi-analytic functions. Nowadays, bi-analytic functions and polyanalytic functions have made great progress [19,20,21,22].

    The above conclusions are all in the complex plane. If these results can be extended to spaces of several complex variables, there will be more applications. There have been some conclusions about bi-analytic functions or polyanalytic functions with several complex variables. For example, in [23], Begehr and Kumar studied complex bi-analytic functions of n variables. They successfully obtained the corresponding Cauchy integral formula, Taylor series and Poisson integral formula on the polydisc, and discussed the Dirichlet problem of the systems of partial differential equations on the polydisc. In [24], Kumar discussed a generalized Riemann boundary value problem by the Cauchy integral of bi-analytic functions with two complex variables. In 2023, Vasilevski [25] studied polyanalytic functions with several complex variables in detail.

    However, there is relatively little research on bi-polyanalytic functions in spaces of several complex variables. Inspired by these, and on the basis of the previous works of the former researchers, we first investigate a kind of boundary value problem for polyanalytic functions with Schwarz conditions on the bicylinder, then we discuss boundary value problems with the Dirichlet, Neumann boundary conditions and mixed type boundary conditions for bi-polyanalytic functions on the bicylinder.

    Throughout this paper, let the bicylinder D2=D1×D2={(z1,z2):|z1|<1,|z2|<1}, whose characteristic boundary is denoted as 0D2, where z1 and z2 are on the complex plane. Let Cm(G) represent the set of functions whose partial derivatives of order m are all continuous within a bounded smooth domain G.

    Lemma 2.1. [26] Let G be a bounded smooth domain in the complex plane, fL1(G;C) and

    Tf(z)=1πGf(ζ)ζzdξdη,ζ=ξ+iη.

    Then, ˉzTf(z)=f(z).

    Lemma 2.2. [26] Let wC1(G;C)C(¯G;C), where m1 and G is a bounded smooth domain in the complex plane, then

    w(z)=12πiGw(ζ)dζζz1πGwˉζ(ζ)dσζζz,Gwˉz(z)dσz=12iGw(z)dz,Gwz(z)dσz=12iGw(z)dˉz,

    where dσζ=dξdη(ζ=ξ+iη) and dσz=dxdy(z=x+iy).

    Lemma 2.3. [27] For nN, fLp(D),p1 with D being the unit disc, let

    Tnf(z)=(1)n2π(n1)!D(¯ζz+ζz)n1[f(ζ)ζζ+zζz+¯f(ζ)ˉζ1+zˉζ1zˉζ]dξdη,

    and let T0f=f. Then

    lˉzlTnf=Tnlf,1ln,lˉzlTnf=0(zD),lˉzlTnf(0)=0,0ln1.

    Lemma 2.4. Let gμνC(0D2;R) for 1μ,νm1 (m2), and let

    ˜ϕ(z)=m1˜v1=μm1˜v2=νˉz˜v11ˉz˜v22˜v1!˜v2!u˜v1˜v2(z), (2.1)

    where

    u˜v1˜v2={1(2πi)20D2mμ1l1=0mν1l2=0g(μ+l1)(ν+l2)(ζ)l1!l2!(A1A2A3+A4)dζ1dζ2ζ1ζ2,˜v1=μ,˜v2=ν,1(2πi)20D2mμ1l1=0m1˜v2l2=0g(μ+l1)(˜v2+l2)(ζ)l1!l2!(B1B2)|v2=˜v2νdζ1dζ2ζ1ζ2,˜v1=μ,ν<˜v2m1,1(2πi)20D2m1˜v1l1=0mν1l2=0g(˜v1+l1)(ν+l2)(ζ)l1!l2!(C1C2)|v1=˜v1μdζ1dζ2ζ1ζ2,μ<˜v1m1,˜v2=ν,1(2πi)20D2m1˜v1l1=0m1˜v2l2=0g(˜v1+l1)(˜v2+l2)(ζ)l1!l2!D|v1=˜v1μv2=˜v2νdζ1dζ2ζ1ζ2,μ<˜v1m1,ν<˜v2m1,

    in which

    {A1=[(z1ζ1ˉζ1)l1(z2ζ2ˉζ2)l2+(z1)l1(z2ζ2ˉζ2)l2+(z1ζ1ˉζ1)l1(z2)l2][2ζ1ζ2(ζ1z1)(ζ2z2)1],A2=(ζ1ˉζ1)l1{(z2ζ2ˉζ2)l2[2ζ1ζ2(ζ1z1)(ζ2z2)1]+(z2)l2[2ζ2ζ2z21]},A3=(ζ2ˉζ2)l2{(z1ζ1ˉζ1)l2[2ζ1ζ2(ζ1z1)(ζ2z2)1]+(z1)l1[2ζ1ζ1z11]},A4=(ζ1ˉζ1)l1(ζ2ˉζ2)l2[2ζ1ζ1z1+2ζ2ζ2z22],B1=[(z1ζ1ˉζ1)l1(z2ζ2ˉζ2)l2+(z1)l1(z2ζ2ˉζ2)l2+(z1ζ1ˉζ1)l1(z2)l2(1)v2][2ζ1ζ2(ζ1z1)(ζ2z2)1],B2=(ζ1ˉζ1)l1{(z2ζ2ˉζ2)l2[2ζ1ζ2(ζ1z1)(ζ2z2)1]+(z2)l2(1)v2[2ζ2ζ2z21]},C1=[(z1ζ1ˉζ1)l1(z2ζ2ˉζ2)l2+(z1)l1(1)v1(z2ζ2ˉζ2)l2+(z1ζ1ˉζ1)l1(z2)l2][2ζ1ζ2(ζ1z1)(ζ2z2)1],C2=(ζ2ˉζ2)l2{(z1ζ1ˉζ1)l2[2ζ1ζ2(ζ1z1)(ζ2z2)1]+(z1)l1(1)v1[2ζ1ζ1z11]},D=[(z1ζ1ˉζ1)l1(z2ζ2ˉζ2)l2+(z1)l1(1)v1(z2ζ2ˉζ2)l2+(z1ζ1ˉζ1)l1(z2)l2(1)v2][2ζ1ζ2(ζ1z1)(ζ2z2)1].

    Then, ˜ϕ(z) is a specific solution to the problem

    {mˉz1mˉz2˜ϕ(z)=0,zD2,μˉz1νˉz2˜ϕ(z)=gμν(z),z0D2,μˉz1νˉz2˜ϕ(0,z2)=0=μˉz1νˉz2˜ϕ(z1,0),z1D1,z2D2.

    Proof. Obviously, u˜v1˜v2(z) is analytic on D2, therefore, mˉz1mˉz2˜ϕ(z)=0. In addition, from the proof of Theorem 2.1 in [28]: We obtain that μˉz1νˉz2˜ϕ(z)=gμν(z) for z0D2, and

    μˉz1νˉz2˜ϕ(0,z2)=0=μˉz1νˉz2˜ϕ(z1,0)

    for z1D1,z2D2. So, ˜ϕ(z) is a specific solution to the problem.

    Lemma 2.5. [15] Let D be the unit disc. For 1kn1, let gkC(D) and ckC be given. Then, there exists an analytic function uk on D satisfying

    νk1μ=01μ!un+μk(z)ˉzμ=gnk(z)(zD),unk(0)=cnk

    if and only if for zD

    {12πiDgn1(ζ)dζ(1¯zζ)ζ=0,k1v=0(1)vv!12πiD¯ζvgn+vk(ζ)dζ1¯zζ=cnk+1,2kn1,

    and uk is uniquely represented as

    unk(z)=cnk12πiDk1v=0(2)vv!ˉζvgn+vk(ζ)log(1zˉζ)dζζk1λ=112πiDk1λμ=0(2)μμ!ˉζμgn+λ+μk(ζ)1λ!zλ[log(1zˉζ)+λσ=1zσˉζσσ]dζζ.

    Lemma 2.6. [15] Let fL1(D), φC(D) and cC be given; then the problem

    wˉz=f(zD),νw(z)=φ(z)(zD),w(0)=c

    has a unique solution

    w(z)=c12πiDφ(ζ)log(1zˉζ)dζζ12πiDf(ζ)log(1zˉζ)dˉζ1πDzf(ζ)ζ(ζz)dσζ,

    if and only if

    12πiDφ(ζ)dζ(1ˉzζ)ζ+12πiDf(ζ)dˉζ1ˉzζ=1πDf(ζ)ˉz(1ˉzζ)2dσζ.

    Lemma 2.7. Let u0 be an analytic function on D2. Then

    1π2D2u0(ζ)dσζ1ζ1z1dσζ2ζ2z2=(ˉz21z2)[ˉz1u0(z)1z1(u0(z)u0(0,z2))]+1z2[ˉz1u0(z1,0)1z1(u0(z1,0)u0(0,0))], (2.2)

    and

    1π2D2¯u0(ζ)dσζ1ζ1z1dσζ2ζ2z2=¯u1(z)¯u1(0,z2)(¯u1(z1,0)¯u1(0,0)), (2.3)

    where ζ1ζ2u1(ζ)=u0(ζ).

    Proof. By Lemma 2.2,

    1π2D2u0(ζ)dσζ1ζ1z1dσζ2ζ2z2=1πD1[1πD2ˉζ2(ˉζ2u0(ζ))dσζ2ζ2z2]dσζ1ζ1z1=1πD1[ˉz2u0(ζ1,z2)12πiD2ˉζ2u0(ζ)dζ2ζ2z2]dσζ1ζ1z1=1πD1[ˉz2u0(ζ1,z2)1z2(u0(ζ1,z2)u0(ζ1,0))]dσζ1ζ1z1=(ˉz21z2)1πD1u0(ζ1,z2)dσζ1ζ1z1+1z21πD1u0(ζ1,0)dσζ1ζ1z1=(ˉz21z2)1πD1ˉζ1(ˉζ1u0(ζ1,z2))dσζ1ζ1z1+1z21πD1ˉζ1(ˉζ1u0(ζ1,0))dσζ1ζ1z1=(ˉz21z2)[ˉz1u0(z1,z2)12πiD1ˉζ1u0(ζ1,z2)dζ1ζ1z1]+1z2[ˉz1u0(z1,0)12πiD1ˉζ1u0(ζ1,0)dζ1ζ1z1]=(ˉz21z2)[ˉz1u0(z)1z1(u0(z)u0(0,z2))]+1z2[ˉz1u0(z1,0)1z1(u0(z1,0)u0(0,0))].

    So we obtain (2.2). Let ζ1u1(ζ)=u2(ζ). Since ζ1ζ2u1(ζ)=u0(ζ), then we have ζ2u2(ζ)=u0(ζ), which follows ˉζ2¯u2(ζ)=¯u0(ζ). Therefore, by Lemma 2.2,

    1πD2¯u0(ζ)dσζ2ζ2z2=1πD2ˉζ2¯u2(ζ)dσζ2ζ2z2=¯u2(ζ1,z2)12πiD2¯u2(ζ)dζ2ζ2z2=¯u2(ζ1,z2)¯12πiD2u2(ζ)dζ2ζ2(1ˉz2ζ2)=¯u2(ζ1,z2)¯u2(ζ1,0). (2.4)

    In addition, ζ1u1(ζ)=u2(ζ) follows ˉζ1¯u1(ζ)=¯u2(ζ). Similarly, we have

    1πD1¯u2(ζ1,z2)dσζ1ζ1z1=¯u1(z)¯u1(0,z2). (2.5)

    Therefore, by (2.4) and (2.5), we obtain

    1π2D2¯u0(ζ)dσζ1ζ1z1dσζ2ζ2z2=1πD1[1πD2dσζ2ζ2z2]dσζ1ζ1z1=1πD1¯u2(ζ1,z2)dσζ1ζ1z11πD1¯u2(ζ1,0)dσζ1ζ1z1=¯u1(z)¯u1(0,z2)(¯u1(z1,0)¯u1(0,0)).

    Lemma 2.8. Let φC(0D2;C) and gμνC(0D2;R) for 1μ,νm1 (m2), and let λR{1,0,1}. Let W(z) and u0(z) be analytic functions on D2 and

    W(τ)=φ(τ)1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1ζ1τ1dσζ2ζ2τ2λ14λ{(ˉτ21τ2)[ˉτ1u0(τ)u0(τ)u0(0,τ2)τ1]+1τ2[ˉτ1u0(τ1,0)u0(τ1,0)u0(0)τ1]}λ+14λ[¯u1(τ)¯u1(0,τ2)¯u1(τ1,0)+¯u1(0,0)] (2.6)

    for τD2, where ˜ϕ is determined in Lemma 2.4 and ζ1ζ2u1(ζ)=u0(ζ). Then

    W(z)=1(2πi)20D2φ(ζ)dζ1dζ2(ζ1z1)(ζ2z2), (2.7)

    and

    u0(z)=4λλ+1{¯1(2πi)20D2φ(ζ)dζ1(1ˉz1ζ1)2dζ2(1ˉz2ζ2)2¯1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2(1ˉz1ζ1)2(1ˉz2ζ2)2}(λ1){1(2πi)20D2φ(ζ)dζ1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2}+(λ1)2λ+1{¯1(2πi)20D2φ(ζ)dζ¯1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2}. (2.8)

    Proof. As W(z) is analytic, applying the properties of the Poisson kernel on D2, W(z) can be expressed as

    W(z)=1(2πi)20D2W(ζ)(ζ1z1)(ζ2z2)dζ1dζ2 (2.9)

    if and only if

    1(2πi)20D2W(ζ)[ˉz11ˉz1ζ1ˉz21ˉz2ζ2+ˉz21ˉz2ζ21ζ1z1+ˉz11ˉz1ζ11ζ2z2]dζ1dζ2=0. (2.10)

    (2.6) and (2.9) derive the expression of W:

    W(z)=1(2πi)20D2W(ζ)(ζ1z1)(ζ2z2)dζ1dζ2=1(2πi)20D2{φ(ζ)1π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)]dσ~ζ1~ζ1ζ1dσ~ζ2~ζ2ζ2λ14λ[(ˉζ21ζ2)(ˉζ1u0(ζ)u0(ζ)u0(0,ζ2)ζ1)+1ζ2(ˉζ1u0(ζ1,0)u0(ζ1,0)u0(0)ζ1)]λ+14λ[¯u1(ζ)¯u1(0,ζ2)¯u1(ζ1,0)+¯u1(0,0)]}dζ1dζ2(ζ1z1)(ζ2z2)=1(2πi)20D2{φ(ζ)1π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)]dσ~ζ1~ζ1ζ1dσ~ζ2~ζ2ζ2λ14λu0(0)ζ1ζ2λ+14λ[¯u1(ζ)¯u1(0,ζ2)¯u1(ζ1,0)+¯u1(0,0)]}dζ1dζ2(ζ1z1)(ζ2z2)=1(2πi)20D2{φ(ζ)1π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)]dσ~ζ1~ζ1ζ1dσ~ζ2~ζ2ζ2}dζ1dζ2(ζ1z1)(ζ2z2)λ14λu0(0)12πiD2[12πiD1dζ1ζ1(ζ1z1)]dζ2ζ2(ζ2z2)λ+14λ¯12πiD2{12πiD1[u1(ζ)u1(0,ζ2)u1(ζ1,0)+u1(0)]dζ1ζ1(1ˉz1ζ1)}dζ2ζ2(1ˉz2ζ2)=1(2πi)20D2{φ(ζ)1π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)]dσ~ζ1~ζ1ζ1dσ~ζ2~ζ2ζ2}dζ1dζ2(ζ1z1)(ζ2z2)=1(2πi)20D2φ(ζ)dζ1dζ2(ζ1z1)(ζ2z2)12πiD1{12πiD2[1π2D2(λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ))dσ~ζ1~ζ1ζ1dσ~ζ2~ζ2ζ2]dζ2ζ2z2}dζ1ζ1z1=1(2πi)20D2φ(ζ)dζ1dζ2(ζ1z1)(ζ2z2)12πiD1{1π2D2(λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ))[12πiD21~ζ2ζ2dζ2ζ2z2]dσ~ζ1~ζ1ζ1dσ~ζ2=1(2πi)20D2φ(ζ)dζ1dζ2(ζ1z1)(ζ2z2),

    which is due to

    12πiD1dζ1ζ1(ζ1z1)=0,12πiD21~ζ2ζ2dζ2ζ2z2=0

    and

    12πiD1[u1(ζ1,ζ2)u1(0,ζ2)u1(ζ1,0)+u1(0,0)]dζ1ζ1(1ˉz1ζ1)=0

    for zD2.

    Similarly, by (2.6) and (2.10), we obtain

    1(2πi)20D2W(ζ)[ˉz11ˉz1ζ1ˉz21ˉz2ζ2+ˉz21ˉz2ζ21ζ1z1+ˉz11ˉz1ζ11ζ2z2]dζ1dζ2=1(2πi)20D2{φ(ζ)1π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)]dσ~ζ1~ζ1ζ1dσ~ζ2~ζ2ζ2λ14λ[(ˉζ21ζ2)(ˉζ1u0(ζ)u0(ζ)u0(0,ζ2)ζ1)+1ζ2(ˉζ1u0(ζ1,0)u0(ζ1,0)u0(0)ζ1)]λ+14λ[¯u1(ζ)¯u1(0,ζ2)¯u1(ζ1,0)+¯u1(0,0)]}[ˉz11ˉz1ζ1ˉz21ˉz2ζ2+ˉz21ˉz2ζ21ζ1z1+ˉz11ˉz1ζ11ζ2z2]dζ1dζ2=1(2πi)20D2{φ(ζ)1π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)]dσ~ζ1~ζ1ζ1dσ~ζ2~ζ2ζ2λ14λ1ζ1ζ2u0(0)λ+14λ[¯u1(ζ)¯u1(0,ζ2)¯u1(ζ1,0)+¯u1(0,0)]}[ˉz11ˉz1ζ1ˉz21ˉz2ζ2+ˉz21ˉz2ζ21ζ1z1+ˉz11ˉz1ζ11ζ2z2]dζ1dζ2=0.

    Therefore,

     1(2πi)20D2{φ(ζ)1π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)]dσ~ζ1~ζ1ζ1dσ~ζ2~ζ2ζ2}[ˉz11ˉz1ζ1ˉz21ˉz2ζ2+ˉz21ˉz2ζ21ζ1z1+ˉz11ˉz1ζ11ζ2z2]dζ1dζ2=λ14λu0(0)1(2πi)20D2[ˉz11ˉz1ζ1ˉz21ˉz2ζ2+ˉz21ˉz2ζ21ζ1z1+ˉz11ˉz1ζ11ζ2z2]dζ1dζ2ζ1ζ2+λ+14λ1(2πi)20D2[¯u1(ζ)¯u1(0,ζ2)¯u1(ζ1,0)+¯u1(0,0)]}[ˉz11ˉz1ζ1ˉz21ˉz2ζ2+ˉz21ˉz2ζ21ζ1z1+ˉz11ˉz1ζ11ζ2z2]dζ1dζ2=λ14λu0(0){12πiD1ˉz11ˉz1ζ1dζ1ζ1[12πiD2ˉz21ˉz2ζ2dζ2ζ2+12πiD2dζ2(ζ2z2)ζ2]+12πiD1dζ1(ζ1z1)ζ112πiD2ˉz21ˉz2ζ2dζ2ζ2}+λ+14λ{¯12πiD2[12πiD1[u1(ζ)u1(0,ζ2)u1(ζ1,0)+u1(0)]z1dζ1ζ1(ζ1z1)]z2dζ2ζ2(ζ2z2)+¯12πiD2[12πiD1[u1(ζ)u1(0,ζ2)u1(ζ1,0)+u1(0)]dζ1ζ1(1ˉz1ζ1)]z2dζ2ζ2(ζ2z2)+¯12πiD1[12πiD2[u1(ζ)u1(0,ζ2)u1(ζ1,0)+u1(0)]dζ2ζ2(1ˉz2ζ2)]z1dζ1ζ1(ζ1z1)}
    =λ14λu0(0)ˉz1ˉz2+λ+14λ{¯12πiD2[u1(z1,ζ2)u1(0,ζ2)u1(z1,0)+u1(0)]z2dζ2ζ2(ζ2z2)+¯12πiD2u1(ζ)u1(0,ζ2)u1(ζ1,0)+u1(0)1ˉz1ζ1|ζ1=0z2dζ2ζ2(ζ2z2)+¯12πiD1u1(ζ)u1(0,ζ2)u1(ζ1,0)+u1(0)1ˉz2ζ2|ζ2=0z1dζ1ζ1(ζ1z1)}=λ14λu0(0)ˉz1ˉz2+λ+14λ{¯[u1(z1,ζ2)u1(0,ζ2)u1(z1,0)+u1(0)]ζ2=z2¯[u1(z1,ζ2)u1(0,ζ2)u1(z1,0)+u1(0)]ζ2=0}=λ14λu0(0)ˉz1ˉz2+λ+14λ¯[u1(z)u1(0,z2)u1(z1,0)+u1(0)], (2.11)

    which is in virtue of

    12πiD1ˉz11ˉz1ζ1dζ1ζ1=ˉz1,12πiD2ˉz21ˉz2ζ2dζ2ζ2=ˉz2

    and

    12πiD1dζ1ζ1(ζ1z1)=0=12πiD2dζ2ζ2(ζ2z2).

    Taking the partial derivative on both sides of Eq (2.11) with respect to ˉz1ˉz2 gives

    1(2πi)20D2{φ(ζ)1π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)]dσ~ζ1~ζ1ζ1dσ~ζ2~ζ2ζ2}dζ1(1ˉz1ζ1)2dζ2(1ˉz2ζ2)2=λ14λu0(0)+λ+14λ¯u0(z).

    Thus,

    λ14λu0(0)+λ+14λ¯u0(z)=1(2πi)20D2φ(ζ)dζ1(1ˉz1ζ1)2dζ2(1ˉz2ζ2)212πiD2{1π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)][12πiD11~ζ1ζ1dζ1(1ˉz1ζ1)2]dσ~ζ1dσ~ζ2~ζ2ζ2}dζ2(1ˉz2ζ2)2=1(2πi)20D2φ(ζ)dζ1(1ˉz1ζ1)2dζ2(1ˉz2ζ2)21π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)]dσ~ζ1(1ˉz1~ζ1)2[12πiD21~ζ2ζ2dζ2(1ˉz2ζ2)2]dσ~ζ2=1(2πi)20D2φ(ζ)dζ1(1ˉz1ζ1)2dζ2(1ˉz2ζ2)21π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2(1ˉz1ζ1)2(1ˉz2ζ2)2. (2.12)

    Particularly,

    λ14λu0(0)+λ+14λ¯u0(0)=1(2πi)20D2φ(ζ)dζ1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2, (2.13)

    which follows

    λ14λ¯u0(0)+λ+14λu0(0)=¯1(2πi)20D2φ(ζ)dζ¯1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2, (2.14)

    (2.13) and (2.14) derive

    u0(0)=(λ+1){¯1(2πi)20D2φ(ζ)dζ¯1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2}(λ1){1(2πi)20D2φ(ζ)dζ1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2}. (2.15)

    Plugging (2.15) into (2.12), we obtain the expression of u0(z), i.e., (2.8).

    Theorem 3.1. Let φC(0D2;C) and gμνC(0D2;R) for 1μ,νm1 (m2), and let λR{1,0,1}. Then the problem

    ˉz1ˉz2f(z)=λ14λϕ(z)+λ+14λˉϕ(z),mˉz1mˉz2ϕ(z)=0,zD2,

    with the conditions

    f(z)=φ(z),μˉz1νˉz2ϕ(z)=gμν(z)(z0D2),μˉz1νˉz2ϕ(0,z2)=0=μˉz1νˉz2ϕ(z1,0)

    for 1μ,νm1 has a unique solution

    f(z)=1(2πi)20D2φ(ζ)(ζ1ζ1z1+ˉζ1¯ζ1z11)(ζ2ζ2z2+ˉζ2¯ζ2z21)dζζ+λ14λ[(|z1|21)(|z2|21)z1z2u0(z)+|z2|21z1z2u0(0,z2)+|z1|21z1z2u0(z1,0)+1|z1|2|z2|2z1z2u0(0)]+1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)][1(ζ1z1)(ζ2z2)ˉz1ˉz2(ˉz1ζ11)(ˉz2ζ21)]dσζ1dσζ2, (3.1)

    where ˜ϕ is determined by (2.1) and

    u0(z)=4λλ+1{¯1(2πi)20D2φ(ζ)dζ1(1ˉz1ζ1)2dζ2(1ˉz2ζ2)2¯1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2(1ˉz1ζ1)2(1ˉz2ζ2)2}(λ1){1(2πi)20D2φ(ζ)dζ1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2}+(λ1)2λ+1{¯1(2πi)20D2φ(ζ)dζ¯1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2}. (3.2)

    Proof. (1) Applying Lemma 2.1,

    ˉz1ˉz2{1π2D2[λ14λϕ(ζ)+λ+14λˉϕ(ζ)]dσζ1ζ1z1dσζ2ζ2z2}=λ14λϕ(z)+λ+14λˉϕ(z),

    which means

    1π2D2[λ14λϕ(ζ)+λ+14λˉϕ(ζ)]dσζ1ζ1z1dσζ2ζ2z2

    is a special solution to

    ˉz1ˉz2f(z)=λ14λϕ(z)+λ+14λˉϕ(z).

    Therefore, by Lemma 2.4, the solution of the problem is

    f(z)=W(z)+1π2D2{λ14λ[u0(ζ)+˜ϕ(ζ)]+λ+14λ[¯u0(ζ)+˜ϕ(ζ)]}dσζ1ζ1z1dσζ2ζ2z2, (3.3)

    where ˜ϕ is determined in Lemma 2.4, W and u0 are analytic functions on D2 to be determined, and f=φ.

    Applying Lemma 2.7 and plugging (2.2) and (2.3) into (3.3), we obtain

    f(z)=W(z)+1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1ζ1z1dσζ2ζ2z2+λ14λ{(ˉz21z2)[ˉz1u0(z)u0(z)u0(0,z2)z1]+1z2[ˉz1u0(z1,0)u0(z1,0)u0(0)z1]}+λ+14λ[¯u1(z)¯u1(0,z2)¯u1(z1,0)+¯u1(0,0)], (3.4)

    which leads to

    W(z)=f(z)1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1ζ1z1dσζ2ζ2z2λ14λ{(ˉz21z2)[ˉz1u0(z)u0(z)u0(0,z2)z1]+1z2[ˉz1u0(z1,0)u0(z1,0)u0(0)z1]}λ+14λ[¯u1(z)¯u1(0,z2)¯u1(z1,0)+¯u1(0,0)]. (3.5)

    Considering the boundary condition f=φ and applying Lemma 2.8, we obtain that W(z) and u0(z) are determined by (2.7) and (2.8), respectively. Therefore, we have

    u0(0,z2)=4λλ+1{¯1(2πi)20D2φ(ζ)dζ(1ˉz2ζ2)2¯1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2(1ˉz2ζ2)2}(λ1){1(2πi)20D2φ(ζ)dζ1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2}+(λ1)2λ+1{¯1(2πi)20D2φ(ζ)dζ¯1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2}, (3.6)

    and

    u0(z1,0)=4λλ+1{¯1(2πi)20D2φ(ζ)dζ(1ˉz1ζ1)2¯1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2(1ˉz1ζ1)2}(λ1){1(2πi)20D2φ(ζ)dζ1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2}+(λ1)2λ+1{¯1(2πi)20D2φ(ζ)dζ¯1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2}. (3.7)

    In addition, (2.11) gives

    λ+14λ¯[u1(z)u1(0,z2)u1(z1,0)+u1(0)]=1(2πi)20D2{φ(ζ)1π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)]dσ~ζ1~ζ1ζ1dσ~ζ2~ζ2ζ2}[ˉz11ˉz1ζ1ˉz21ˉz2ζ2+ˉz21ˉz2ζ21ζ1z1+ˉz11ˉz1ζ11ζ2z2]dζ1dζ2λ14λu0(0)ˉz1ˉz2=1(2πi)20D2φ(ζ)[ˉz11ˉz1ζ1ˉz21ˉz2ζ2+ˉz21ˉz2ζ21ζ1z1+ˉz11ˉz1ζ11ζ2z2]dζ1dζ212πiD2{1π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)][12πiD11~ζ1ζ1ˉz1dζ11ˉz1ζ1]dσ~ζ1dσ~ζ2~ζ2ζ2}ˉz2dζ21ˉz2ζ212πiD2{1π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)][12πiD11~ζ1ζ1dζ1ζ1z1]dσ~ζ1dσ~ζ2~ζ2ζ2}ˉz2dζ21ˉz2ζ212πiD1{1π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)][12πiD21~ζ2ζ2dζ2ζ2z2]dσ~ζ1dσ~ζ2~ζ1ζ1}ˉz1dζ11ˉz1ζ1λ14λu0(0)ˉz1ˉz2=1(2πi)20D2φ(ζ)[ˉz11ˉz1ζ1ˉz21ˉz2ζ2+ˉz21ˉz2ζ21ζ1z1+ˉz11ˉz1ζ11ζ2z2]dζ1dζ21π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)]ˉz1dσ~ζ1ˉz1~ζ11[12πiD21~ζ2ζ2ˉz2dζ21ˉz2ζ2]dσ~ζ2λ14λu0(0)ˉz1ˉz2=1(2πi)20D2φ(ζ)[ˉz11ˉz1ζ1ˉz21ˉz2ζ2+ˉz21ˉz2ζ21ζ1z1+ˉz11ˉz1ζ11ζ2z2]dζ1dζ21π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)]ˉz1dσ~ζ1ˉz1~ζ11ˉz2dσ~ζ2ˉz2~ζ21λ14λu0(0)ˉz1ˉz2, (3.8)

    in which

    12πiD11~ζ1ζ1ˉz1dζ11ˉz1ζ1=ˉz1ˉz1~ζ11,12πiD11~ζ1ζ1dζ1ζ1z1=0=12πiD21~ζ2ζ2dζ2ζ2z2

    are used.

    Plugging (2.7) and (3.8) into (3.4), f(z) is determined as

    f(z)=1(2πi)20D2φ(ζ)dζ1dζ2(ζ1z1)(ζ2z2)+1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1ζ1z1dσζ2ζ2z2+λ14λ[(|z1|21)(|z2|21)z1z2u0(z)+|z2|21z1z2u0(0,z2)+|z1|21z1z2u0(z1,0)+u0(0)z1z2]+1(2πi)20D2φ(ζ)[ˉz11ˉz1ζ1ˉz21ˉz2ζ2+ˉz21ˉz2ζ21ζ1z1+ˉz11ˉz1ζ11ζ2z2]dζ1dζ21π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)]ˉz1dσ~ζ1ˉz1~ζ11ˉz2dσ~ζ2ˉz2~ζ21λ14λu0(0)ˉz1ˉz2=1(2πi)20D2φ(ζ)dζ1dζ2(ζ1z1)(ζ2z2)+1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1ζ1z1dσζ2ζ2z2+λ14λ[(|z1|21)(|z2|21)z1z2u0(z)+|z2|21z1z2u0(0,z2)+|z1|21z1z2u0(z1,0)+1|z1|2|z2|2z1z2u0(0)]+1(2πi)20D2φ(ζ)[ˉz11ˉz1ζ1ˉz21ˉz2ζ2+ˉz21ˉz2ζ21ζ1z1+ˉz11ˉz1ζ11ζ2z2]dζ1dζ21π2D2[λ14λ˜ϕ(˜ζ)+λ+14λ¯˜ϕ(˜ζ)]ˉz1dσ~ζ1ˉz1~ζ11ˉz2dσ~ζ2ˉz2~ζ21=1(2πi)20D2φ(ζ)(ζ1ζ1z1+ˉζ1¯ζ1z11)(ζ2ζ2z2+ˉζ2¯ζ2z21)dζζ+λ14λ[(|z1|21)(|z2|21)z1z2u0(z)+|z2|21z1z2u0(0,z2)+|z1|21z1z2u0(z1,0)+1|z1|2|z2|2z1z2u0(0)]+1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)][1(ζ1z1)(ζ2z2)ˉz1ˉz2(ˉz1ζ11)(ˉz2ζ21)]dσζ1dσζ2, (3.9)

    where u0(z),u0(0,z2),u0(z1,0),u0(0) are defined in (2.8), (2.15), (3.6), and (3.7), and the last equation is due to

    1(2πi)20D2φ(ζ)[1(ζ1z1)(ζ2z2)+ˉz11ˉz1ζ1ˉz21ˉz2ζ2+ˉz21ˉz2ζ21ζ1z1+ˉz11ˉz1ζ11ζ2z2]dζ=1(2πi)20D2φ(ζ)[1(ζ1z1)(ζ2z2)+ˉz11ˉz1ζ1ˉz21ˉz2ζ2+(z1ζ1(ζ1z1)ˉz21ˉz2ζ2+ˉζ1ˉz21ˉz2ζ2)+(ˉz11ˉz1ζ1z2ζ2(ζ2z2)+ˉz1ˉζ21ˉz1ζ1)]dζ=1(2πi)20D2φ(ζ)[1(ζ1z1)(ζ2z2)+ˉζ1ˉz2+ˉz1ˉζ2ˉz1ˉz2(1ˉz1ζ1)(1ˉz2ζ2)+ˉζ1z1ζ1z1ˉz21ˉz2ζ2+ˉz11ˉz1ζ1ˉζ2z2ζ2z2]dζ=1(2πi)20D2φ(ζ)[1(ζ1z1)(ζ2z2)+ˉζ1ˉζ2(1ˉz1ζ1)(1ˉz2ζ2)1ζ1ζ2+ˉζ1z1ζ1z1ˉz21ˉz2ζ2+ˉz11ˉz1ζ1ˉζ2z2ζ2z2]dζ=1(2πi)20D2φ(ζ)[ζ1ζ2(ζ1z1)(ζ2z2)+ˉζ1ˉζ2(¯ζ1z1)(¯ζ2z2)1+z1ζ1z1ˉz2¯ζ2z2+ˉz1¯ζ1z1z2ζ2z2]dζζ=1(2πi)20D2φ(ζ)(ζ1ζ1z1+ˉζ1¯ζ1z11)(ζ2ζ2z2+ˉζ2¯ζ2z21)dζζ.

    (2) In the following, we verify that (3.1) is the solution to the problem.

    (ⅰ) For z0D2 (i.e., |z1|=|z2|=1), applying the properties of the Poisson kernel on D2, (3.1) satisfies the boundary condition f=φ obviously. In addition, applying Lemma 2.1, by (2.12) and (3.1), we obtain

    ˉz1ˉz2f(z)=1(2πi)20D2φ(ζ)dζ1(1ˉz1ζ1)2dζ2(1ˉz2ζ2)2+λ14λ[u0(z)u0(0)]+λ14λ˜ϕ(z)+λ+14λ¯˜ϕ(z)1π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2(1ˉz1ζ1)2(1ˉz2ζ2)2=λ14λ˜ϕ(z)+λ+14λ¯˜ϕ(z)+λ14λu0(z)+λ+14λ{λ1λ+1u0(0)+4λλ+1[1(2πi)20D2φ(ζ)dζ1(1ˉz1ζ1)2dζ2(1ˉz2ζ2)21π2D2[λ14λ˜ϕ(ζ)+λ+14λ¯˜ϕ(ζ)]dσζ1dσζ2(1ˉz1ζ1)2(1ˉz2ζ2)2]=λ14λ˜ϕ(z)+λ+14λ¯˜ϕ(z)+λ14λu0(z)+λ+14λ¯u0(z)=λ14λ[˜ϕ(z)+u0(z)]+λ+14λ[¯˜ϕ(z)+¯u0(z)]=λ14λϕ(z)+λ+14λ¯ϕ(z).

    (ⅱ) By Lemma 2.4, ϕ(z)=˜ϕ(z)+u0(z) satisfies mˉz1mˉz2ϕ(z)=0(zD2) and

    μˉz1νˉz2ϕ(z)=gμν(z)(z0D2),μˉz1νˉz2ϕ(0,z2)=0=μˉz1νˉz2ϕ(z1,0)

    for 1μ,νm1.

    From the above analysis in (1) and (2), and by the expression of f in (3.1) and the uniqueness of u0(z) in (3.2), it is shown that (3.1) is the unique solution of the problem.

    Theorem 3.2. Let φC(0D2;C) and hμ1ν1,gμ2ν2C(0D2;R) for 0μ1,ν1n2, 1μ2,ν2m1 (m,n2), and let λR{1,0,1}. Then

    f(z)=Tn1,D1(Tn1,D2F)(z)+˜ϕ(z)

    is the solution to the problem

    nˉz1nˉz2f(z)=λ14λϕ(z)+λ+14λˉϕ(z),mˉz1mˉz2ϕ(z)=0,zD2,

    with the conditions

    {n1ˉz1n1ˉz2f=φ,μ1ˉz1ν1ˉz2f=hμ1ν1(z0D2),μ1ˉz1ν1ˉz2f(0,z2)=0=μ1ˉz1ν1ˉz2f(z1,0),μ2ˉz1ν2ˉz2ϕ(z)=gμ2ν2(z)(z0D2),μ2ˉz1ν2ˉz2ϕ(0,z2)=0=μ2ˉz1ν2ˉz2ϕ(z1,0),

    where F(z) is determined by (3.1) (in which gμν is replaced by gμ2ν2), ˜ϕ(z) is determined by (2.1) (in which gμν is replaced by hμ1ν1 and m is replaced by n1), and

    Tn,DiF(zi)=(1)n2π(n1)!Di(¯ζizi+ζizi)n1[F(ζi)ζiζi+ziζizi+¯F(ζi)¯ζi1+ziˉζi1ziˉζi]dξidηi, (3.10)

    with T0,DiF=F and nN,i=1,2.

    Proof. Let F(z)=n1ˉz1n1ˉz2f(z). Then, the problem is transformed to be

    ˉz1ˉz2F(z)=λ14λϕ(z)+λ+14λˉϕ(z),mˉz1mˉz2ϕ(z)=0,zD2,

    with the conditions

    {n1ˉz1n1ˉz2f=F,μ1ˉz1ν1ˉz2f=hμ1ν1(z0D2),μ1ˉz1ν1ˉz2f(0,z2)=0=μ1ˉz1ν1ˉz2f(z1,0),F=φ,μ2ˉz1ν2ˉz2ϕ(z)=gμ2ν2(z)(z0D2),μ2ˉz1ν2ˉz2ϕ(0,z2)=0=μ2ˉz1ν2ˉz2ϕ(z1,0).

    By Theorem 3.1, F(z) determined by (3.1) (where gμν is replaced by gμ2ν2) is the unique solution to

    {ˉz1ˉz2F(z)=λ14λϕ(z)+λ+14λˉϕ(z),mˉz1mˉz2ϕ(z)=0(zD2),F=φ,μ2ˉz1ν2ˉz2ϕ(z)=gμ2ν2(z)(z0D2),μ2ˉz1ν2ˉz2ϕ(0,z2)=0=μ2ˉz1ν2ˉz2ϕ(z1,0).

    For Tn,DiF defined by (3.10); applying Lemma 2.3,

    n1ˉz1n1ˉz2Tn1,D1(Tn1,D2F)=n1ˉz1(Tn1,D1F)=F,μ1ˉz1ν1ˉz2Tn1,D1(Tn1,D2F)=μ1ˉz1Tn1,D1(Tn1ν1,D2F)=0(zD),μ1ˉz1ν1ˉz2Tn1,D1(Tn1,D2F)(z1,0)=μ1ˉz1Tn1,D1(Tn1ν1,D2F)(z1,0)=0,μ1ˉz1ν1ˉz2Tn1,D1(Tn1,D2F)(0,z2)=μ1ˉz1Tn1,D1(Tn1ν1,D2F)(0,z2)=0.

    Therefore, Tn1,D1(Tn1,D2F) is a special solution to n1ˉz1n1ˉz2f=F, and the solution to

    n1ˉz1n1ˉz2f=F,μ1ˉz1ν1ˉz2f=hμ1ν1(z0D2),μ1ˉz1ν1ˉz2f(0,z2)=0=μ1ˉz1ν1ˉz2f(z1,0)

    is

    f(z)=Tn1,D1(Tn1,D2F)(z)+˜ϕ(z),

    where ˜ϕ(z) is a n1-holomorphic function on D2 satisfying

    μ1ˉz1ν1ˉz2˜ϕ=hμ1ν1(z0D2),μ1ˉz1ν1ˉz2˜ϕ(0,z2)=0=μ1ˉz1ν1ˉz2˜ϕ(z1,0).

    By Lemma 2.4, ˜ϕ(z) is determined by (2.1), in which gμν and m are replaced by hμ1ν1 and n1, respectively.

    In this section, we discuss systems of complex partial differential equations with Neumann boundary conditions on the bicylinder. Let νif(z)=zizif(z)+¯zi¯zif(z) denote the directional derivative of f(z) in relation to the outer normal vector, where i=1,2.

    Theorem 4.1. Let gk1k2C(0D2) and ck1k2C. Let bk1k2(z1) and dk1k2(z2) be analytic functions about z1 and z2, respectively, with bk1k2(0)=dk1k2(0)=ck1k2 (1k1,k2m1, m2). Then, there exists an analytic function u(mk1)(mk2)(z) on D2:

    u(mk1)(mk2)(z)=d(mk1)(mk2)(z2)+b(mk1)(mk2)(z1)c(mk1)(mk2)+1(2πi)2D1D2k11t1=0k21t2=0(2)t1+t2t1!t2!¯ζ1t1¯ζ2t2g(t1+mk1)(t2+mk2)(ζ)log(1z1¯ζ1)log(1z2¯ζ2)dζ1dζ2ζ1ζ2+k11λ1=112πiD1k11λ1s1=0(2)s1s1!¯ζ1s1[12πiD2k21t2=0(2)t2t2!¯ζ2t2g(λ1+s1+mk1)(t2+mk2)(ζ)log(1z2¯ζ2)dζ2ζ2]1λ1!zλ11[log(1z1¯ζ1)+λ1σ1=1zσ11¯ζ1σ1σ1]dζ1ζ1+k21λ2=112πiD2k21λ2s2=0(2)s2s2!¯ζ2s2[12πiD1k11t1=0(2)t1t1!¯ζ1t1g(t1+mk1)(λ2+s2+mk2)(ζ)log(1z1¯ζ1)dζ1ζ1]1λ2!zλ22[log(1z2¯ζ2)+λ2σ2=1zσ22¯ζ2σ2σ2]dζ2ζ2+k11λ1=1k21λ2=11(2πi)2D1D2k11λ1s1=0k21λ2s2=0(2)s1+s2s1!s2!¯ζ1s1¯ζ2s2g(λ1+s1+mk1)(λ2+s2+mk2)(ζ)1λ1!zλ111λ2!zλ22[log(1z1¯ζ1)+λ1σ1=1zσ11¯ζ1σ1σ1][log(1z2¯ζ2)+λ2σ2=1zσ22¯ζ2σ2σ2]dζ1dζ2ζ1ζ2 (4.1)

    that satisfies

    {ν1ν2k11l1=0k21l2=0ˉzl11ˉzl22l1!l2!u(l1+mk1)(l2+mk2)(z)=g(mk1)(mk2)(z),z0D2,u(mk1)(mk2)(z1,0)=b(mk1)(mk2)(z1),z1D1,u(mk1)(mk2)(0,z2)=d(mk1)(mk2)(z2),z2D2,u(mk1)(mk2)(0)=c(mk1)(mk2) (4.2)

    if and only if

    {12πiD1g(m1)(mk2)(ζ1,z2)dζ1(1¯z1ζ1)ζ1=0,k11τ1=0(1)τ1τ1!12πiD1¯ζ1τ1g(τ1+mk1)(mk2)(ζ1,z2)dζ11¯z1ζ1=ν2[k21l2=01l2!d(mk1+1)(l2+mk2)(z2)¯z2l2],2k1m1,1k2m1 (4.3)

    for z1D1 (z2D2), and

    {D2{D1k11t1=0(2)t1t1!¯ζ1t1g(t1+mk1)(m1)(ζ)log(1z1¯ζ1)dζ1ζ1+k11λ1=1D1k11λ1s1=0(2)s1s1!¯ζ1s1g(λ1+s1+mk1)(m1)(ζ)1λ1!zλ11[log(1z1¯ζ1)+λ1σ1=1zσ11¯ζ1σ1σ1]dζ1ζ1}dζ2(1¯z2ζ2)ζ2=0,k21τ2=0(1)τ2τ2!12πiD2¯ζ2τ2{12πiD1k11t1=0(2)t1t1!¯ζ1t1g(t1+mk1)(τ2+mk2)(ζ)log(1z1¯ζ1)dζ1ζ1k11λ1=112πiD1k11λ1s1=0(2)s1s1!¯ζ1s1g(λ1+s1+mk1)(τ2+mk2)(ζ)λ1!zλ11[log(1z1¯ζ1)+λ1σ1=1zσ11¯ζ1σ1σ1]dζ1ζ1}dζ21¯z2ζ2=b(mk1)(mk2+1)(z1)c(mk1)(mk2+1),1k1m1,2k2m1. (4.4)

    for z2D2, z1D1.

    Proof. From (4.2), we obtain

    {ν1k11l1=01l1!{ν2[k21l2=01l2!u(l1+mk1)(l2+mk2)(z)ˉzl22]}ˉzl11=g(mk1)(mk2)(z),ν2[k21l2=01l2!u(mk1)(l2+mk2)(0,z2)ˉzl22]=ν2[k21l2=01l2!d(mk1)(l2+mk2)(z2)ˉzl22] (4.5)

    for z1D1 (at the same time z2D2). Applying Lemma 2.5 on (4.5) for z1D1, there exists an analytic function about z1, i.e., ν2[k21l2=0ˉzl22l2!u(mk1)(l2+mk2)(z)], satisfying (4.5) if and only if (4.3) is satisfied for z1D1 (z2D2). Besides that, ν2[k21l2=0ˉzl22l2!u(mk1)(l2+mk2)(z)] is determined by

    ν2[k21l2=01l2!u(mk1)(l2+mk2)(z)ˉzl22]=ν2[k21l2=01l2!d(mk1)(l2+mk2)(z2)ˉzl22]12πiD1k11t1=0(2)t1t1!¯ζ1t1g(t1+mk1)(mk2)(ζ1,z2)log(1z1¯ζ1)dζ1ζ1k11λ1=112πiD1k11λ1s1=0(2)s1s1!¯ζ1s1g(λ1+s1+mk1)(mk2)(ζ1,z2)1λ1!zλ11[log(1z1¯ζ1)+λ1σ1=1zσ11¯ζ1σ1σ1]dζ1ζ1,

    that is,

    ν2{k21l2=01l2![u(mk1)(l2+mk2)(z)d(mk1)(l2+mk2)(z2)]ˉzl22}=12πiD1k11t1=0(2)t1t1!¯ζ1t1g(t1+mk1)(mk2)(ζ1,z2)log(1z1¯ζ1)dζ1ζ1k11λ1=112πiD1k11λ1s1=0(2)s1s1!¯ζ1s1g(λ1+s1+mk1)(mk2)(ζ1,z2)1λ1!zλ11[log(1z1¯ζ1)+λ1σ1=1zσ11¯ζ1σ1σ1]dζ1ζ1. (4.6)

    Further, applying Lemma 2.5 on (4.6) for z2D2, there exists an analytic function about z2, i.e., u(mk1)(mk2)(z), satisfying (4.6) and

    u(mk1)(mk2)(z1,0)d(mk1)(mk2)(0)=b(mk1)(mk2)(z1)d(mk1)(mk2)(0),

    if and only if (4.4) is satisfied for z2D2 (at the same time z1D1). Moreover, u(mk1)(mk2)(z) is determined by

    u(mk1)(mk2)(z)d(mk1)(mk2)(z2)=b(mk1)(mk2)(z1)d(mk1)(mk2)(0)12πiD2k21t2=0(2)t2t2!¯ζ2t2{12πiD1k11t1=0(2)t1t1!¯ζ1t1g(t1+mk1)(t2+mk2)(ζ)log(1z1¯ζ1)dζ1ζ1k11λ1=112πiD1k11λ1s1=0(2)s1s1!¯ζ1s1g(λ1+s1+mk1)(t2+mk2)(ζ)1λ1!zλ11[log(1z1¯ζ1)+λ1σ1=1zσ11¯ζ1σ1σ1]dζ1ζ1}log(1z2¯ζ2)dζ2ζ2k21λ2=112πiD2k21λ2s2=0(2)s2s2!¯ζ2s2{12πiD1k11t1=0(2)t1t1!¯ζ1t1g(t1+mk1)(λ2+s2+mk2)(ζ)log(1z1¯ζ1)dζ1ζ1k11λ1=112πiD1k11λ1s1=0(2)s1s1!¯ζ1s1g(λ1+s1+mk1)(λ2+s2+mk2)(ζ)1λ1!zλ11[log(1z1¯ζ1)+λ1σ1=1zσ11¯ζ1σ1σ1]dζ1ζ1}1λ2!zλ22[log(1z2¯ζ2)+λ2σ2=1zσ22¯ζ2σ2σ2]dζ2ζ2,

    which leads to (4.1).

    Since ν2[k21l2=0ˉzl22l2!u(mk1)(l2+mk2)(z)] is analytic about z1 and u(mk1)(mk2)(z) is analytic about z2, then u(mk1)(mk2)(z) is analytic on D2. Therefore, there exists an analytic function u(mk1)(mk2)(z) on D2, determined by (4.1), satisfying (4.2) on the conditions of (4.3) and (4.4).

    Theorem 4.2. Let φ,gμνC(0D2) and cμνC. Let bμν(z1) and dμν(z2) be analytic functions about z1 and z2, respectively, with bμν(0)=dμν(0)=cμν (1μ,νm1,m2). Let λR{1,0,1}. Then the problem

    ˉz1ˉz2f(z)=λ14λϕ(z)+λ+14λˉϕ(z),mˉz1mˉz2ϕ(z)=0,zD2,

    with the conditions

    {f(z)=φ(z),ν1ν2(μˉz1νˉz2ϕ(z))=gμν(z),z0D2,μˉz1νˉz2ϕ(z1,0)=k11l1=01l1!b(l1+mk1)(mk2)(z1)¯z1l1,z1D1,μˉz1νˉz2ϕ(0,z2)=k21l2=01l2!d(mk1)(l2+mk2)(z2)¯z2l2,z2D2,μˉz1νˉz2ϕ(0,0)=c(mk1)(mk2) (4.7)

    for 1μ,ν,k1,k2m1, has a unique solution if and only if (4.3) and (4.4) are satisfied. The solution is given by (3.1), where u0 is determined by (3.2), and

    ˜ϕ(z)=m1l1,l2=1ul1l2(z)l1!l2!¯z1l1¯z2l2, (4.8)

    in which ul1l2(z) is determined by (4.1).

    Proof. (4.8) follows that

    {ν1ν2(μˉz1νˉz2ϕ(z))=gμν(z),z0D2,μˉz1νˉz2ϕ(z1,0)=k11l1=01l1!b(l1+mk1)(mk2)(z1)¯z1l1,z1D1,μˉz1νˉz2ϕ(0,z2)=k21l2=01l2!d(mk1)(l2+mk2)(z2)¯z2l2,z2D2,μˉz1νˉz2ϕ(0,0)=c(mk1)(mk2)

    is equivalent to (4.2). By Theorem 4.1 and similar to the proof of Theorem 3.1, we obtain the desired conclusion.

    Theorem 4.3. Let gL1(D2) and φ1,φ2C(D2). Then the problem

    {ˉz1ˉz2f(z)=g(z),f(z1,0)=α1(z1),f(0,z2)=α2(z2),z1D1,z2D2,ν1f(z)=φ1(z),ν2f(z)=φ2(z),z0D2 (4.9)

    with the compatibility condition

    α1(0)=α2(0)=α,ν1φ2(z)=ν2φ1(z)=φ(z)

    has a unique solution

    f(z)=α1(z1)+α2(z2)α12πiD2[φ2(z1,ζ2)ν2α2(ζ2)]log(1z2¯ζ2)dζ2ζ2+12πiD2{12πiD1[ζ2φ(ζ)ζ22ζ2φ1(ζ)]log(1z1¯ζ1)dζ1ζ1+12πiD1g(ζ)log(1z1¯ζ1)d¯ζ1+1πD1g(ζ)z1ζ1(ζ1z1)dσζ1}log(1z2¯ζ2)d¯ζ2+1πD2{12πiD1[ζ2φ(ζ)ζ22ζ2φ1(ζ)]log(1z1¯ζ1)dζ1ζ1+12πiD1g(ζ)log(1z1¯ζ1)d¯ζ1+1πD1g(ζ)z1ζ1(ζ1z1)dσζ1}z2ζ2(ζ2z2)dσζ2, (4.10)

    if and only if

    12πiD1[z2φ(ζ1,z2)z22z2φ1(ζ1,z2)]dζ1(1ˉz1ζ1)ζ1+12πiD1g(ζ1,z2)d¯ζ11ˉz1ζ1=1πD1g(ζ1,z2)ˉz1(1ˉz1ζ1)2dσζ1 (4.11)

    and

    12πiD2[φ2(z1,ζ2)ν2α2(ζ2)]dζ2(1ˉz2ζ2)ζ2=12πiD2{12πiD1[ζ2φ(ζ)ζ22ζ2φ1(ζ)]log(1z1¯ζ1)dζ1ζ1+12πiD1g(ζ)log(1z1¯ζ1)d¯ζ1+1πD1g(ζ)z1ζ1(ζ1z1)dσζ1}d¯ζ21ˉz2ζ2+1πD2{12πiD1[ζ2φ(ζ)ζ22ζ2φ1(ζ)]log(1z1¯ζ1)dζ1ζ1+12πiD1g(ζ)log(1z1¯ζ1)d¯ζ1+1πD1g(ζ)z1ζ1(ζ1z1)dσζ1}ˉz2(1ˉz2ζ2)2dσζ2. (4.12)

    Proof. (4.9) follows ν1(ν2f(z))=φ(z), that is

    ν1[z2z2f(z)+ˉz2ˉz2f(z)]=φ(z),

    which is equivalent to

    ν1[ˉz2f(z)]=z2φ(z)z22z2ν1f(z)=z2φ(z)z22z2φ1(z).

    Applying Lemma 2.6 on the problem

    ˉz1[ˉz2f(z)]=g(z),ν1[ˉz2f(z)]=z2φ(z)z22z2φ1(z),ˉz2f(0,z2)=ˉz2α2(z2),

    we get that the unique solution ˉz2f(z) is determined by

    ˉz2f(z)=ˉz2α2(z2)12πiD1[z2φ(ζ1,z2)z22z2φ1(ζ1,z2)]log(1z1¯ζ1)dζ1ζ112πiD1g(ζ1,z2)log(1z1¯ζ1)d¯ζ11πD1g(ζ1,z2)z1ζ1(ζ1z1)dσζ1 (4.13)

    if and only if (4.11) is satisfied.

    In addition, (4.13) is equivalent to

    ˉz2[f(z)α2(z2)]=12πiD1[z2φ(ζ1,z2)z22z2φ1(ζ1,z2)]log(1z1¯ζ1)dζ1ζ112πiD1g(ζ1,z2)log(1z1¯ζ1)d¯ζ11πD1g(ζ1,z2)z1dσζ1ζ1(ζ1z1). (4.14)

    In view of

    ν2[f(z)α2(z2)]=φ2(z)ν2α2(z2),f(z1,0)α2(0)=α1(z1)α, (4.15)

    applying Lemma 2.6, we obtain the unique solution of the problem (4.14) with the conditions (4.15) is (4.10) if and only if (4.12) is satisfied. So we get the desired conclusion.

    Theorem 4.4. Let φ,gμνC(0D2) and cμνC. Let bμν(z1) and dμν(z2) be analytic functions about z1 and z2, respectively, with bμν(0)=dμν(0)=cμν (1μ,νm1,m2). Let λR{1,0,1}. Then the problem

    ˉz1ˉz2f(z)=λ14λϕ(z)+λ+14λˉϕ(z),mˉz1mˉz2ϕ(z)=0,zD2, (4.16)

    under the conditions

    {ν1f(z)=φ1(z),ν2f(z)=φ2(z),ν1ν2(μˉz1νˉz2ϕ(z))=gμν(z),z0D2,f(z1,0)=α1(z1),μˉz1νˉz2ϕ(z1,0)=k11l1=01l1!b(l1+mk1)(mk2)(z1)¯z1l1,z1D1,f(0,z2)=α2(z2),μˉz1νˉz2ϕ(0,z2)=k21l2=01l2!d(mk1)(l2+mk2)(z2)¯z2l2,z2D2,μˉz1νˉz2ϕ(0,0)=c(mk1)(mk2) (4.17)

    with 1μ,ν,k1,k2m1 and

    α1(0)=α2(0)=α,ν1φ2(z)=ν2φ1(z)=φ(z)

    has a unique solution if and only if (4.3), (4.4) and

    12πiD1[z2φ(ζ1,z2)z22z2φ1(ζ1,z2)]dζ1(1ˉz1ζ1)ζ1=1πD1[λ14λϕζ1(ζ1,z2)+λ+14λ¯ϕ¯ζ1(ζ1,z2)]dσζ11ˉz1ζ1, (4.18)

    and

    12πiD2[φ2(z1,ζ2)ν2α2(ζ2)]dζ2(1ˉz2ζ2)ζ2=12π2iD1D2log(1z1¯ζ1)[φ(ζ)+ζ2φζ2(ζ)2ζ2ζ2φ1(ζ)ζ222ζ2φ1(ζ)]dσζ2ˉz2ζ21dζ1ζ1+12π2iD1D2log(1z1¯ζ1)[λ14λϕζ2(ζ)+λ+14λ¯ϕ¯ζ2(ζ)]dσζ2ˉz2ζ21d¯ζ1+1π2D1D2[λ14λϕζ2(ζ)+λ+14λ¯ϕ¯ζ2(ζ)]dσζ2ˉz2ζ21z1dσζ1ζ1(ζ1z1) (4.19)

    are satisfied. The solution is given by (4.10) where g(ζ) is replaced by λ14λϕ(ζ)+λ+14λˉϕ(ζ), and

    ϕ(z)=m1l1,l2=1ul1l2(z)l1!l2!¯z1l1¯z2l2,

    in which ul1l2(z) is determined by (4.1).

    Proof. Applying Theorems 4.1 and 4.3, the problem (4.16) with conditions (4.17) has a unique solution (4.10) if and only if (4.3), (4.4), (4.11), and (4.12) are satisfied, where g(ζ) is replaced by λ14λϕ(ζ)+λ+14λˉϕ(ζ). To obtain the specific representations of the solvable conditions, we need the following equations.

    By the Gauss formula, we have

    12πiD2[ζ2φ(ζ)ζ22ζ2φ1(ζ)]1ˉz2ζ2d¯ζ2=1πD2ζ2[ζ2φ(ζ)ζ22ζ2φ1(ζ)]1ˉz2ζ2dσζ2=1πD2{[ζ2φ(ζ)ζ22ζ2φ1(ζ)]ˉz2(1ˉz2ζ2)2+11ˉz2ζ2[φ(ζ)+ζ2φζ2(ζ)2ζ2ζ2φ1(ζ)ζ222ζ2φ1(ζ)]}dσζ2,

    which follows

    12πiD2[ζ2φ(ζ)ζ22ζ2φ1(ζ)]1ˉz2ζ2d¯ζ2+1πD2[ζ2φ(ζ)ζ22ζ2φ1(ζ)]ˉz2(1ˉz2ζ2)2dσζ2=1πD21ˉz2ζ21[φ(ζ)+ζ2φζ2(ζ)2ζ2ζ2φ1(ζ)ζ222ζ2φ1(ζ)]dσζ2. (4.20)

    In addition,

    12πiD2ϕ(ζ)1ˉz2ζ2d¯ζ2=1πD2[ϕ(ζ)ˉz2(1ˉz2ζ2)2+ϕζ2(ζ)1ˉz2ζ2]dσζ2

    follows

    12πiD2ϕ(ζ)1ˉz2ζ2d¯ζ2+1πD2[ϕ(ζ)ˉz2(1ˉz2ζ2)2dσζ2=1πD2ϕζ2(ζ)ˉz2ζ21dσζ2. (4.21)

    Similarly, we obtain

    12πiD2¯ϕ(ζ)1ˉz2ζ2d¯ζ2+1πD2[¯ϕ(ζ)ˉz2(1ˉz2ζ2)2dσζ2=1πD2¯ϕ¯ζ2(ζ)ˉz2ζ21dσζ2.  (4.22)

    Using (4.21) and replacing g(ζ1,z2) in (4.11) by λ14λϕ(ζ1,z2)+λ+14λˉϕ(ζ1,z2), we get (4.18). Using (4.20)–(4.22) and replacing g(ζ) in (4.12) by λ14λϕ(ζ)+λ+14λˉϕ(ζ), we get

    12πiD2[φ2(z1,ζ2)ν2α2(ζ2)]dζ2(1ˉz2ζ2)ζ2=12πiD2{12πiD1[ζ2φ(ζ)ζ22ζ2φ1(ζ)]log(1z1¯ζ1)dζ1ζ1+12πiD1g(ζ)log(1z1¯ζ1)d¯ζ1+1πD1g(ζ)z1ζ1(ζ1z1)dσζ1}d¯ζ21ˉz2ζ2+1πD2{12πiD1[ζ2φ(ζ)ζ22ζ2φ1(ζ)]log(1z1¯ζ1)dζ1ζ1+12πiD1g(ζ)log(1z1¯ζ1)d¯ζ1+1πD1g(ζ)z1ζ1(ζ1z1)dσζ1}ˉz2(1ˉz2ζ2)2dσζ2=12πiD1log(1z1¯ζ1){12πiD2[ζ2φ(ζ)ζ22ζ2φ1(ζ)]d¯ζ21ˉz2ζ2+1πD2[ζ2φ(ζ)ζ22ζ2φ1(ζ)]ˉz2dσζ2(1ˉz2ζ2)2}dζ1ζ1+12πiD1log(1z1¯ζ1){12πiD2g(ζ)d¯ζ21ˉz2ζ2+1πD2g(ζ)ˉz2dσζ2(1ˉz2ζ2)2}d¯ζ1+1πD1{12πiD2g(ζ)d¯ζ21ˉz2ζ2+1πD2g(ζ)ˉz2dσζ2(1ˉz2ζ2)2}z1dσζ1ζ1(ζ1z1)=12πiD1log(1z1¯ζ1){1πD2[φ(ζ)+ζ2φζ2(ζ)2ζ2ζ2φ1(ζ)ζ222ζ2φ1(ζ)]dσζ2ˉz2ζ21}dζ1ζ1+12πiD1log(1z1¯ζ1){1πD2[λ14λϕζ2(ζ)+λ+14λ¯ϕ¯ζ2(ζ)]dσζ2ˉz2ζ21}d¯ζ1+1πD1{1πD2[λ14λϕζ2(ζ)+λ+14λ¯ϕ¯ζ2(ζ)]dσζ2ˉz2ζ21}z1dσζ1ζ1(ζ1z1),

    which leads to (4.19).

    Remark 4.1. Dirichlet problems and Neumann problems are two typical types of boundary value problems. The conclusions obtained in this paper have enriched the research on boundary value problems for bi-polyanalytic functions. With the methods used in this paper, we can discuss other complex partial differential equation problems for bi-polyanalytic functions. For example, it would be interesting to discuss more complex mixed boundary value problems for bi-polyanalytic functions that simultaneously satisfy multiple boundary conditions, such as Schwarz boundary conditions, Riemann-Hilbert boundary conditions, Neumann boundary conditions and other boundary conditions. However, the corresponding boundary value problems of polyanalytic functions need to be investigated first. Besides that, with the methods used in this paper, we can also solve some complex partial differential equation problems (homogeneous or non-homogeneous) in higher-dimensional complex spaces.

    We first discuss a kind of boundary value problem for polyanalytic functions with Schwarz conditions on the bicylinder. On this basis, with the help of the properties of the singular integral operators as well as the Cauchy-Pompeiu formula on the unit disc, we investigate a type of boundary value problem with Dirichlet boundary conditions and a type of mixed boundary value problems of higher order for bi-polyanalytic functions on the bicylinder and obtain the specific representations of the solutions. In addition, we discuss a system of complex partial differential equations with respect to polyanalytic functions with Neumann boundary conditions. On this foundation, we obtain the solutions to Neumann boundary value problems for bi-polyanalytic functions on the bicylinder. The conclusions in this paper provide effective methods for discussing other boundary value problems of inhomogeneous complex partial differential equations of higher order in spaces of several complex variables.

    Yanyan Cui: Conceptualization, Project administration, Writing original draft, Writing–review and editing; Chaojun Wang: Investigation, Writing original draft, Writing–review and editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the NSF of China (No. 11601543), the NSF of Henan Province (No. 222300420397), and the Science and Technology Research Projects of Henan Provincial Education Department (No. 19B110016).

    The authors declare that they have no conflicts of interest.



    [1] J. Sander, Viscous fluids, elasticity and functions-theory, Trans. Amer. Math. Soc., 98 (1961), 85–147.
    [2] W. Lin, T. C. Woo, On the bi-analytic functions of type (λ,k) (In Chinese), Acta Sci. Natur. Univ. Sunyatseni, 1 (1965), 1–19.
    [3] L. K. Hua, C. Wu, W. Lin, On the classification of the system of different equations of the second order, Sci. Sin., 3 (1964), 461–465.
    [4] L. K. Hua, The constant coeffiecint linear systems of partial differential equations of second order with two independent variables and two unknown functions (In Chinese), Beijing: Science Press, 1979.
    [5] L. Mu, Note on bi-analytic functions of type (λ,k) (In Chinese), J. Shandong Univ., 21 (1986), 84–88.
    [6] G. C. Wen, H. Begehr, Boundary value problems for elliptic equations and systems, Harlow, England: Longman Scientific and Technical, 1990.
    [7] Y. Z. Xu, Dirichlet problem for a class of second order nonlinear elliptic system, Complex Var. Theory Appl., 15 (1990), 241–258. https://doi.org/10.1080/17476939008814456 doi: 10.1080/17476939008814456
    [8] H. Begehr, W. Lin, A mixed-contact boundary problem in orthotropic elasticity, In: Partial differential equations with real analysis, Harlow, England: Longman Scientific and Technical, 1992,219–239.
    [9] W. Lin, Y. Q. Zhao, Bi-analytic functions and their applications in elasticity, In: Partial differential and integral equations, Springer, 1999,233–247. https://doi.org/10.1007/978-1-4613-3276-3_17
    [10] X. Lai, On the vector-valued bi-analytic functions of type (λ,k), Acta Sci. Natur. Univ. Nankaiensis, 36 (2003), 72–78.
    [11] A. V. Bitsadze, On the uniqueness of the solution of the Dirichlet problem for elliptic partial differential equations, Uspekhi Mat. Nauk., 3 (1948), 211–212.
    [12] M. B. Balk, Polyanalytic functions, Berlin: Akademie Verlay, 1991.
    [13] A. Kumar, Riemann Hilbert problem for a class of nth order systems, Complex Var. Theory Appl., 25 (1994), 11–22. https://doi.org/10.1080/17476939408814726 doi: 10.1080/17476939408814726
    [14] H. Begehr, A. Chaudhary, A. Kumar, Bi-polyanalytic functions on the upper half plane, Complex Var. Elliptic Equ., 55 (2010), 305–316. https://doi.org/10.1080/17476930902755716 doi: 10.1080/17476930902755716
    [15] H. Begehr, A. Kumar, Boundary value problems for bi-polyanalytic functions, Appl. Anal., 85 (2006), 1045–1077. https://doi.org/10.1080/00036810600835110 doi: 10.1080/00036810600835110
    [16] A. Kumar, R. Prakash, Boundary value problems for the Poisson equation and bi-analytic functions, Complex Var. Theory Appl., 50 (2005), 597–609. http://doi.org/10.1080/02781070500086958 doi: 10.1080/02781070500086958
    [17] J. Lin, Y. Z. Xu, Riemann problem of (λ,k) bi-analytic functions, Appl. Anal., 101 (2022), 3804–3815. https://doi.org/10.1080/00036811.2021.1987417 doi: 10.1080/00036811.2021.1987417
    [18] J. Lin, A class of inverse boundary value problems for (λ,1) bi-analytic functions, Wuhan Univ. J. Nat. Sci., 28 (2023), 185–191. https://doi.org/10.1051/wujns/2023283185 doi: 10.1051/wujns/2023283185
    [19] D. Alpay, F. Colombo, K. Diki, I. Sabadini, Reproducing kernel Hilbert spaces of polyanalytic functions of infinite order, Integral Equ. Oper. Theory, 94 (2022), 35. https://doi.org/10.1007/s00020-022-02713-4 doi: 10.1007/s00020-022-02713-4
    [20] A. Benahmadi, A. Ghanmi, On a new characterization of the true-poly-analytic Bargmann spaces, Complex Anal. Oper. Theory, 18 (2024), 22. https://doi.org/10.1007/s11785-023-01465-2 doi: 10.1007/s11785-023-01465-2
    [21] A. De Martino, K. Diki, On the polyanalytic short-time Fourier transform in the quaternionic setting, Commun. Pure. Appl. Anal., 21 (2022), 3629–3665. https://doi.org/10.3934/cpaa.2022117 doi: 10.3934/cpaa.2022117
    [22] S. G. Gal, I. Sabadini, Density of complex and quaternionic polyanalytic polynomials in polyanalytic fock spaces, Complex Anal. Oper. Theory, 18 (2024), 8. https://doi.org/10.1007/s11785-023-01460-7 doi: 10.1007/s11785-023-01460-7
    [23] H. Begehr, A. Kumar, Bi-analytic functions of several variables, Complex Var. Theory Appl., 24 (1994), 89–106. https://doi.org/10.1080/17476939408814703 doi: 10.1080/17476939408814703
    [24] A. Kumar, A generalized Riemann boundary problem in two variables, Arch. Math., 62 (1994), 531–538. https://doi.org/10.1007/BF01193741 doi: 10.1007/BF01193741
    [25] N. Vasilevski, On polyanalytic functions in several complex variables, Complex Anal. Oper. Theory, 17 (2023), 80. https://doi.org/10.1007/s11785-023-01386-0 doi: 10.1007/s11785-023-01386-0
    [26] I. N. Vekua, Generalized analytic functions, Pergamon Press, 1962.
    [27] H. G. W. Begehr, Complex analytic methods for partial differential equations: an introductory text, Singapore: World Scientific, 1994. https://doi.org/10.1142/2162
    [28] Y. Y. Cui, C. J. Wang, Systems of two-dimensional complex partial differential equations for bi-polyanalytic functions, AIMS Math., 9 (2024), 25908–25933. https://doi.org/10.3934/math.20241265 doi: 10.3934/math.20241265
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(259) PDF downloads(49) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog