First-kind Volterra integral equations have ill-posed nature in comparison to the second-kind of these equations such that a measure of ill-posedness can be described by $ \nu $-smoothing of the integral operator. A comprehensive study of the convergence and super-convergence properties of the piecewise polynomial collocation method for the second-kind Volterra integral equations (VIEs) with constant delay has been given in [
Citation: Hassanein Falah, Parviz Darania, Saeed Pishbin. Study of numerical treatment of functional first-kind Volterra integral equations[J]. AIMS Mathematics, 2024, 9(7): 17414-17429. doi: 10.3934/math.2024846
First-kind Volterra integral equations have ill-posed nature in comparison to the second-kind of these equations such that a measure of ill-posedness can be described by $ \nu $-smoothing of the integral operator. A comprehensive study of the convergence and super-convergence properties of the piecewise polynomial collocation method for the second-kind Volterra integral equations (VIEs) with constant delay has been given in [
[1] | H. Brunner, Collocation methods for Volterra integral and related functional equations, Cambridge: Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511543234 |
[2] | K. Ikeda, Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system, Opt. Commun., 30 (1979), 257–261. https://doi.org/10.1016/0030-4018(79)90090-7 doi: 10.1016/0030-4018(79)90090-7 |
[3] | K. Ikeda, H. Daido, O. Akimoto, Optical turbulence: Chaotic behavior of transmitted light from a ring cavity, Phys. Rev. Lett., 45 (1980), 709. https://doi.org/10.1103/PhysRevLett.45.709 doi: 10.1103/PhysRevLett.45.709 |
[4] | M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, T. Erneux, Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators, Phys. Rev. E., 79 (2009), 026208. https://doi.org/10.1103/PhysRevE.79.026208 doi: 10.1103/PhysRevE.79.026208 |
[5] | L. Weicker, G. Friart, T. Erneux, Two distinct bifurcation routes for delayed optoelectronic oscillators, Phys. Rev. E., 96 (2017), 032206. https://doi.org/10.1103/PhysRevE.96.032206 doi: 10.1103/PhysRevE.96.032206 |
[6] | J. Belair, Population models with state-dependent delays, In: Mathematical population dynamics, New York: Marcel Dekker, 1991,165–176. https://doi.org/10.1201/9781003072706-13 |
[7] | K. L. Cooke, An epidemic equation with immigration, Math. Biosci., 29 (1976), 135–158. https://doi.org/10.1016/0025-5564(76)90033-X doi: 10.1016/0025-5564(76)90033-X |
[8] | H. W. Hethcote, P. van den Driesschew, Two SIS epidemiologic models with delays, J. Math. Biol., 40 (2000), 3–26. https://doi.org/10.1007/s002850050003 doi: 10.1007/s002850050003 |
[9] | A. Bellour, M. Bousselsal, A Taylor collocation method for solving delay integral equations, Numer. Algor., 65 (2014), 843–857. https://doi.org/10.1007/s11075-013-9717-8 doi: 10.1007/s11075-013-9717-8 |
[10] | H. Brunner, Iterated collocation methods for Volterra integral equations with delay arguments, Math. Comp., 62 (1994), 581–599. https://doi.org/10.2307/2153525 doi: 10.2307/2153525 |
[11] | H. Brunner, Y. Yatsenko, Spline collocation methods for nonlinear Volterra integral equations with unknown delay, J. Comput. Appl. Math., 71 (1996), 67–81. https://doi.org/10.1016/0377-0427(95)00228-6 doi: 10.1016/0377-0427(95)00228-6 |
[12] | F. Calio, E. Marchetti, R. Pavani, About the deficient spline collocation method for particular differential and integral equations with delay, Rend. Sem. Mat. Univ. Pol. Torino, 61 (2003), 287–300. |
[13] | I. Ali, H. Brunner, T. Tang, Spectral methods for pantograph-type differential and integral equations with multiple delays, Front. Math. China, 4 (2009), 49–61. https://doi.org/10.1007/s11464-009-0010-z doi: 10.1007/s11464-009-0010-z |
[14] | V. Horvat, On collocation methods for Volterra integral equations with delay arguments, Math. Commun., 4 (1999), 93–109. |
[15] | Q. Y. Hu, Multilevel correction for discrete collocation solutions of Volterra integral equations with delay arguments, Appl. Numer. Math., 31 (1999), 159–171. https://doi.org/10.1016/S0168-9274(98)00127-5 doi: 10.1016/S0168-9274(98)00127-5 |
[16] | M. Khasi, F. Ghoreishi, M. Hadizadeh, Numerical analysis of a high order method for state-dependent delay integral equations, Numer. Algor., 66 (2014), 177–201. https://doi.org/10.1007/s11075-013-9729-4 doi: 10.1007/s11075-013-9729-4 |
[17] | P. K. Lamm, Full convergence of sequential local regularization methods for Volterra inverse problems, Inverse Probl., 21 (2005), 785. https://doi.org/10.1088/0266-5611/21/3/001 doi: 10.1088/0266-5611/21/3/001 |
[18] | T. T. Zhang, H. Liang, Multistep collocation approximations to solutions of first-kind Volterra integral equations, Appl. Numer. Math., 130 (2018), 171–183. https://doi.org/10.1016/j.apnum.2018.04.005 doi: 10.1016/j.apnum.2018.04.005 |
[19] | S. N. Elaydi, An introduction to difference equations, New York: Springer, 2005. https://doi.org/10.1007/0-387-27602-5 |
[20] | E. Hairer, C. Lubich, S. P. Nørset, Order of convergence of one-step methods for Volterra integral equations of the second kind, SIAM J. Numer. Anal., 20 (1983), 569–579. https://doi.org/10.1137/0720037 doi: 10.1137/0720037 |