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Abstract: First-kind Volterra integral equations have ill-posed nature in comparison to the second-
kind of these equations such that a measure of ill-posedness can be described by ν-smoothing of the
integral operator. A comprehensive study of the convergence and super-convergence properties of the
piecewise polynomial collocation method for the second-kind Volterra integral equations (VIEs) with
constant delay has been given in [1]. However, convergence analysis of the collocation method for
first-kind delay VIEs appears to be a research problem. Here, we investigated the convergence of the
collocation solution as a research problem for a first-kind VIE with constant delay. Three test problems
have been fairly well-studied for the sake of verifying theoretical achievements in practice.
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1. Introduction

The exploration of delay differential equations (DDEs) to represent optical devices commenced
in 1979, with Ikeda’s anticipation of chaos in an optically bistable device [2, 3]. As the majority
of the suggested models featured a delay significantly surpassing other time scales of the device,
mathematicians became intrigued by the limit of substantial delays. Special focus was dedicated to the
initial Hopf bifurcation, which destabilizes the fundamental steady state. For further detail, see [4, 5]
and references therein.

An optoelectronic oscillator (OEO) is a self-contained system with the ability to generate a
microwave electromagnetic wave characterized by high spectral purity and minimal electronic noise.
The diagram in Figure 1 illustrates the schematic representation of the experimental configuration
for an OEO. From [4, 5], mathematically, OEOs can be characterized by a pair of first-order delay
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differential equations in the following structure:
τL

dy(t)
dt = −(1 + τL

τH
)y(t) − x(t) − β cos2(y(t − τ) + ϕ), t ∈ (0,T ],

τH
dx(t)

dt = y(t), t ∈ (0,T ],
y(t) = Φ(t), t ∈ [−τ, 0],

(1.1)

with an initial condition
x(0) = x0, (1.2)

where Φ(t) is a given function and x, y are unknown functions in which y denotes the normalized
output signal that signifies the voltage applied to the modulator. The parameter β is dimensionless and
characterizes the feedback strength of the loop. τ represents the overall delay of the feedback signal,
and ϕ is the bias point of the modulator. Additionally, τL and τH serve as time constants describing the
characteristics of the low-pass and high-pass filters, respectively.

Figure 1. Plot of the experimental setup.

System (1.1) is equivalent to the following integrodifferential equation:

τL
dy(t)

dt = −x(0) − (1 + τL
τH

)y(t) − 1
τH

∫ t

0
y(s)ds − β cos2(y(t − τ) + ϕ), t ∈ (0,T ], (1.3)

By using mathematical theorems and changing the appropriate variables of the equation, the Volterra
integral equation (VIE) of the delayed type can be written in the following form:

τLy(t) = ĝ(t) +
∫ t

0
k̂1(t, s, y(s))ds +

∫ t−τ

−τ

k̂2(t, s, y(s))ds, t ∈ I = (0,T ], (1.4)

where

k̂1(t, s, y(s)) = −(1 + τL
τH

)y(s) − 1
τH

∫ s

0
y(z)dz,

k̂2(t, s, y(s)) = −β cos2(y(s) + ϕ),
ĝ(t) = −tx0 + τLΦ(0).

(1.5)

Now, in Eq (1.5), suppose that the low-pass constant is a very small number τL → 0, then we have

0 = g(t) +
∫ t

0
k1(t, s, y(s))ds +

∫ t−τ

−τ

k2(t, s, y(s))ds, t ∈ I = (0,T ], (1.6)
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where
k1(t, s, y(s)) = −y(s) − 1

τH

∫ s

0
y(z)dz,

k2(t, s, y(s)) = k̂2(t, s, y(s)),
g(t) = −tx0.

(1.7)

According to the complexities of the analytical solution of this type of equation, the researchers
analyzed a number of numerical methods for the approximate solution of this equation. However,
since these equations are inherently ill-posed, some numerical methods are not suitable for studying
the numerical solutions of this equation. Nevertheless, these equations pose mathematical challenges
for analysis, and a significant portion of the current comprehension of their potential solutions primarily
stems from thorough computer simulations. This is especially true in optics, where the intricacies of
optical and optoelectronic feedback are scrutinized extensively, facilitating systematic comparisons
between experimental findings and theoretical predictions. Equations (1.4) and (1.6) are nonlinear,
and their kernels ki and k̂i, i = 1, 2 can be linearized by using linearization methods such as Newton’s
method.

Here, we study an approximate numerical solution of the first-kind linear VIEs with constant delay
τ > 0. More precisely, we consider

g(t) =
∫ t

0
k1(t, s)y(s)ds +

∫ t−τ

0
k2(t, s)y(s)ds, t ∈ I = (0,T ], (1.8)

with
y(t) = ϕ(t), t ∈ [−τ, 0].

Also, g(t) is a known function and the kernel functions k1(t, s), k2(t, s) are defined within the
domains D = {(t, s) : 0 ≤ s ≤ t ≤ T } , Dτ = {(t, s) : −τ ≤ s ≤ t − τ, t ∈ I}, respectively. The
presence of a nonzero delay t − τ leads to the emergence of the initial discontinuity points ξµ, which
are determined through a recursive process

ξµ = µτ, µ = 0, 1, . . . ,

and the initial discontinuity points remain a finite number in any bounded interval I. The solution to
the Eq (1.8) exhibits a lack of continuity dependence on the provided functions k1, k2, and g. From [1],
we have smoothing property in solutions of delay VIEs of the second kind, but this is no longer true
for solutions of delay VIEs of the first-kind. The jump discontinuity in the solution at t = 0 results in
a similar discontinuity at the subsequent primary discontinuity point ξ1, and this discontinuity persists
at other points. Now, we can summarize the regularity result for the unique solution of the Eq (1.8) as:

Theorem 1.1. [1] Let

1) k1(., .) ∈ C1(D), k2(., .) ∈ C1(Dτ), and g ∈ C1(I).
2) For all t ∈ I, we have |k1(t, t)| ≥ k0 > 0.

For any initial function ϕ(t) ∈ C[−τ, 0], the Eq (1.8) has a unique solution denoted by y, where
y ∈ C(ξµ, ξµ+1] for µ = 0, · · · ,M. This solution y stays bounded at t = 0 if, and only if,∫ 0

−τ

k2(0, s)ϕ(s)ds = −g(0).
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The great contributions of recent developments in the conceptually promising and challenging areas
of the VIEs are all gathered in the milestone book due to Brunner [1]. Without any exaggeration,
a great deal of tribute should be paid to Volterra as the founder of VIEs with delays. In other
words, some well-formulated models of Volterra functional integral equations, namely, in population
dynamics, evolutionary phenomena, and mechanics of continua, date back to Volterra’s efforts in his
early studies [1,6–8]. Many authors [1,9–16] have studied the approximate solutions of delay IEs. For
the ill-posed Volterra equation, the efficient local regularization methods preserve the causal structure
of the Volterra problem. In [17], the author introduced new local regularization method for general
finitely smoothing VIEs and investigate convergence of the resulting method. The multistep collocation
method was applied to first kind VIEs in [18]. Convergence conditions of the proposed multistep
method were analyzed and the corresponding convergence order was described. Brunner [1, 10]
analyzed the properties of global convergence and local super-convergence of piecewise polynomial
collocation for VIEs with constant delay. First-kind VIEs have ill-posed nature in comparison to the
second-kind of integral equations. Also, this type of equation, especially their delay type, arise in
some mathematical modeling processes, and as far as we know, there are few works available in the
literature on the numerical solution of delay first-kind VIEs in comparision of the second-kind of these
equations. Therefore, choosing an appropriate numerical method so that its convergence is guaranteed
can be useful. Piecewise polynomial collocation methods can be used for different types of integral
equations, but it is very necessary to investigate the convergence of the methods. The novelty of this
paper is the investigation of the convergence analysis of the proposed numerical methods with more
details. We will show that the choice of collocation points can be effective in the convergence of the
method such that incorrect selection of these points can lead to a decrease in the order of convergence
or even divergence. It is known that, for second-kind VIEs, the collocation solution converges to the
precise solution for every selection of collocation parameters ci with 0 ≤ c1 < · · · < cm ≤ 1. However,
this property no longer holds for first-kind VIEs. It is necessary to distinguish between two scenarios,
cm = 1 and cm < 1, and investigate convergence analysis based on the nontrivial eigenvalues of the
obtained matrices.

The following is the paper’s outline. In Section 2, we use the polynomial spline collocation method
to (1.8). Convergence analysis is given in Section 3. We consider some numerical examples in
Section 4.

2. Polynomial spline collocation

For some M ≥ 1, assume that T = ξM, and

Ih :=
M⋃
µ=0

I(µ)
h , I(µ)

h := {t(µ)
n : ξµ = t(µ)

0 < t(µ)
1 < · · · < t(µ)

N = ξµ+1},

where h(µ)
n = t(µ)

n+1 − t(µ)
n , µ = 0, . . . ,M (M ≥ 1). The collocation points are chosen as follows:

Xh :=
M⋃
µ=0

X
(µ)
h ,

where
X

(µ)
h = {t

(µ)
n,i = t(µ)

n + cih(µ)
n : 0 < c1 < · · · < cm ≤ 1, (0 ≤ n ≤ N − 1)}.
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After that, the solution obtained through collocation denoted as u for Eq (1.8) is given by:

g(t) =
∫ t

0
k1(t, s)u(s)ds +

∫ t−τ

0
k2(t, s)u(s)ds, t ∈ Xh, (2.1)

with
u(t) = ϕ(t), t ∈ [−τ, 0].

On each subinterval σn = (t(µ)
n , t

(µ)
n+1], we have

uh(t(µ)
n + ρh

(µ)
n ) =

m∑
j=1

L j(ρ)U
(µ)
n, j , U (µ)

n, j = uh(t(µ)
n, j), (2.2)

where L j(ρ) denotes canonical polynomials of Lagrange for the collocation parameters {c j}. Now, let

UUU (η)
l = [U (η)

l,1 , . . . ,U
(η)
l,m]T , ggg(µ)

n = [g(t(µ)
n,1), . . . , g(t(µ)

n,m)]T ,

KKK(0)
2,n = [

∫ t(0)
n,1−τ

0
k2(t(0)

n,1, s)ϕ(s)ds, . . . ,
∫ t(0)

n,m−τ

0
k2(t(0)

n,m, s)ϕ(s)ds],

(
KKK

ca,b,(µ,κ)
α,n,λ

)
i, j
=

∫ ca,b

0
kα(t

(µ)
n,i , t

(κ)
λ + ρh

(κ)
λ )L j(ρ)dρ, α = 1, 2, ca,0 = ca, c0,b = 1.

Inserting (2.2) into (2.1), a linear system is derived for the vector of unknowns UUU (µ)
n (n = 0, . . . ,N−1)

in two different cases:
Case I: For µ = 0, we have

ggg(0)
n =

n−1∑
l=0

h(0)
l KKK

c0,b,(0,0)
1,n,l UUU (0)

l + h(0)
n KKK

ci,0,(0,0)
1,n,n UUU (0)

n + KKK(0)
2,n. (2.3)

Case II: For µ = 1, 2, . . . ,M, we have

ggg(µ)
n =

µ−1∑
η=0

N−1∑
l=0

h(η)
l KKK

c0,b,(µ,η)
1,n,l UUU (η)

l +

n−1∑
l=0

h(µ)
l KKK

c0,b,(µ,µ)
1,n,l UUU (µ)

l + h(µ)
n KKK

ci,0,(µ,µ)
1,n,n UUU (µ)

n

+

µ−2∑
η=0

N−1∑
l=0

h(η)
l KKK

c0,b,(µ,η)
2,n,l UUU (η)

l +

n−1∑
l=0

h(µ−1)
l KKK

c0,b,(µ,µ−1)
2,n,l UUU (µ−1)

l + h(µ−1)
n KKK

ci,0,(µ,µ−1)
2,n,n UUU (µ−1)

n .

(2.4)

3. Convergence analysis

In this section, using interpolation error, we study convergence analysis of the proposed numerical
method.

Let
g(t) = (Vy)(t) + (Vτy)(t), (3.1)

AIMS Mathematics Volume 9, Issue 7, 17414–17429.



17419

where

(Vy)(t) =
∫ t

0
k1(t, s)y(s)ds, (3.2)

(Vτy)(t) =
∫ t−τ

0
k2(t, s)y(s)ds. (3.3)

Consider the collocation equation as

g(t) = (Vuh)(t) + (Vτuh)(t). (3.4)

Now, for n = 0, . . . ,N − 1 and µ = 0, . . . ,M, we set h = max h(µ)
n . Using Peano’s theorem on the

representation of the interpolation (Theorem 1.8.1 from [1]), we write

y(t(µ)
n + vh) =

m∑
j=1

L j(v)Y (µ)
n, j + hmR(µ)

m,n(v), Y (µ)
n, j = y(t(µ)

n, j), v ∈ [0, 1]. (3.5)

Here, we have

R(µ)
m,n(v) :=

∫ 1

0
km(v, z)y(m)(t(µ)

n + zh)dz,

and

kp(s, x) =
1

(p − 1)!
{(s − x)p−1

+ −

m∑
k=1

Lk(s)(ck − x)p−1
+ }, x ∈ [0, 1].

Therefore, it follows that

uh(t(µ)
n + vh) =

m∑
j=1

L j(v)U (µ)
n, j , v ∈ (0, 1].

The collocation error, denoted as eh = y − uh, is governed by the equations:

(Veh)(t(µ)
n,i ) + (Vτeh)(t(µ)

n,i ) = 0, i = 1, 2, . . . ,m, n = 0, 1, . . . ,N − 1, (3.6)

and has the local expression

eh(t(µ)
n + vh) =

m∑
j=1

L j(v)ε(µ)
n, j + hmR(µ)

m,n(v), ε(µ)
n, j = Y (µ)

n, j − U (µ)
n, j , v ∈ (0, 1], (3.7)

which satisfies the Eq (3.6).
In Eq (3.6), for µ = 0, 1, . . . ,M, using (3.7), we have

(Veh)(t(µ)
n,i ) = h

µ−1∑
v=0

N−1∑
l=0

∫ 1

0
k1(t(µ)

n,i , t
(v)
l + zh)eh(t(v)

l + zh)dz

+h
n−1∑
l=0

∫ 1

0
k1(t(µ)

n,i , t
(µ)
l + zh)eh(t(µ)

l + zh)dz

+h
∫ ci

0
k1(t(µ)

n,i , t
(µ)
n + zh)eh(t(µ)

n + zh)dz,

(3.8)
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and

(Vτeh)(t(µ)
n,i ) =



0, µ = 0,

h
µ−2∑
v=0

N−1∑
l=0

∫ 1

0
k2(t(µ)

n,i , t
(v)
l + zh)eh(t(v)

l + zh)dz

+h
n−1∑
l=0

∫ 1

0
k2(t(µ)

n,i , t
(µ−1)
l + zh)eh(t(µ−1)

l + zh)dz

+h
∫ ci

0
k2(t(µ)

n,i , t
(µ−1)
n + zh)eh(t(µ−1)

n + zh)dz, µ = 1, · · · ,M.

(3.9)

Now, for µ = 0 on the first macro-interval (ξ0, ξ1], considering (3.9) and using Eq (3.6), for n =
0, 1, . . . ,N − 1 and i = 1, . . . ,m, we obtain:

(Veh)(t(0)
n,i ) = 0.

Then, by using the convergence results of the spline collocation method for the classical first kind
VIEs from Theorem 2.4.2 in the [1], we have

||eh||∞ ≤

{
Chm, i f λ ∈ [−1, 1),
Chm−1, i f λ = 1,

in which C is a positive constant and

λ = (−1)m
m∏

i=1

1 − ci

ci
.

For µ ≥ 1, by (3.6), to differentiate the (continuous) error equation, we resort to its discrete analogous,
which is

1
h

[(Veh)(t(µ)
n,i ) − (Veh)(t(µ)

n−1,m)] +
1
h

[(Vτeh)(t(µ)
n,i ) − (Vτeh)(t(µ)

n−1,m)] = 0, i = 1, 2, . . . ,m. (3.10)

By using (3.8) and (3.9), we have∫ ci

0
k1(t(µ)

n,i , t
(µ)
n + zh)eh(t(µ)

n + zh)dz =
∫ cm

0
k1(t(µ)

n−1,m, t
(µ)
n−1 + zh)eh(t(µ)

n−1 + zh)dz

−

n−1∑
l=0

∫ 1

0
k1(t(µ)

n,i , t
(µ)
l + zh)eh(t(µ)

l + zh)dz +
n−2∑
l=0

∫ 1

0
k1(t(µ)

n−1,m, t
(µ)
l + zh)eh(t(µ)

l + zh)dz

−

µ−1∑
v=0

N−1∑
l=0

∫ 1

0
k1(t(µ)

n,i , t
(v)
l + zh)eh(t(v)

l + zh)dz +
µ−1∑
v=0

N−1∑
l=0

∫ 1

0
k1(t(µ)

n−1,m, t
(v)
l + zh)eh(t(v)

l + zh)dz

−

∫ ci

0
k2(t(µ)

n,i , t
(µ−1)
n + zh)eh(t(µ−1)

n + zh)dz +
∫ cm

0
k2(t(µ)

n−1,m, t
(µ−1)
n−1 + zh)eh(t(µ−1)

n−1 + zh)dz

−

n−1∑
l=0

∫ 1

0
k2(t(µ)

n,i , t
(µ−1)
l + zh)eh(t(µ−1)

l + zh)dz +
n−2∑
l=0

∫ 1

0
k2(t(µ)

n−1,m, t
(µ−1)
l + zh)eh(t(µ−1)

l + zh)dz

−

µ−2∑
v=0

N−1∑
l=0

∫ 1

0
k2(t(µ)

n,i , t
(v)
l + zh)eh(t(v)

l + zh)dz +
µ−2∑
v=0

N−1∑
l=0

∫ 1

0
k2(t(µ)

n−1,m, t
(v)
l + zh)eh(t(v)

l + zh)dz.

(3.11)
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Because of the supposed regularity of the kernels kp(t, s), p = 1, 2, we have

kp(t(µ)
n,i , t

(q)
l + sh) − kp(t(µ)

n−1,m, t
(q)
l + sh)

= cihkp,t(t
(µ)
n , t

(q)
l + sh) + (1 − cm)hkp,t(t

(µ)
n , t

(q)
l + sh) + O(h), p = 1, 2,

(3.12)

where kp,t(, ) =
∂kp

∂t
and the first unspecified arguments in the partial derivatives of kp, p = 1, 2, are

those that arise from Taylor’s remainder terms. Now, without sacrificing generality, we consider two
cases:
Case I): cm = 1.

Considering (3.12), for i = 1, . . . ,m, Eq (3.13) reduces to∫ ci

0
k1(t(µ)

n,i , t
(µ)
n + zh)eh(t(µ)

n + zh)dz = −
∫ ci

0
k2(t(µ)

n,i , t
(µ−1)
n + zh)eh(t(µ−1)

n + zh)dz

−cih
n−1∑
l=0

∫ 1

0
k1,t(t(µ)

n , t
(µ)
l + zh)eh(t(µ)

l + zh)dz

−cih
µ−1∑
v=0

N−1∑
l=0

∫ 1

0
k1,t(t(µ)

n , t
(v)
l + zh)eh(t(v)

l + zh)dz

−cih
n−1∑
l=0

∫ 1

0
k2,t(t(µ)

n , t
(µ−1)
l + zh)eh(t(µ−1)

l + zh)dz

−cih
µ−2∑
v=0

N−1∑
l=0

∫ 1

0
k2,t(t(µ)

n , t
(v)
l + zh)eh(t(v)

l + zh)dz.

(3.13)

Using (3.7), we arrive at

KKK
ci,0,(µ,µ)
1,n,n εεε

(µ)
n = −h

n−1∑
l=0

CCCKKK c0,b,(µ,µ)
{1,t},n,l εεε

(µ)
l − h

µ−1∑
η=0

N−1∑
l=0

CCCKKK c0,b,(µ,η)
{1,t},n,l ϵϵϵ

(η)
l −KKK

ci,0,(µ,µ−1)
2,n,n εεε(µ−1)

n

−h
n−1∑
l=0

CCCKKK c0,b,(µ,µ−1)
{2,t},n,l εεε

(µ−1)
l − h

µ−2∑
η=0

N−1∑
l=0

CCCKKK c0,b,(µ,η)
{2,t},n,l εεε

(η)
l +OOO(hm),

(3.14)

where CCC = diag
(
c1, . . . , cm

)
, εεε(α)

l = [ε(α)
l,1 , . . . , ε

(α)
l,m]T , and the meaning of the matrices

KKK
ci,0,(µ,µ)
1,n,n , . . . ,KKK

c0,b,(µ,η)
{2,t},n,l are clear from Section 2. Since |k1(t, t)| ≥ k0 > 0 for all t ∈ I, if h is small enough,

the matrix’s inverse on the left side exists and is bounded. It follows from Gronwall’s inequality and
upper bounds of ∥εεε(α)

n ∥(α = 0, . . . , µ − 1) in the previous steps that

||eh||∞ ≤ Chm.

Case II): cm < 1.
To express the main ideas without resorting to complex notation, we can presume that kp(t, s) = 1

or we can employ the Taylor series expansion kp as:

kp(t(µ)
n,i , t

(q)
l + sh) = kp(t(µ)

n , t
(q)
l ) +OOO(h), (3.15)
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The error Eq (3.13) can then be written as:

m∑
j=1

(
∫ ci

0
L j(s)ds)ε(µ)

n, j = −

m∑
j=1

(
∫ 1

cm

L j(s)ds)ε(µ)
n−1, j −

m∑
j=1

(
∫ ci

0
L j(s)ds)ε(µ−1)

n, j

−

m∑
j=1

(
∫ 1

cm

L j(s)ds)ε(µ−1)
n−1, j +OOO(hm).

(3.16)

Now, in Eq (3.16), we set m × m matrices PPP and QQQ as:

PPP =



∫ c1

0
L1(s)ds · · ·

∫ c1

0
Lm(s)ds

∫ c2

0
L1(s)ds · · ·

∫ c2

0
Lm(s)ds

...
...

...∫ cm

0
L1(s)ds · · ·

∫ cm

0
Lm(s)ds



, QQQ =



∫ 1

cm

L1(s)ds · · ·
∫ 1

cm

Lm(s)ds

∫ 1

cm

L1(s)ds · · ·
∫ 1

cm

Lm(s)ds

...
...

...∫ 1

cm

L1(s)ds · · ·
∫ 1

cm

Lm(s)ds



,

then, we get

PPPεεε(µ)
n = −QQQε(µ)

n−1 − PPPεεε(µ−1)
n −QQQε(µ−1)

n−1 +OOO(hm),

where PPP is not singular and QQQ has rank one. We have the following difference equations:

εεε(µ)
n = −ΩΩΩε

(µ)
n−1 − εεε

(µ−1)
n −ΩΩΩε

(µ−1)
n−1 +OOO(hm), (3.17)

whereΩΩΩ = PPP−1QQQ.
Now, we consider the following lemma:

Lemma 3.1. Assume that 0 < c1 < · · · < cm < 1. Subsequently, the nontrivial eigenvalue λ of the
rank-one matrixΩΩΩ is:

λ = (−1)m
m∏

i=1

1 − ci

ci
.

Proof. See Lemma 2.4.3 of Reference [1] (pp. 126). □

According to the basic principles outlined in the difference equations theory in [19], the solutions to
the system of first-order difference equations (3.17) exhibit uniform boundedness if, and only if, |λ| ≤ 1.
Note that ΩΩΩ is a diagonalizable matrix; therefore, a matrix exists, denoted as Υ, which ΩΩΩ = ΥΨΥ−1

with Ψ = diag(λ, 0, · · · , 0). Multiplying (3.17) by Υ−1 and defining ZZZ(µ)
n = Υ

−1εεε
(µ)
n yields:

ZZZ(µ)
n = −ΨZZZ(µ)

n−1 − ZZZ(µ−1)
n − ΨZZZ(µ−1)

n−1 +OOO(hm). (3.18)

AIMS Mathematics Volume 9, Issue 7, 17414–17429.



17423

Using Lemma 6 from [20], Lemma 2.4.4 from [1], and the upper bounds of ∥εεε(α)
n ∥(α = 0, . . . , µ − 1) in

the previous steps, if λ ∈ [−1, 1), then
∥εεε(µ)

n ∥1 ≤ Chm. (3.19)

If λ = 1, then,
∥εεε(µ)

n ∥1 ≤ Chm−1. (3.20)

Now, the following theorem summarizes our findings.

Theorem 3.1. Assume that for d ≥ m, the given functions in (1.8) satisfy:

k1(., .) ∈ Cd+1(D), k2(., .) ∈ Cd+11(Dτ), g ∈ Cd+1(I), ϕ(t) ∈ Cd[−τ, 0],

and for all t ∈ I, |k1(t, t)| ≥ k0 > 0. Also, let uh ∈ S −1
m−1(ΠN) be the collocation approximation of the

solution y in the Eq (1.8). If cm = 1, the approximate solution uh converges to y and the following
order of convergence holds:

||y − uh||∞ ≤ Chm.

If cm < 1, the collocation approximation uh converges to y if, and only if,

−1 ≤ λ = (−1)m
m∏

i=1

1 − ci

ci
≤ 1.

Furthermore, the following order of convergence holds:

||y − uh||∞ ≤

{
Chm, i f λ ∈ [−1, 1),
Chm−1, i f λ = 1,

as h→ 0 with Nh ≤ const.

4. Numerical examples

We will give three examples in this section to demonstrate the convergence results. Mathematica ®

software is used to perform all calculations.
Example 1. Consider the first-kind VIEs with constant delay as: f (t) =

∫ t

0
es−ty(s)ds +

∫ t− 1
4

0
t sin(s)y(s)ds, t ∈ (0, 1],

y(t) = cos t + 2, t ∈ [−1
4 , 0],

(4.1)

where f (t) such that the exact solution is: y(t) = cos(t) + 2.
For the numerical solution of (4.1), we choose m = 2, 3. For m = 2, we utilize the Gauss collocation

parameters (i.e., the zeros of Pm(2s−1) in which Pm implies the Legendre polynomial of degree m), the
Radau II collocation parameters (i.e., the roots of Pm−1(2s − 1) − Pm(2s − 1)), and four sets of random
collocation parameters, c1 =

1
2 , c2 = 1; c1 =

1
4 , c2 =

5
6 ; c1 =

1
3 , c2 =

2
3 ; c1 =

1
6 , c2 =

1
2 , respectively. We
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17424

use the Gauss collocation parameters for m = 3, the Radau II collocation parameters, and four sets of
random collocation parameters, c1 =

1
2 , c2 =

2
3 , c3 = 1; c1 =

1
3 , c2 =

1
2 , c3 =

2
3 ; c1 =

1
2 , c2 =

2
3 , c3 =

8
9 ;

c1 =
1
9 , c2 =

1
3 , c3 =

1
2 , respectively.

Tables 1–3 show the maximum errors and the orders of convergence for various values of m and
N at grid points. Also, Figures 2–4 show the orders of convergence from the maximum errors at the
grid points, which confirm the theoretical results of Theorem 3.1. Note that the collocation parameter
( 1

9 ,
1
3 ,

1
2 ) in the Table 2, does not meet the following condition:

−1 ≤ (−1)m
m∏

i=1

1 − ci

ci
≤ 1,

then, the convergence of the proposed collocation method does not hold.

Table 1. Orders of convergence for m = 2 in Example 1.

N Gauss Radau II ( 1
2 , 1) (1

4 ,
5
6 ) ( 1

3 ,
2
3 )

16 0.732 1.91 1.88 1.41 0.610

32 0.891 1.96 1.95 1.71 0.846

Table 2. Maximum errors ||y − u||∞ for m = 3 in Example 1.

N Gauss Radau II ( 1
2 ,

2
3 , 1) (1

3 ,
1
2 ,

2
3 ) (1

2 ,
2
3 ,

8
9 ) (1

9 ,
1
3 ,

1
2 )

8 2.39e − 5 3.18e − 5 1.67e − 5 5.47e − 6 1.72e − 5 9.33e − 4

16 2.70e − 6 4.89e − 6 2.65e − 6 3.31e − 7 2.81e − 6 1.17e − 2

32 3.21e − 7 6.74e − 7 3.70e − 7 3.77e − 8 3.95e − 7 4.58e + 1

Table 3. Orders of convergence for m = 3 in Example 1.

N Gauss Radau II ( 1
2 ,

2
3 , 1) ( 1

3 ,
1
2 ,

2
3 ) ( 1

2 ,
2
3 ,

8
9 )

16 3.14 2.70 2.65 3.85 2.61

32 3.07 2.85 2.84 3.13 2.83
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Figure 2. Graph illustrating the convergence rate in Example 1.
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Figure 3. Graph illustrating the convergence rate in Example 1.
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Figure 4. Graph illustrating the convergence rate in Example 2.

Example 2. Consider the first-kind VIEs with constant delay as:

−
3
8
− t =

∫ t

0
y(s)ds +

∫ t− 1
2

0
(t + s + 1)y(s)ds, t ∈ (0, 1], (4.2)

where the exact solution is a discontinuous function as follows:

y(t) =



1, −1
2 ≤ t ≤ 0,

−1 − 3t, 0 < t ≤ 1
2 ,

1
8 (−11 + 60t2), 1

2 < t ≤ 1.

The maximum errors and the orders of convergence have been reported for various values of N and
m = 2 in Tables 4 and 5.

Table 4. Maximum errors ||y − u||∞ for m = 2 in Example 2.

N Gauss Radau II (1
2 , 1) ( 1

4 ,
5
6 ) (1

3 ,
2
3 )

8 7.97e − 2 6.01e − 3 4.88e − 3 2.32e − 2 8.02e − 2

16 3.94e − 2 1.62e − 3 1.22e − 3 5.89e − 3 3.96e − 2

32 1.96e − 2 4.06e − 4 3.05e − 4 1.47e − 3 1.96e − 2
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Table 5. Orders of convergence for m = 2 in Example 2.

N Gauss Radau II ( 1
2 , 1) (1

4 ,
5
6 ) (1

3 ,
2
3 )

16 1.01 2.00 2.00 1.97 1.01

32 1.00 2.00 2.00 1.99 1.00

Example 3. As an applied test problem, consider the Eq (1.3) with ϕ = π2 , τL = 0, τH = 1, τ = 1, β =
0.2, x(0) = 0, and Φ(t) = t − 0.2 sin2(−1.1694). The maximum errors for various values of m and N at
grid points, are listed in Table 6.

Table 6. Maximum errors ||y − u||∞ for m = 2, 3 in Example 3.

N m = 2, ( 1
2 , 1) m = 3, ( 1

2 ,
2
3 , 1)

8 1.17e − 4 4.11e − 6

16 3.09e − 5 5.34e − 7

32 7.92e − 6 6.80e − 8

5. Conclusions

Convergence analysis of the piecewise polynomial collocation method for the first-kind delay VIEs
was investigated. We showed that the choice of collocation points ci can be effective in the convergence
of the method such that incorrect selection of these points can lead to a decrease in the order of
convergence or even divergence. Also, some examples were considered so that their solutions had
a different degree of smoothness to demonstrate the effectiveness of the proposed numerical method.
As for our future study, we will analyze approximate methods to the numerical solution of the delay
weakly singular integral-algebraic equations (IAEs) with nonvanishing delay.
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