Research article

Associative memories based on delayed fractional-order neural networks and application to explaining-lesson skills assessment of normal students: from the perspective of multiple $ \mathit O(t^{-\alpha}) $ stability

  • Received: 17 March 2024 Revised: 24 April 2024 Accepted: 15 May 2024 Published: 21 May 2024
  • MSC : 34A08

  • This paper discusses associative memories based on time-varying delayed fractional-order neural networks (DFNNs) with a type of piecewise nonlinear activation function from the perspective of multiple $ \mathit O(t^{-\alpha}) $ stability. Some sufficient conditions are gained to assure the existence of $ 5^n $ equilibria for $ n $-neuron DFNNs with the proposed piecewise nonlinear activation functions. Additionally, the criteria ensure the existence of at least $ 3^n $ equilibria that are locally multiple $ \mathit O(t^{-\alpha}) $ stable. Furthermore, we apply these results to a more generic situation, revealing that DFNNs can attain $ (2k+1)^n $ equilibria, and among them, $ (k+1)^n $ equilibria are locally $ \mathit O(t^{-\alpha}) $ stable. Here, the parameter $ k $ is highly dependent on the sinusoidal function frequency in the expanded activation functions. Such DFNNs are well-suited to synthesize high-capacity associative memories; the design process is given via singular value decomposition. Ultimately, four illustrative examples, including applying neurodynamic associative memory to the explaining-lesson skills assessment of normal students, are supplied to validate the efficacy of the results.

    Citation: Jiang-Wei Ke, Jin-E Zhang. Associative memories based on delayed fractional-order neural networks and application to explaining-lesson skills assessment of normal students: from the perspective of multiple $ \mathit O(t^{-\alpha}) $ stability[J]. AIMS Mathematics, 2024, 9(7): 17430-17452. doi: 10.3934/math.2024847

    Related Papers:

  • This paper discusses associative memories based on time-varying delayed fractional-order neural networks (DFNNs) with a type of piecewise nonlinear activation function from the perspective of multiple $ \mathit O(t^{-\alpha}) $ stability. Some sufficient conditions are gained to assure the existence of $ 5^n $ equilibria for $ n $-neuron DFNNs with the proposed piecewise nonlinear activation functions. Additionally, the criteria ensure the existence of at least $ 3^n $ equilibria that are locally multiple $ \mathit O(t^{-\alpha}) $ stable. Furthermore, we apply these results to a more generic situation, revealing that DFNNs can attain $ (2k+1)^n $ equilibria, and among them, $ (k+1)^n $ equilibria are locally $ \mathit O(t^{-\alpha}) $ stable. Here, the parameter $ k $ is highly dependent on the sinusoidal function frequency in the expanded activation functions. Such DFNNs are well-suited to synthesize high-capacity associative memories; the design process is given via singular value decomposition. Ultimately, four illustrative examples, including applying neurodynamic associative memory to the explaining-lesson skills assessment of normal students, are supplied to validate the efficacy of the results.



    加载中


    [1] Z. G. Zeng, J. Wang, Design and analysis of high-capacity associative memories based on a class of discrete-time recurrent neural networks, IEEE Trans. Syst. Man Cybern. B, 38 (2008), 1525–1536. https://doi.org/10.1109/tsmcb.2008.927717 doi: 10.1109/tsmcb.2008.927717
    [2] Z. G. Zeng, J. Wang, Associative memories based on continuous-time cellular neural networks designed using space-invariant cloning templates, Neural Netw., 22 (2009), 651–657. https://doi.org/10.1016/j.neunet.2009.06.031 doi: 10.1016/j.neunet.2009.06.031
    [3] G. Bao, Z. G. Zeng, Analysis and design of associative memories based on recurrent neural network with discontinuous activation functions, Neurocomputing, 77 (2012), 701–707. https://doi.org/10.1016/j.neucom.2011.08.026 doi: 10.1016/j.neucom.2011.08.026
    [4] J. Park, H. Y. Kim, Y. Park, S. W. Lee, A synthesis procedure for associative memories based on space-varying cellular neural networks, Neural Netw., 14 (2001), 107–113. https://doi.org/10.1016/S0893-6080(00)00086-1 doi: 10.1016/S0893-6080(00)00086-1
    [5] Z. G. Zeng, J. Wang, Analysis and design of associative memories based on recurrent neural networks with linear saturation activation functions and time-varying delays, Neural Comput., 19 (2007), 2149–2182. https://doi.org/10.1016/j.neucom.2011.08.026 doi: 10.1016/j.neucom.2011.08.026
    [6] R. Rakkiyappan, G. Velmurugan, J. D. Cao, Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays, Nonlinear Dyn., 78 (2014), 2823–2836. https://doi.org/10.1016/j.neucom.2017.03.042 doi: 10.1016/j.neucom.2017.03.042
    [7] A. L. Wu, Z. G. Zeng, Global Mittag-Leffler stabilization of fractional-order memristive neural networks, IEEE Trans. Neural Netw. Learn Syst., 28 (2015), 206–217. https://doi.org/10.1109/tnnls.2015.2506738 doi: 10.1109/tnnls.2015.2506738
    [8] W. Zhang, R. Wu, J. Cao, A. Alsaedi, T. Hayat, Synchronization for stochastic fractional-order memristive BAM neural networks with multiple delays, Fractal Fract., 7 (2023), 678. https://doi.org/10.3390/fractalfract7090678 doi: 10.3390/fractalfract7090678
    [9] H. B. Bao, J. D. Cao, Projective synchronization of fractional-order memristor-based neural networks, Neural Netw., 63 (2015), 1–9. https://doi.org/10.1016/j.neunet.2014.10.007 doi: 10.1016/j.neunet.2014.10.007
    [10] B. S. Chen, J. J. Chen, Global asymptotical $\omega$-periodicity of a fractional-order non-autonomous neural networks, Neural Netw., 68 (2015), 78–88. https://doi.org/10.1016/j.neunet.2015.04.006 doi: 10.1016/j.neunet.2015.04.006
    [11] [10.1016/j.neucom.2021.05.018]C. Y. Chen, S. Zhu, Y. C. Wei, C. Y. Yang, Finite-time stability of delayed memristor-based fractional-order neural networks, IEEE Trans Cybern., 50 (2018), 1607–1616. https://doi.org/10.1109/tcyb.2018.2876901 doi: 10.1109/tcyb.2018.2876901
    [12] J. E. Zhang, Linear-type discontinuous control of fixed-deviation stabilization and synchronization for fractional-order neurodynamic systems with communication delays, IEEE Access, 6 (2018), 52570–52581. https://doi.org/10.1109/access.2018.2870979 doi: 10.1109/access.2018.2870979
    [13] J. J. Chen, B. S. Chen, Z. G. Zeng, $\mathit{O}(t^{-\alpha})$ synchronization and Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations, Neural Netw., 100 (2018), 10–24. https://doi.org/10.1016/j.neunet.2018.01.004 doi: 10.1016/j.neunet.2018.01.004
    [14] [doi.org/10.1109/tnn.2006.875984] B. S. Chen, J. J. Chen, Global $\mathit{O}(t^{-\alpha})$ stability and global asymptotical periodicity for a non-autonomous fractional-order neural networks with time-varying delays, Neural Netw., 73 (2016), 47–57. https://doi.org/10.1016/j.neunet.2015.09.007 doi: 10.1016/j.neunet.2015.09.007
    [15] P. Liu, M. X. Kong, Z. G. Zeng, Projective synchronization analysis of fractional-order neural networks with mixed time delays, IEEE Trans. Cybern., 52 (2020), 6798–6808. https://doi.org/10.1109/tcyb.2020.3027755 doi: 10.1109/tcyb.2020.3027755
    [16] X. B. Nie, J. D. Cao, Multistability of competitive neural networks with time-varying and distributed delays, Nonlinear Anal. Real World Appl., 10 (2009), 928–942. https://doi.org/10.1016/j.nonrwa.2007.11.014 doi: 10.1016/j.nonrwa.2007.11.014
    [17] P. Liu, Z. G. Zeng, J. Wang, Multiple Mittag-Leffler stability of fractional-order recurrent neural networks, IEEE Trans. Syst. Man Cybern. Syst., 47 (2017), 2279–2288. https://doi.org/10.1109/tsmc.2017.2651059 doi: 10.1109/tsmc.2017.2651059
    [18] Z. G. Zeng, W. X. Zheng, Multistability of two kinds of recurrent neural networks with activation functions symmetrical about the origin on the phase plane, IEEE Trans. Neural Netw. Learn. Syst., 24 (2013), 1749–1762. https://doi.org/10.1109/tnnls.2013.2262638 doi: 10.1109/tnnls.2013.2262638
    [19] P. Liu, Z. G. Zeng, J. Wang, Multistability of recurrent neural networks with nonmonotonic activation functions and mixed time delays, IEEE Trans. Syst. Man Cybern. Syst., 46 (2015), 512–523. https://doi.org/10.1109/tsmc.2015.2461191 doi: 10.1109/tsmc.2015.2461191
    [20] P. P. Liu, X. B. Nie, J. L. Liang, J. D. Cao, Multiple Mittag-Leffler stability of fractional-order competitive neural networks with Gaussian activation functions, Neural Netw., 108 (2018), 452–465. https://doi.org/10.1016/j.neunet.2018.09.005 doi: 10.1016/j.neunet.2018.09.005
    [21] P. Liu, Z. G. Zeng, J. Wang, Complete stability of delayed recurrent neural networks with Gaussian activation functions, Neural Netw., 85 (2017), 21–32. https://doi.org/10.1016/j.neunet.2016.09.006 doi: 10.1016/j.neunet.2016.09.006
    [22] P. Liu, Z. G. Zeng, J Wang, Multistability of delayed recurrent neural networks with Mexican hat activation functions, Neural Comput., 29 (2017), 423–457. https://doi.org/10.1162/necoa00922 doi: 10.1162/necoa00922
    [23] Y. Shen, S. Zhu, X. Liu, S. Wen, Multistability and associative memory of neural networks with morita-like activation functions, Neural Netw., 142 (2021), 162–170. https://doi.org/10.1016/j.neunet.2021.04.035 doi: 10.1016/j.neunet.2021.04.035
    [24] Y. Liu, Z. Wang, Q. Ma, H. Shen, Multistability analysis of delayed recurrent neural networks with a class of piecewise nonlinear activation functions, Neural Netw., 152 (2022), 80–89. https://doi.org/10.1016/j.neunet.2022.04.015 doi: 10.1016/j.neunet.2022.04.015
    [25] L. G. Wan, Z. X. Liu, Multiple $\mathit{O}(t^{-\alpha})$ stability for fractional-order neural networks with time-varying delays, J Franklin Inst., 357 (2020), 12742–12766. https://doi.org/10.1016/j.jfranklin.2020.09.019 doi: 10.1016/j.jfranklin.2020.09.019
    [26] L. G. Wan, Z. X. Liu, Multiple $\mathcal{O}(t^{-q})$ stability and instability of time-varying delayed fractional-order Cohen-Grossberg neural networks with Gaussian activation functions, Neurocomputing, 454 (2021), 212–227. https://doi.org/10.1016/j.neucom.2021.05.018 doi: 10.1016/j.neucom.2021.05.018
    [27] C. P. Li, F. R. Zhang, A survey on the stability of fractional differential equations, Eur. Phys. J. Special Topics, 193 (2011), 27–47. https://doi.org/10.1140/epjst/e2011-01379-1 doi: 10.1140/epjst/e2011-01379-1
    [28] A. L. Wu, L. Liu, T. W. Huang, Z. G. Zeng, Mittag-Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments, Neural Netw., 85 (2017), 118–127. https://doi.org/10.1016/j.neunet.2016.10.002 doi: 10.1016/j.neunet.2016.10.002
    [29] D. Liu, A. N. Michel, Sparsely interconnected neural networks for associative memories with applications to cellular neural networks, IEEE Trans. Circuits Syst., 41 (1994), 295–307. https://doi.org/10.1007/bfb0032156 doi: 10.1007/bfb0032156
    [30] S. S. Bucak, B. Gunsel, Video content representation by incremental non-negative matrix factorization, Proc. Int. Conf. Image Proc., 2 (2007), 113–116. https://doi.org/10.1109/ICIP.2007.4379105 doi: 10.1109/ICIP.2007.4379105
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(564) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog