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Abstract: This paper discusses associative memories based on time-varying delayed fractional-
order neural networks (DFNNs) with a type of piecewise nonlinear activation function from the
perspective of multiple O(t−α) stability. Some sufficient conditions are gained to assure the existence
of 5n equilibria for n-neuron DFNNs with the proposed piecewise nonlinear activation functions.
Additionally, the criteria ensure the existence of at least 3n equilibria that are locally multiple O(t−α)
stable. Furthermore, we apply these results to a more generic situation, revealing that DFNNs can attain
(2k + 1)n equilibria, and among them, (k + 1)n equilibria are locally O(t−α) stable. Here, the parameter
k is highly dependent on the sinusoidal function frequency in the expanded activation functions.
Such DFNNs are well-suited to synthesize high-capacity associative memories; the design process
is given via singular value decomposition. Ultimately, four illustrative examples, including applying
neurodynamic associative memory to the explaining-lesson skills assessment of normal students, are
supplied to validate the efficacy of the results.
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1. Introduction

Associative memory is a content-addressing process similar to the brain that is aimed at storing a set
of patterns in a manner resembling stable equilibrium points. This enables reliable retrieval of stored
patterns with an initial probe containing adequate pattern-related information. In neural networks,
associative memory can not only learn and store the correlations between different input patterns but
also be used for prediction and the generation of sequence data. In addition, associative memory can
be applied to categorize input patterns or recognize new patterns that are similar to the learned patterns,

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024847


17431

which is meaningful for tasks such as image recognition, speech recognition, and text categorization.
In tackling associative memory, the multistable property is one of the key issues. By increasing their
storage capacity, neural networks can store and retrieve large amounts of information more efficiently.
At present, many studies have been carried out on neurodynamic associative memory [1–3]. Overall,
the essence of neural network-based associative memory is to transform any input vector set into an
output vector set related to patterns through nonlinear mapping. As a result, an inevitable requirement
is that the corresponding network model possess multiple locally stable equilibria [4, 5].

Recently, the analysis and design of fractional-order neural networks (FNNs) have been extensively
implemented in many domains, including physics, engineering [6, 7], control systems [8, 9], and
biological sciences. Fractional calculus, serving as its theoretical foundation, enables neural networks
to better adapt to and address practical issues in these diverse domains. The emergence of FNNs
signifies an impressive innovation in the field of neural networks. Compared to integer-order neural
networks, FNNs offer advantages in enhancing degrees of freedom and providing better descriptions
for processes with memory or hereditary features. Moreover, researchers can better comprehend the
power-law phenomenon in fractional-order systems. This phenomenon may be misinterpreted in
integer-order systems. But within the framework of fractional-order systems, it can more correctly
account for the power-law decay of state variables, providing a more refined modeling of the actual
observational result. Therefore, the exploration of the dynamic behavior of FNNs is amusing and
challenging. Over the past decade, lots of researchers have achieved important and intriguing results
in FNNs (see, e.g., [10–15]). Chen and Chen [10] studied the global O(t−α) stability for time-varying
delayed fractional-order neural networks (DFNNs).

In the application area of associative memory, multistability proves significantly superior to
monostability in terms of providing a greater number of patterns. Additionally, a larger number of
stable equilibria usually indicates higher storage capacity. As a result, the analysis of multistable
systems has captured the interest of many scholars [16–19]. From the perspective of system integration,
attaining asymptotic stability is a prerequisite for achieving decent performance in FNNs. O(t−α)
stability refers to a specific asymptotic stability property of fractional-order systems, where α is the
order of the fractional term. This stability characterizes the unusual evolution of fractional dynamical
systems; here, the system trajectory can converge to a steady state at a rate of t−α. Consequently, it is
crucial to analyze and comprehend the multiple O(t−α) stability of FNNs which can help to evaluate
the performance of FNNs and guide the development of network design and control methods.

It is well known that the quantity of equilibria is intimately linked to the type of activation functions
in the multistability analysis. Accordingly, designing an activation function with excellent performance
is important and indispensable. In previous analyses of multistability, researchers observed that
neural networks with certain non-monotonic activation functions [16] possess more equilibrium points.
Actually, there have been several fruitful works in the area of multistability analysis of neural networks
with diverse activation functions, which are mainly based on non-decreasing or piecewise linear
assumptions. Besides, several recently published literatures have concentrated on smooth activation
functions like Gaussian function [20, 21], sigmoidal function, Mexican hat function [22] and Morita-
like function [23]. Nevertheless, it is vital to highlight that analyzing the dynamic behavior of smooth
activation functions is more intricate than that of piecewise linear activation functions, owing to the
heightened nonlinearity inherent in smooth activation functions. In [24], Liu et al. introduced a
category of piecewise nonlinear activation function defined as follows:
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f (r) =


− 1, −∞ < r < −

π

2
,

(−1)k+1sin((2k − 1)r), −
π
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2
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(1.1)

where k > 0 is an integer. When k = 1, the function (1.1) is a type of sigmoidal function. When k = 2,
the activation function (1.1) turns to

f (r) =


− 1, −∞ < r < −

π

2
,

− sin(3r), −
π

2
≤ r ≤

π

2
,

1,
π

2
< r < +∞.

(1.2)

The conditions are obtained to guarantee that the investigative neural networks with piecewise
nonlinear activation functions (1.2) have a total of 5n equilibria. To the extent that the activation
functions devised in [24] are almost always in integer-order systems, however, related situations in
fractional-order systems have rarely been explored. Thus, it is of great interest to investigate the
multistable properties of FNNs with activation functions (1.1) or (1.2).

It is worth pointing out that time delays, in particular time-varying delays, are prevalent in neural
networks owing to the restricted propagation speed of signals as well as the finite switching speed of
neuron amplifiers. Time delays complicate the dynamic behavior of neural networks and even cause
instability or oscillations in originally stable networks. As such, it is essential and vital to look into the
multistability of DFNNs. Currently, many scholars are researching the multistability issues of DFNNs,
which has yielded some noteworthy achievements. In [25], Wan and Liu explored the multiple stability
for time-varying DFNNs. The criteria are established to guarantee there are

∏n
i=1(2Mi + 1) equilibria,

and among them,
∏n

i=1(Mi + 1) equilibria are locally O(t−α) stable. In [26], the authors introduced
Gaussian activation functions to analyze the multiple stability of Cohen-Grossberg neural networks
with delays. It is worth clarifying that there is very little literature exploring DFNNs and the activation
function described in (1.2). This motivation aroused our interest in the multistability analysis of time-
varying DFNNs with activation functions (1.1) or (1.2).

As indicated in the above analysis, this paper is dedicated to inquiring into associative memories
from the perspective of multiple O(t−α) stability of DFNNs with piecewise nonlinear activation
function (1.2). In general, the strengths of this paper can be generalized as follows: (1) Some
sufficient criteria are deduced to ensure the existence of 5n equilibria by means of Brouwer’s fixed
point theorem. (2) Several invariant sets are got, and the multiple O(t−α) stability for DFNNs with
activation function (1.2) is disclosed. (3) This paper offers a handy and useful approach to enhance
the quantity of stable equilibria for FNNs by elevating the value of k within the proposed sinusoidal
function, which can be used for high-capacity associative memories. (4) The results of this paper are
complementary to existing analyses of related associative memories.

Notations. Consider C([t0 − σ, t0],Rn) as the Banach space of continuous functions mapping [t0 −

σ, t0] into D ⊂ Rn, where the norm is given by ∥x∥ =
√∑n

i=1 x2
i . For ϕ ∈ C([t0 − σ, t0],Rn), let

∥ϕ∥M = supt0−σ≤s≤t0 ∥ϕ(s)∥ .
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2. Preliminaries

First of all, we show some definitions of fractional-order calculus.

Definition 2.1. [27] For a function F(t), its fractional integral Iαt0 (·) is defined as

Iαt0 F (t) =
1
Γ (α)

∫ t

t0
(t − s)α−1 F (s) ds,

where α ∈ (0, 1) , Γ (α) =
∫ ∞

0
uα−1exp (−u) du is the Gamma function.

Definition 2.2. [27] For a differentiable function F(t), its Caputo derivative of α order (when 0 <
α < 1) is described as

CDαt0 F (t) =
1

Γ (1 − α)

∫ t

t0
(t − s)−α

(
dF (s)

ds

)
ds.

Next, this paper will take into account a general class of time-varying DFNNs with an activation
function (1.2) as follows:

CDαt0 xi (t) = −βixi(t) +
n∑

j=1

ρi j f j(x j(t)) +
n∑

j=1

φi j f j(x j(t − τi j(t))) + ui, i = 1, 2, ..., n, (2.1)

where x(t) = (x1(t), x2(t), ..., xn(t))T ∈ Rn denotes the state vector, A = diag(β1, β2, ..., βn) stands for the
neuron self-inhibition matrix with βi > 0, B = (ρi j)n×n and C = (φi j)n×n stand for connection weight
matrices, f (·) = ( f1(·), f2(·), ..., fn(·))T is the activation function, and ui is input. τi j(·) is a time-varying
delay that meets 0 ≤ τi j(t) ≤ σ = max1≤i, j≤n

{
supt≥t0τi j(t)

}
, where σ > 0 is a constant. The initial value

of the neural network (2.1) is endowed with

x(t0 + s) = ϕ(s), s ∈ [t0 − σ, t0], (2.2)

where ϕ(s) = (ϕ1(s), ϕ2(s), ..., ϕn(s))T ∈ C([t0 − σ, t0],Rn).
In what follows, we introduce some definitions and lemmas that will be employed to investigate the

multistability of DFNNs.

Definition 2.3. [28] If a constant vector x∗ = (x∗1, x
∗
2, ..., x

∗
n)T satisfies

−βix∗i +
n∑

j=1

ρi j f j(x∗j) +
n∑

j=1

φi j f j(x∗j) + ui = 0, i = 1, 2, ..., n,

then x∗ can be called an equilibrium point of (2.1).

Definition 2.4. [14] Suppose that x∗ ∈ D is an equilibrium point of (2.1) as well as that eachD ∈ Rn

is positively invariant. Then (2.1) is regarded as locally O(t−α) stable if

∥x(t) − x∗∥ ≤
Λςα ∥ϕ − x∗∥M
(t − t0 + ς)α

,

where Λ ≥ 1, ς ≥ σ are constants, and t ≥ t0.
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Lemma 2.1. [17] Suppose thatW(t) is differentiable on [t0,+∞) and α ∈ (0, 1). AssumeW(t) < 0
(W(t) ≤ 0) for t0 ≤ t < t̄ andW(t̄) = 0 hold, then

CDαt0W(t)|t=t̄ > 0 (CDαt0W(t)|t=t̄ ≥ 0).

Lemma 2.2. [10] For function P(t) ∈ C1([0,+∞),R) as well as 0 < α < 1,

CDαt0 |P(t)| ≤ sign(P(t))CDαt0P(t), t ≥ t0,

holds almost everywhere.

Lemma 2.3. [25] Select ς > 0 is a constant, and 0 < α < 1. Suppose G(t) ≥ 0 is a continuous function
on [t0,+∞), then

CDαt0 H(t) ≤ (t − t0 + ς)α CDαt0G(t) +
1 − α + 2α2 − α3

ςαΓ(2 − α)
Ĥ(t),

for t ≥ t0, where H(t) = (t − t0 + ς)αG(t), Ĥ(t) = (t − t0 + ς)αĜ(t), Ĝ(t) = supt0≤s≤tG(s).

3. Multiple O(t−α) stability analysis

We are going to delve into the multistability of time-varying DFNNs (2.1) in this section. The
existence and stability of multiple equilibria of DFNNs (2.1) are also proved as follows:

3.1. Existence of multiple equilibria

For any given interval I ⊂ R, let I0 = ∅ and I1 = I, then denote

(−∞,−
π

2
) = (−∞,−

π

2
)1 × [−

π

2
,−
π

6
]0 × (−

π

6
,
π

6
)0 × [

π

6
,
π

2
] × (
π

2
,+∞)0,

[−
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2
,−
π

6
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π

2
)0 × [−
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,−
π

6
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π
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6
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π

2
]0 × (
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2
,+∞)0,

(−
π

6
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π

6
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π
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,−
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π

6
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π
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π
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]0 × (

π
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,+∞)0,
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6
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π
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] = (−∞,−

π
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)0 × [−
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,−
π
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]0 × (−

π
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π

6
)0 × [

π
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,
π

2
]1 × (

π

2
,+∞)0,

(
π

2
,+∞) = (−∞,−

π
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)0 × [−

π

2
,−
π

6
]0 × (−

π

6
,
π

6
)0 × [

π

6
,
π

2
]1 × (

π

2
,+∞)1,

and let

Θ =
{ n∏

i=1

(−∞,−
π

2
)δ

(i)
1 × [−

π

2
,−
π

6
]δ

(i)
2 × (−

π

6
,
π

6
)δ

(i)
3 × [

π

6
,
π

2
]δ

(i)
4 × (

π

2
,+∞)δ

(i)
5 , (δ(i)

1 , δ
(i)
2 , δ

(i)
3 , δ

(i)
4 , δ

(i)
5 )

=(1, 0, 0, 0, 0) or (0, 1, 0, 0, 0) or (0, 0, 1, 0, 0) or (0, 0, 0, 1, 0) or (0, 0, 0, 0, 1)
}
.

Hence, we can know that there are 5n regions in Θ. Suppose that ι is sufficiently small and meets
0 < ι ≪ min

{
2
π
, βi/(

∑n
j=1

∣∣∣ρi j

∣∣∣ +∑n
j=1

∣∣∣φi j

∣∣∣ + |ui|)
}
. Then, denote a set

Θι =
{ n∏

i=1

[−
1
ι
,−
π

2
− ι]δ

(i)
1 × [−

π

2
+ ι,−

π

6
− ι]δ

(i)
2 × [−

π

6
+ ι,
π

6
− ι]δ

(i)
3 × [

π

6
+ ι,
π

2
− ι]δ

(i)
4 × [

π

2
+ ι,

1
ι
]δ

(i)
5 ,

(δ(i)
1 , δ

(i)
2 , δ

(i)
3 , δ

(i)
4 , δ

(i)
5 ) = (1, 0, 0, 0, 0) or (0, 1, 0, 0, 0) or (0, 0, 1, 0, 0) or (0, 0, 0, 1, 0) or (0, 0, 0, 0, 1)

}
.
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Consequently, any subset Θ(s) ∈ Θι is a bounded and closed set, where s ∈ {1, 2, ..., 5n} .
Remark 3.1. In view of Figure 1, by means of the geometric properties of the activation function (1.2),
it can be seen that we divide the interval (−∞,+∞) into five parts: (−∞,−π2 ) ∪ [−π2 ,−

π
6 ] ∪ (−π6 ,

π
6 ) ∪

[π6 ,
π
2 ] ∪ (π2 ,+∞). As a result, the region

∏n
i=1(−∞,+∞) can be divided into 5n subsets.

-3 -2 -1 0 1 2 3

x

-1.5

-1

-0.5

0

0.5

1

1.5

f(
x
)

Figure 1. The activation function defined in (1.2).

Theorem 3.1. Assume that the following conditions meet

π

2
βi − ρii − φii +

n∑
j,i, j=1

|ρi j + φi j| + ui < 0, (3.1)

−
π

2
βi + ρii + φii −

n∑
j,i, j=1

|ρi j + φi j| + ui > 0, (3.2)

for i = 1, 2, ..., n. Then DFNNs (2.1) with activation functions (1.2) can possess at least 5n equilibria
in Θι.

Proof. From (3.1) and the fact that fi(−π2 ) = fi(π6 ) = −1, we know

−
π

6
βi − ρii − φii +

n∑
j,i, j=1

|ρi j + φi j| + ui < 0. (3.3)

Taking arbitrarily a region Φ̃ι ∈ Θι, which is denoted by:

Φ̃ι =
∏
i∈N1

[−
1
ι
,−
π

2
− ι] ×

∏
i∈N2

[−
π

2
+ ι,−

π

6
− ι] ×

∏
i∈N3

[−
π

6
+ ι,
π

6
− ι] ×

∏
i∈N4

[
π

6
+ ι,
π

2
− ι] ×

∏
i∈N5

[
π

2
+ ι,

1
ι

] ⊂ Θι,

where Ni ∈ {1, 2, ..., n} and Ni ∩ N j = ∅(i , j, i, j = 1, 2, 3, 4, 5),N1 ∪ N2 ∪ N3 ∪ N4 ∪ N5 = {1, 2, ..., n} .
Then, we are about to prove that there is an equilibrium point in Φ̃ι for (2.1) with the activation

function (1.2).
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Choose a point (ξ1, ξ2, ..., ξn)T ∈ Φ̃ι and fix ξ1, ..., ξi−1, ξi+1, ..., ξn except ξi. Define a function

Zi(x) = −βix + (ρii + φii) fi(x) +
n∑

j,i, j=1

(ρi j + φi j) f j(ξ j) + ui. (3.4)

In the argument that follows, we categorize the discussion into five situations.
Situation 1. i ∈ N1. Since fi(−π2 − ι) = −1, | f j(ξ j)| ≤ 1, based on (3.1) and the definition of ι, we get

Zi(−
1
ι
) =
βi

ι
− (ρii + φii) +

n∑
j,i, j=1

(ρi j + φi j) f j(ξ j) + ui

≥
βi

ι
−

n∑
j=1

|ρi j| −

n∑
j=1

|φi j| − |ui| > 0,

Zi(−
π

2
− ι) ≤

π

2
βi + βiι − ρii − φii +

n∑
j,i, j=1

|ρi j + φi j| + ui ≤ 0.

Hence, thanks to the continuity of Zi(x), there exists a ξ̄i ∈ [−1
ι
,−π2 − ι] such that Zi(ξ̄i) = 0.

Situation 2. i ∈ N2. Owing to fi(−π2 ) = −1, fi(−π6 ) = 1, under the facts βi > 0 and (3.2),

π

6
βi + ρii + φii −

n∑
j,i, j=1

|ρi j + φi j| + ui > 0, (3.5)

so, according to (3.1) and (3.5), we can have

Zi(−
π

2
+ ι) ≤

π

2
βi + (ρii + φii) fi(−

π

2
+ ι) − βiι +

n∑
j,i, j=1

|ρi j + φi j| + ui ≤ 0,

Zi(−
π

6
− ι) ≥

π

6
βi + (ρii + φii) fi(−

π

6
− ι) + βiι −

n∑
j,i, j=1

|ρi j + φi j| + ui ≥ 0,

hence, there exists a ξ̄i ∈ [−π2 + ι,−
π
6 − ι] such that Zi(ξ̄i) = 0.

Situation 3. i ∈ N3. fi(−π6 ) = 1, and fi(π6 ) = −1, from (3.1), we have

−
π

6
βi − ρii − φii +

n∑
j,i, j=1

|ρi j + φi j| + ui < 0, (3.6)

due to (3.5) and (3.6),

Zi(−
π

6
+ ι) ≥

π

6
βi + (ρii + φii) fi(−

π

6
+ ι) − βiι +

n∑
j,i, j=1

|ρi j + φi j| + ui ≥ 0,

Zi(
π

6
− ι) ≤ −

π

6
βi + (ρii + φii) fi(

π

6
− ι) + βiι +

n∑
j,i, j=1

|ρi j + φi j| + ui ≤ 0,

so there exists a ξ̄i ∈ [−π6 + ι,
π
6 − ι] such that Zi(ξ̄i) = 0.
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Situation 4. i ∈ N4. fi(π6 ) = −1, and fi(π2 ) = 1, from (3.2) and (3.6), we can obtain

Zi(
π

6
+ ι) ≤ −

π

6
βi + (ρii + φii) fi(

π

6
+ ι) − βiι +

n∑
j,i, j=1

|ρi j + φi j| + ui ≤ 0,

Zi(
π

2
− ι) ≥ −

π

2
βi + (ρii + φii) fi(

π

2
− ι) − βiι −

n∑
j,i, j=1

|ρi j + φi j| + ui ≥ 0,

similarly, there exists a ξ̄i ∈ [π6 + ι,
π
2 − ι] such that Zi(ξ̄i) = 0.

Situation 5. i ∈ N5. fi(π2 + ι) = 1, and | f j(ξ j)| ≤ 1, from (3.2), we can know

Zi(
π

2
+ ι) ≥ −

π

2
βi + (ρii + φii) − βiι −

n∑
j,i, j=1

|ρi j + φi j| + ui ≥ 0,

Zi(
1
ι
) = −

βi

ι
+ (ρii + φii) +

n∑
j,i, j=1

(ρi j + φi j) f j(ξ j) + ui

< −
βi

ι
+

n∑
j=1

|ρi j| +

n∑
j=1

|φi j| + |ui| < 0,

therefore, there exists a ξ̄i ∈ [π6 + ι,
π
2 − ι] such that Zi(ξ̄i) = 0.

That is, it is possible to draw the conclusion that there exists at least one zero about each interval in
Φ̃ι for Zi(x). Define a continuous mapping Ξ : Θ(1) → Θ(1), Ξ(x1, x2, ..., xn) = (x̄1, x̄2, ..., x̄n)T . Taking
advantage of Brouwer’s fixed point theorem, there exists a fixed point x∗ = (x∗1, x

∗
2, ..., x

∗
n)T of Ξ, which

simultaneously acts as the equilibrium point of DFNNs (2.1) in Φ̃ι ∈ Θι. Hence, for DFNNs (2.1) with
activation function (1.2), there are a minimum of 5n equilibria in Θι. □

3.2. Stability of multiple equilibria

We will explore the stability of multiple equilibria of DFNNs (2.1) with activation function (1.2) in
this subsection. For this purpose, some positive invariant sets of DFNNs (2.1) need to be determined
in order to analyze the stability of equilibria.

Denote

Θ̄ι =
{ n∏

i=1

[−
1
ι
,−
π

2
− ι]δ

(i)
1 ×[−

π

6
+ ι,
π

6
− ι]δ

(i)
2 ×[
π

2
+ ι,

1
ι
]δ

(i)
3 , (δ(i)

1 , δ
(i)
2 , δ

(i)
3 ) = (1, 0, 0) or (0, 1, 0) or (0, 0, 1)

}
,

apparently, the set Θ̄ι has 3n regions.
Pick any region of Θ̄ι,

Φ̄ιL =
∏
i∈L1

[−
1
ι
,−
π

2
− ι] ×

∏
i∈L2

[−
π

6
+ ι,
π

6
− ι] ×

∏
i∈L3

[
π

2
+ ι,

1
ι
] ⊂ Θ̄ι,

where L1 ∪ L2 ∪ L3 = {1, 2, ..., n}, Li ∩ L j = ∅ (i , j, i, j = 1, 2, 3).
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Theorem 3.2. Suppose that DFNNs (2.1) with activation functions (1.2) satisfy:

π

2
βi − ρii +

n∑
j,i, j=1

|ρi j| +

n∑
j=1

|φi j| + ui < 0, (3.7)

−
π

2
βi + ρii −

n∑
j,i, j=1

|ρi j| −

n∑
j=1

|φi j| + ui > 0, (3.8)

for i = 1, 2, ..., n. Then each region Φ̄ιL ∈ Θ̄ι is a positively invariant set of DFNNs (2.1).

Proof. From (3.7) and (3.8), the following conditions can be obtained

−
π

6
βi − ρii +

n∑
j,i, j=1

|ρi j| +

n∑
j=1

|φi j| + ui < 0, (3.9)

π

6
βi + ρii −

n∑
j,i, j=1

|ρi j| −

n∑
j=1

|φi j| + ui > 0. (3.10)

Assume that x(t) is the solution of DFNNs (2.1) with the initial value (2.2). In the following, we
will certify that each subspace Φ̄ιL ∈ Θ̄ι is positively invariant. Thus, for a given subspace Φ̄ιL, if the
initial condition ϕ(t0) ∈ Φ̄ιL, then x(t) ∈ Φ̄ιL for all t ≥ t0. If not, three cases will be considered.

Case 1. i ∈ L1. There exists a t̄1 > 0 such that xi(t̄1) < −1
ι
, or xi(t̄1) > −π2 − ι. Assume that

xi(t̄1) > −π2 − ι without loss of generality. Then
xi(t) = −

π

2
− ι, t = t̄1,

xi(t) < −
π

2
− ι, t0 ≤ t < t̄1.

DenoteW1(t) = xi(t) − (−π2 − ι), according to Lemma 2.1,

CDαt0W1(t)|t=t̄1 =
C Dαt0 xi(t̄1) > 0, (3.11)

on the other hand, owing to (3.7), fi(−π2 − ι) = −1, and the sufficiently small positive ι,

CDαt0 xi(t̄1) = −βixi(t̄1) +
n∑

j=1

ρi j f j(x j(t̄1)) +
n∑

j=1

φi j f j(x j(t̄1 − τi j(t̄1))) + ui

≤
π

2
βi + βiι − ρii +

n∑
j,i, j=1

|ρi j| +

n∑
j=1

|φi j| + ui ≤ 0,

which shows that it is a paradox with (3.11).
So we can get that xi(t) ≤ −π2 − ι. Similarly, we can prove xi(t) ≥ −1

ι
.

Case 2. i ∈ L2. There exists a t̄2 > 0 such that xi(t̄2) < −π6 + ι, or xi(t̄2) > π
6 − ι. Using the same

approach as Case 1, assume that xi(t̄3) < −π6 + ι. Then
xi(t) = −

π

6
+ ι, t = t̄2,

xi(t) > −
π

6
+ ι, t0 ≤ t < t̄2.
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DenoteW2(t) = −π6 + ι − xi(t̄2), based on Lemma 2.1,

CDαt0W2(t)|t=t̄2 = −
CDαt0 xi(t̄2) > 0, (3.12)

on the other hand, in view of (3.10) and | f j(x j)| ≤ 1,

CDαt0 xi(t̄2) = −βixi(t̄2) +
n∑

j=1

ρi j f j(x j(t̄2)) +
n∑

j=1

φi j f j(x j(t̄2 − τi j(t̄2))) + ui

≥
π

6
βi − βiι + ρii fi(−

π

6
+ ι) −

n∑
j,i, j=1

|ρi j| −

n∑
j=1

|φi j| + ui ≥ 0,

this contradicts (3.12). So we can get that xi(t) ≥ −π6 + ι. Similarly, we can prove xi(t) ≤ π6 − ι.
Case 3. i ∈ L3. There exists a t̄3 > 0 such that xi(t̄3) < π2 + ι, or xi(t̄3) > 1

ι
. Assume that xi(t̄3) < π2 + ι.

Then 
xi(t) =

π

2
+ ι, t = t̄3,

xi(t) >
π

2
+ ι, t0 ≤ t < t̄3.

LetW3(t) = π2 + ι − xi(t̄3). According to Lemma 2.1,

CDαt0W3(t)|t=t̄3 = −
CDαt0 xi(t̄3) > 0, (3.13)

which implies xi(t̄3) < 0. On the other hand, on account of (3.8),

CDαt0 xi(t̄3) = −βixi(t̄3) +
n∑

j=1

ρi j f j(x j(t̄3)) +
n∑

j=1

φi j f j(x j(t̄3 − τi j(t̄3))) + ui

≥ −
π

2
βi − βiι + ρii −

n∑
j,i, j=1

|ρi j| −

n∑
j=1

|φi j| + ui ≥ 0,

this is contradicted by xi(t̄3) < 0. Hence, we can get that xi(t) ≥ π2 + ι. Similarly, we can prove xi(t) ≤ 1
ι
.

Summing up, we conclude that the corresponding solution xi(t) would always stay in Φ̄ιδ ∈ Θ̄ι,
which suggests that each subset Φ̄ιδ ∈ Θ̄ι is a positive invariant set of DFNNs (2.1). □

Below, the stability of DFNNs (2.1) with activation functions (1.2) will be discussed.

Theorem 3.3. Under the conditions (3.7)–(3.8), further suppose that there are n positive constants
ε1, ε2, ..., εn and ς > σ satisfying the following condition:

βi − χi −
3
εi

n∑
j=1, j,i

|ρi j|ε j −
3
εi

n∑
j=1

|φi j|ε j(
ς

ς − σ
)α −

1 − α + 2α2 − α3

ςαΓ(2 − α)
> 0,

for i = 1, 2, ..., n, where χi = max1≤i≤n {0,−3ρii} . Then, there are 3n locally O(t−α) stable equilibria in
Θ̄ι for DFNNs (2.1).
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Proof. Based on Theorem 3.2, we get that there are 3n subsets in Θι and each Φ̃ι ∈ Θι is positively
invariant. Hence, all we need to do is verify that x∗ is a locally O(t−α) stable equilibrium point when
Φ̃ι ∈ Θι.

Let

Y(t) = x(t) − x∗, z(t) = max
1≤i≤n

{
|Yi(t)|
εi

}
.

Since z(t) = max1≤i≤n

{
|yi(t)|
εi

}
, thus, an index k ∈ {1, 2, ..., n} exists such that z(t) = |Yk(t)|

εk
.

Substituting x(t) = Y(t) + x∗ into (2.1), it shows that

CDαt0Yi(t) = −βiYi(t) +
n∑

j=1

ρi jF j(Y j(t)) +
n∑

j=1

φi jF j(Y j(t − τi j(t))),

where F j(Y j(t)) = f j(Y j(t) + x∗j) − f j(x∗j), F j(Y j(t − τi j(t))) = f j(Y j(t − τi j(t)) + x∗j) − f j(x∗j).
Then, according to Lemma 2.2, we get that

CDαt0 |Yi(t)| ≤sign(Yi(t)) ·C Dαt0Yi(t)

≤sign(Yi(t)) ·
(
−βiYi(t) +

n∑
j=1

ρi jF j(Y j(t)) +
n∑

j=1

φi jF j(Y j(t − τi j(t))
)

≤ − βi|Yi(t)| + ρii
fi(xi(t)) − fi(x∗i )

xi(t) − x∗i
|Yi(t)| +

n∑
j=1, j,i

ρi j

f j(x j(t)) − f j(x∗j)

x j(t) − x∗j
|Y j(t)|

+

n∑
j=1

φi j

f j(x j(t − τi j(t))) − f j(x∗j)

x j(t − τi j(t)) − x∗j
|Y j(t − τi j(t))|.

(3.14)

Next, recalling (1.2), under the Lagrange mean value theorem, there exists ξ∗1 j ∈ (x∗j, x j(t)), ξ∗2 j ∈

(x∗j, x j(t − τi j(t))) such that f ′j (ξ
∗
1 j) =

f j(x j(t))− f j(x∗j)

x j(t)−x∗j
∈ (−3, 0), f ′j (ξ

∗
2 j) =

f j(x j(t−τi j(t)))− f j(x∗j)

x j(t−τi j(t))−x∗j
∈ (−3, 0), i, j =

1, 2, ..., n.
Consider the term ρii

fi(xi(t))− fi(x∗i )
xi(t)−x∗i

|Yi(t)|, if ρii ≥ 0, ρii
fi(xi(t))− fi(x∗i )

xi(t)−x∗i
|Yi(t)| ≤ 0; if ρii < 0,

ρii
fi(xi(t))− fi(x∗i )

xi(t)−x∗i
|Yi(t)| ≤ −3ρii|Yi(t)|. In conclusion, ρii

fi(xi(t))− fi(x∗i )
xi(t)−x∗i

|Yi(t)| ≤ χi|Yi(t)|.
Combining with (3.14), we can have

CDαt0 |Yi(t)| ≤ (−βi + χi)|Yi(t)| + 3
n∑

j=1, j,i

|ρi j||Y j(t)| + 3
n∑

j=1

|φi j||Y j(t − τi j(t))|. (3.15)

Invoking (3.15) and the definition of z(t),

CDαt0z(t) =
1
εκ
·C Dαt0 |Yκ(t)| ≤

1
εκ

[
(−βκ + χκ)|Yκ(t)| + 3

n∑
j=1, j,κ

|ρκ j||Y j(t)| + 3
n∑

j=1

|φκ j||Y j(t − τκ j(t))|
]

≤ (−βκ + χκ)z(t) +
3
εκ

[ n∑
j=1, j,κ

|ρκ j|ε jz(t) +
n∑

j=1

|φκ j|ε jz(t − τκ j(t))
]
.

(3.16)
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In view of Lemma 2.3, let
ϖ(t) = (t − t0 + ς)αz(t),
ϖ̂(t) = (t − t0 + ς)αẑ(t),
ẑ(t) = sup

t0−σ≤s≤t
z(s).

Then,
CDαt0ϖ(t) ≤ (t − t0 + ς)α CDαt0z(t) +

1 − α + 2α2 − α3

ςαΓ(2 − α)
ϖ̂(t), (3.17)

substituting (3.16) into (3.17), it yields

CDαt0ϖ(t) ≤(−βκ + χκ)ϖ(t) +
3
εκ

[ n∑
j=1, j,κ

|ρκ j|ε jϖ(t) +
n∑

j=1

|φκ j|ε jϖ(t − τκ j(t))

×
(t − t0 + ς)α

(t − τκ j(t) − t0 + ς)α

]
+

1 − α + 2α2 − α3

ςαΓ(2 − α)
ϖ̂(t).

(3.18)

Note that
ϖ(t − τκ j(t)) ≤ (t − τκ j(t) − t0 + ς)αẑ(t) ≤ ϖ̂(t),

and
t − t0 + ς

t − τκ j(t) − t0 + ς
≤

ς

ς − τκ j(t)
≤
ς

ς − σ
,

hence, (3.18) turns into

CDαt0ϖ(t) ≤ −
(
βκ − χκ −

3
εκ

n∑
j=1, j,κ

|ρκ j|ε j

)
ϖ(t)

+
3
εκ

n∑
j=1

|φκ j|ε j(
ς

ς − σ
)αϖ̂(t) +

1 − α + 2α2 − α3

ςαΓ(2 − α)
ϖ̂(t).

When ϖ̂(t) = ϖ(t) holds for t ≥ t0, it implies that

CDαt0ϖ(t) ≤ −
[
βκ − χκ −

3
εκ

n∑
j=1, j,κ

|ρκ j|ε j −
3
εκ

n∑
j=1

|φκ j|ε j(
ς

ς − σ
)α −

1 − α + 2α2 − α3

ςαΓ(2 − α)

]
ϖ(t)

≤ −Υϖ(t),

(3.19)

where Υ = min1≤i≤n

(
βi − χi −

3
εi

∑n
j=1, j,i |ρi j|ε j −

3
εi

∑n
j=1 |φi j|ε j(

ς
ς−σ

)α − 1−α+2α2−α3

ςαΓ(2−α)

)
> 0.

Next, we are about to demonstrate that ϖ̂(t) ≤ ϖ̂(t0), for t ≥ t0. Otherwise, there must be some
t̃ > t0, then ϖ̂(t̃) = ϖ(t̃) > ϖ̂(t0) ≥ 0.

Now, denote ℏ(t) = ϖ(t) − ϖ̂(t), then ℏ(t) = 0, t = t̃,

ℏ(t) ≤ 0, t < t̃.

Based on Lemma 2.1, we obtain that

CDαt0ℏ(t)|t=t̃ =
C Dαt0ϖ(t)|t=t̃ −

C Dαt0ϖ̂(t)|t=t̃ ≥ 0,
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from (3.19), we get that CDαt0ϖ(t) < 0, thereupon, we get that

CDαt0ϖ̂(t)|t=t̃ ≤
C Dαt0ϖ(t)|t=t̃ < 0. (3.20)

On the other side, it’s worth noting that the property of ϖ̂(t) is that when t0 ≤ t ≤ t̃, dϖ̂(t)
dt ≥ 0, and

dϖ̂(t)
dt . 0, hence

CDαt0ϖ̂(t)|t=t̃ =
1

Γ (1 − α)

∫ t

t0
(t − s)−α (

dϖ̂(s)
ds

)ds > 0,

which conflicts with (3.20). Therefore, ϖ̂(t) ≤ ϖ̂(t0) holds for t ≥ t0.

Recalling the norms ∥x∥ and z(t), it follows

||x(t) − x∗|| = ||Y(t)|| ≤
√

nεκz(t).

Then

||x(t) − x∗|| ≤
√

n||ε||
ϖ(t)

(t − t0 + ς)α
≤
√

n||ε||
ϖ̂(t0)

(t − t0 + ς)α

≤
√

n||ε||
ςα||ϕ − x∗||M
ε̌(t − t0 + ς)α

=
Λςα||ϕ − x∗||M
(t − t0 + ς)α

,

where Λ =
√

n||ε||
ε̌
≥ 1, ε̌ = min1≤i≤n {εi} .

Therefore, x∗ is a locally O(t−α) stable equilibrium point; this accomplishes the proof. □

Remark 3.2. Compared to the study of piecewise nonlinear activation functions (1.2) in integer-order
neural networks in [24], this paper extends activation functions (1.2) to FNNs, thereby enhancing the
generalizability of the results.
Remark 3.3. In contrast with the multiple O(t−α) stability of FNNs studied in [25, 26], the piecewise
nonlinear activation functions considered in this paper can achieve more stable equilibrium points.
This implies the possibility of achieving greater storage capacity, thus leading to better performance in
the application of associative memory.

The above mainly discusses the existence and stability of DFNNs (2.1) with k = 2 in the proposed
activation function (1.2). In order to attain a greater number of stable equilibria, we promote the
activation function in a more generalized scenario. The subsequent theorem elucidates the conditions
under k ≥ 2 in the activation function (1.1).

Theorem 3.4. Under the conditions (3.7)–(3.8), further suppose that there are n positive constants
ε1, ε2, ..., εn and ς > σ satisfying the following condition:

βi − χi −
2k − 1
εi

n∑
j=1, j,i

|ρi j|ε j −
2k − 1
εi

n∑
j=1

|φi j|ε j(
ς

ς − σ
)α −

1 − α + 2α2 − α3

ςαΓ(2 − α)
> 0,

for i = 1, 2, ..., n. Then, there are (2k + 1)n equilibria, out of which (k + 1)n equilibria exist local O(t−α)
stability for DFNNs (2.1) with activation function (1.1). The positively invariant set of DFNNs (2.1)
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with activation function (1.1) is

Θ∗ =
{ n∏

i=1

(−∞,−
π

2
)δ

(i)
1 × [−

π

2
+
π

k
,−
π

2
+

2π
k

]δ
(i)
2 × · · · × [

π

2
−

2π
k
,
π

2
−
π

k
]δ

(i)
k × (

π

2
,+∞)δ

(i)
k+1 ,

(δ(i)
1 , δ

(i)
2 , ..., δ

(i)
k+1) = (1, 0, ..., 0) or (0, 1, ..., 0) or... or (0, 0, ..., 1)

}
.

Proof. Since the proof process is similar to Theorems 3.1–3.3, we omit it here. □

Remark 3.4. From Theorem 3.4, we can see that there is a connection between the amount of stable
equilibria and the frequency k of the sinusoidal functions. The result shows that adding the frequency
of the sinusoidal functions leads to an expansion of the quantity of stable equilibria.

4. Synthesis of neural networks

In what follows, a design procedure for DFNNs (2.1) is introduced.

4.1. Synthesis problem

Let B = {−1, 1} and Bn =
{
η ∈ Rn, η = (η1, η2, ..., ηn)T , ηi ∈ B, i = 1, 2, ..., n.

}
. For a given positive

integer r, design neurodynamic associative memory utilizing DFNNs (2.1), with r vectors denoted
as η1, η2, ..., ηr acting as memory patterns, such that: (a) The vectors η1, η2, ..., ηr represent memory
vectors. (b) The system complies with the conditions outlined in Theorem 3.3. (c) Minimize the
presence of spurious memory patterns.

4.2. Design procedure

With r vectors denoted as η1, η2, ..., ηr ∈ B
n, we proceed as follows:

(1) Choose matrix A as the identity matrix E.
(2) Take a real constant γ > 1 and choose r vectors ϵ1, ϵ2, ..., ϵr such that ϵi = γηi, and ϵi = (B +

C)ηi + I, i = 1, 2, ..., r.
(3) Let Q = [η1−ηr, η2−ηr, ..., ηr−1−ηr], andM = [ϵ1− ϵr, ϵ2− ϵr, ..., ϵr−1− ϵr]. Performing singular

value decomposition on Q yields

Q = t[U1,U2]
[
D 0
0 0

] [
VT

1
VT

2

]
,

where matrix D = diag(d1, d2, ..., dm) and di > 0 are singular values, as well as m = rank(Q), i =
1, 2, ...,m.UT

1U1 = V1V
T
1 = DD

−1 = E.U1 ∈ Rn×m,U2 ∈ Rn×(r−m−1),V1 ∈ Rm×m.

(4) Compute the sum matrix T = (hi j) of B,C, T =MV1DD
−1UT

1 +WUT
2 , where W is an arbitrary

n × (r − m − 1) matrix.
(5) Choose B and C such that ρi j + φi j = hi j.

(6) The vector of neuron inputs is calculated from I = ϵr − Tηr.
Remark 4.1. In [29], Theorem 3.2 solved the validity of the above-mentioned design process, and
the authors employed this design procedure applied to the associative memory of integer-order neural
networks in [3]. In contrast, this paper applies that design process to the associative memory of DFNNs.
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5. Illustrative examples

Here, four examples are provided to demonstrate the validity of the theoretical results.
Example 5.1. Consider the following 2-dimensional DFNNs with α = 0.98:CDαt0 x1(t) = −x1(t) + 2.9 f1(x1(t)) + 0.1 f2(x2(t)) + 0.1 f1(x1(t − τ11(t))) + 0.1 f2(x2(t − τ12(t))) + 0.9,

CDαt0 x2(t) = −x2(t) + 0.1 f1(x1(t)) + 2.7 f2(x2(t)) + 0.1 f1(x1(t − τ21(t))) + 0.1 f2(x2(t − τ22(t))) + 1,
(5.1)

where τ11(t) = τ21(t) = t
1+t , τ12(t) = τ22(t) = et

1+et , and

f (x) =


− 1, −∞ < x < −

π

2
,

− sin(3x), −
π

2
≤ x ≤

π

2
,

1,
π

2
< x < +∞.

(5.2)

For the following calculation formulas:

π

2
β1 − ρ11 + |ρ12| + |φ11| + |φ12| + u1 =

π

2
− 1.6 ≈ −0.0292 < 0,

−
π

2
β2 + ρ22 − |ρ21| − (|φ21| + |φ22|) + u2 = 3.4 −

π

2
≈ 1.8292 > 0,

and pick ε1 = ε2 = 1, and ς = 50 > σ = 1, such that

βi − χi −
3
εi

n∑
j=1, j,i

|ρi j|ε j −
3
εi

n∑
j=1

|φi j|ε j(
ς

ς − σ
)α −

1 − α + 2α2 − α3

ςαΓ(2 − α)
= 0.0661 > 0.

As a result, we can see that the criteria introduced in Theorems 3.1–3.3 are met for DFNNs (5.1).
Accordingly, there are 52 = 25 equilibria for (5.1), among which 32 = 9 equilibria are locally O(t−α)
stable. Utilizing MATLAB, we can see the evolution behaviors of DFNNs (5.1) in Figures 2 and 3.

Figure 2. Transient behaviors of DFNNs (5.1).
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Figure 3. Phase trajectory of DFNNs (5.1).

Example 5.2. Consider the following 2-dimensional DFNNs with α = 0.98:CDαt0 x1(t) = −x1(t) + 2.9 f1(x1(t)) + 0.1 f2(x2(t)) + 0.1 f1(x1(t − τ11(t))) + 0.1 f2(x2(t − τ12(t))) + 0.9,
CDαt0 x2(t) = −x2(t) + 0.1 f1(x1(t)) + 2.7 f2(x2(t)) + 0.1 f1(x1(t − τ21(t))) + 0.1 f2(x2(t − τ22(t))) + 1,

(5.3)
where τ11(t) = τ21(t) = t

1+t , τ12(t) = τ22(t) = et

1+et , and

f (x) =


− 1, −∞ < x < −

π

2
,

sin(5x), −
π

2
≤ x ≤

π

2
,

1,
π

2
< x < +∞.

(5.4)

For the following calculation formulas:

π

2
β1 − ρ11 + |ρ12| + |φ11| + |φ12| + u1 =

π

2
− 1.6 ≈ −0.0292 < 0,

−
π

2
β2 + ρ22 − |ρ21| − (|φ21| + |φ22|) + u2 = 3.4 −

π

2
≈ 1.8292 > 0,

and pick ε1 = ε2 = 1, and ς = 50 > σ = 1, such that

βi − χi −
3
εi

n∑
j=1, j,i

|ρi j|ε j −
3
εi

n∑
j=1

|φi j|ε j(
ς

ς − σ
)α −

1 − α + 2α2 − α3

ςαΓ(2 − α)
= 0.0661 > 0.

As a result, we can see that the criteria introduced in Theorems 3.1–3.3 are met for DFNNs (5.3).
Accordingly, there are 72 = 49 equilibria for (5.3), among which 42 = 16 equilibria are locally O(t−α)
stable. Using MATLAB, we can see the evolution behaviors of DFNNs (5.3) in Figures 4 and 5.

AIMS Mathematics Volume 9, Issue 7, 17430–17452.



17446

Figure 4. Transient behaviors of DFNNs (5.3).

Figure 5. Phase trajectory of DFNNs (5.3).

Example 5.3. Next, we verify neurodynamic associative memory. Assuming the target
pattern that need to be memorized is a 6 × 3–pixel image, as shown in Figure 6, in which
a black pixel represents ‘-1’, and a white pixel represents ‘1’, that is, the target pattern is
(−1,−1,−1, 1, 1, 1; 1, 1,−1,−1,−1,−1;−1,−1,−1, 1, 1, 1)T . Here, we will synthesize associative
memory by adopting model (5.1) with the activation function (5.2) in Example 1, and then we can get 9
locally O(t−α) stable equilibria, which are designated as X1, X2, ..., X9. By applying MATLAB, these
equilibria are X1 = (−1.9, 3.6), X2 = (−2.151, 0.086), X3 = (−2.3,−2.0), X4 = (0.119, 3.7341), X5 =

(0.0848, 0.1025), X6 = (0.0705,−1.842), X7 = (4.1, 4.0), X8 = (3.8236, 0.1306), and X9 = (3.7,−1.6).
Besides, define Xi = (Xi1, Xi2)T , i = 1, 2, ..., n.

By calculation,

f (X11) = −1, f (X12) = 1, f (X21) = −1, f (X22) = −0.2551, f (X31) = −1, f (X32) = −1,

f (X41) = −0.3294, f (X42) = 1, f (X51) = −0.2517, f (X52) = −0.3027, f (X61) = −0.2099, f (X62) = −1,
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f (X71) = −1, f (X72) = 1, f (X81) = 1, f (X82) = −0.3819, f (X91) = 1, f (X92) = −1.

To get a better display, define nine vectors: ei = (ei1, ei2)T , i = 1, 2, ..., 9. The details are as follows:

e1 = (0,−2)T , e2 = (0, 1.2551)T , e3 = (2, 2)T ,

e4 = (1.3294, 0)T , e5 = (−0.7483,−0.6973)T , e6 = (−0.7901, 0)T ,

e7 = (0,−2)T , e8 = (−2, 1.3819)T , e9 = (0, 2)T .

Define Ji = (Ji1,Ji2)T = ( f (Xi1) + ei1, f (Xi2) + ei2)T . Let J =

(J1;J2;J3;J4;J5;J6;J7;J8;J9) = (−1,−1,−1, 1, 1, 1; 1, 1,−1,−1,−1,−1;−1,−1,−1, 1, 1, 1)T .

By the aid of the proposed design procedure in Section 4, the matrices B and C need to satisfy

B +C =
[

3 0.2
0.2 2.8

]
. Then we can pick the same connection weights ρi j, φi j as (5.1) in Example 1. The

corresponding evolutionary pattern is shown in Figure 7.

Figure 6. Target pattern of 6 × 3–pixel image.

Figure 7. Evolutionary pattern based on DFNNs (5.1) with the activation function (5.2).

Example 5.4. To further demonstrate the universality and applicability of theoretical results, we apply
neurodynamic associative memory to the explaining-lesson skills assessment of normal students. In
China, in order to further carry out the new normal construction, actively adapt and serve the needs of
educational reform and development for teacher training, whose essence is also to promote the reform
of teacher education training modes and test the results of teaching and training of basic teaching
skills for normal students, explaining-lesson skills of normal students have received high attention
from the governments and universities. Generally, the explaining-lesson process in China includes the
following aspects: (1) textbook analysis, (2) student analysis, (3) determining teaching objectives and
key and difficult points, (4) determining teaching and learning methods, (5) selecting teaching aids and
learning aids, and (6) designing the teaching process. Based on the explaining-lesson process, there
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are nine indexes for evaluating explaining-lesson skills: (I) textbook analysis, (II) teaching objectives,
(III) teaching priorities, (IV) teaching difficulties, (V) teaching methods, (VI) teaching process, (VII)
blackboard design, (VIII) post-class reflection, and (IX) explaining-lesson modes. For a specific
normal student, which index has the most significant impact on his or her explaining-lesson skill is
crucial for personalized discrimination and improvement of his or her teaching skill. From a signal
processing perspective, this is essentially a nonlinear classification problem.

We know that high-dimensional mapping can effectively solve nonlinear classification problems.
Firstly, based on the format of the data frames in the explaining-lesson videos, we extract the data
fields that need to be converted into matrices through the algorithm in [30]. Then we determine the
dimension n of the matrix by way of the characteristics and requirements of the data fields, where
the choice of dimension n depends on the specific application scenario and requirement. The next
question is how to map data fields to this n×n matrix according to a certain rule. Here, this rule
will be the neurodynamic associative memory that is going to be explored. Based on DFNNs (5.1) with
the activation function (5.2) in Example 1 (i.e., as an associative memory network), the network model
is used to construct the structural elements of high-dimensional mapping, where 9 local O(t−α) stable
equilibria represent the corresponding membership degree (i.e., corresponding to the previously stated
nine indexes (I)-(IX)). Once adaptive structural elements are obtained, the samples are preprocessed
before classification so as to reduce the impact of irrelevant interference information on classification
accuracy. Neurodynamic associative memory based on DFNNs (5.1) with the activation function (5.2)
is a very useful intelligent classifier.

Figure 8 describes three scene segments of explaining-lesson for normal students, Figure 9 displays
normalization a preprocessing of samples before classification; and Figure 10 shows a certain index
that has the most significant impact on the explaining-lesson skill of a specific normal student.

Figure 8. Three scene segments of explaining-lesson for normal students.

Figure 9. The normalization preprocessing of samples.
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Figure 10. The most influential index on the explaining-lesson skills of specific normal
students.

6. Conclusions

This paper investigates the multiple O(t−α) stability of DFNNs with a type of piecewise nonlinear
activation function. Some sufficient conditions are acquired to assure that there exist 5n equilibria for
DFNNs (2.1), and 3n equilibria of them are locally multiple O(t−α) stable. Furthermore, we apply these
results to a more general case, revealing that the time-varying DFNNs can attain (2k + 1)n equilibria,
among which (k + 1)n equilibria exhibit O(t−α) stability. Here, the parameter k is highly dependent
on the frequency of the sinusoidal functions in the expanded activation functions. Accordingly, this
work offers effective assistance in obtaining a larger storage capacity for the application of DFNNs in
associative memory.
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