Processing math: 100%
Research article Special Issues

Probabilistic type 2 Bernoulli and Euler polynomials

  • Assume that the moment-generating function of the random variable Y exists in a neighborhood of the origin. The aim of this paper is to investigate the probabilistic type 2 Bernoulli polynomials associated with Y and the probabilistic type 2 Euler polynomials associated with Y, along with the probabilistic type 2 cosine-Bernoulli polynomials associated with Y, the probabilistic type 2 sine-Bernoulli polynomials associated with Y, the probabilistic type 2 cosine-Euler polynomials associated with Y, and the probabilistic type 2 sine-Euler polynomials associated with Y. We deal with their properties, related identities and explicit expressions.

    Citation: Li Chen, Dmitry V. Dolgy, Taekyun Kim, Dae San Kim. Probabilistic type 2 Bernoulli and Euler polynomials[J]. AIMS Mathematics, 2024, 9(6): 14312-14324. doi: 10.3934/math.2024696

    Related Papers:

    [1] Dojin Kim, Patcharee Wongsason, Jongkyum Kwon . Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541
    [2] Can Kızılateş, Halit Öztürk . On parametric types of Apostol Bernoulli-Fibonacci, Apostol Euler-Fibonacci, and Apostol Genocchi-Fibonacci polynomials via Golden calculus. AIMS Mathematics, 2023, 8(4): 8386-8402. doi: 10.3934/math.2023423
    [3] Waseem A. Khan, Abdulghani Muhyi, Rifaqat Ali, Khaled Ahmad Hassan Alzobydi, Manoj Singh, Praveen Agarwal . A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties. AIMS Mathematics, 2021, 6(11): 12680-12697. doi: 10.3934/math.2021731
    [4] Jung Yoog Kang, Cheon Seoung Ryoo . Exploring variable-sensitive $ q $-difference equations for $ q $-SINE Euler polynomials and $ q $-COSINE-Euler polynomials. AIMS Mathematics, 2024, 9(6): 16753-16772. doi: 10.3934/math.2024812
    [5] William Ramírez, Can Kızılateş, Daniel Bedoya, Clemente Cesarano, Cheon Seoung Ryoo . On certain properties of three parametric kinds of Apostol-type unified Bernoulli-Euler polynomials. AIMS Mathematics, 2025, 10(1): 137-158. doi: 10.3934/math.2025008
    [6] Waseem Ahmad Khan, Kottakkaran Sooppy Nisar, Dumitru Baleanu . A note on (p, q)-analogue type of Fubini numbers and polynomials. AIMS Mathematics, 2020, 5(3): 2743-2757. doi: 10.3934/math.2020177
    [7] Jongkyum Kwon, Patcharee Wongsason, Yunjae Kim, Dojin Kim . Representations of modified type 2 degenerate poly-Bernoulli polynomials. AIMS Mathematics, 2022, 7(6): 11443-11463. doi: 10.3934/math.2022638
    [8] Mohra Zayed, Gamal Hassan . On the approximation of analytic functions by infinite series of fractional Ruscheweyh derivatives bases. AIMS Mathematics, 2024, 9(4): 8712-8731. doi: 10.3934/math.2024422
    [9] Tabinda Nahid, Mohd Saif, Serkan Araci . A new class of Appell-type Changhee-Euler polynomials and related properties. AIMS Mathematics, 2021, 6(12): 13566-13579. doi: 10.3934/math.2021788
    [10] Adel M. Al-Mahdi . The coupling system of Kirchhoff and Euler-Bernoulli plates with logarithmic source terms: Strong damping versus weak damping of variable-exponent type. AIMS Mathematics, 2023, 8(11): 27439-27459. doi: 10.3934/math.20231404
  • Assume that the moment-generating function of the random variable Y exists in a neighborhood of the origin. The aim of this paper is to investigate the probabilistic type 2 Bernoulli polynomials associated with Y and the probabilistic type 2 Euler polynomials associated with Y, along with the probabilistic type 2 cosine-Bernoulli polynomials associated with Y, the probabilistic type 2 sine-Bernoulli polynomials associated with Y, the probabilistic type 2 cosine-Euler polynomials associated with Y, and the probabilistic type 2 sine-Euler polynomials associated with Y. We deal with their properties, related identities and explicit expressions.



    We discuss the probabilistic extensions of type 2 Bernoulli polynomials and type 2 Euler polynomials, namely the probabilistic type 2 Bernoulli polynomials associated with Y and the probabilistic type 2 Euler polynomials associated with Y. Here, Y is a random variable whose moment-generating function exists in a neighborhood of the origin. Along with them, we also consider the probabilistic type 2 cosine-Bernoulli polynomials associated with Y, the probabilistic type 2 sine-Bernoulli polynomials associated with Y, the probabilistic type 2 cosine-Euler polynomials associated with Y, and the probabilistic type 2 sine-Euler polynomials associated with Y. We study their properties, related identities and explicit expressions.

    The details of this paper are as follows. In Section 1, we recall the type 2 Bernoulli polynomials and the type 2 Euler polynomials. We remind the reader of the type 2 cosine-Bernoulli polynomials, the type 2 sine-Bernoulli polynomials, the type 2 cosine-Euler polynomials and the type 2 sine-Euler polynomials. We recall the Stirling numbers of the second kind and the central factorial numbers of the second kind. Assume that Y is a random variable whose moment-generating function exists in some neighborhood of the origin. Let (Yj)j1 be a sequence of mutually independent copies of the random variable Y, and let Sk=Y1+Y2++Yk, (k1), with S0=0. We remind the reader of the probabilistic Stirling numbers of the second kind associated Y and the probabilistic central factorial numbers of the second kind associated with Y, TY(n,k). Section 2 contains the main results of this paper. We define the probabilistic type 2 Bernoulli polynomials associated with Y, Bn,Y(x), the probabilistic type 2 Euler polynomials associated with Y, En,Y(x), the probabilistic type 2 cosine-Bernoulli polynomials associated with Y, Bcn,Y(x,y) and the probabilistic type 2 sine-Bernoulli polynomials associated with Y, Bsn,Y(x,y). In Theorem 2.1, we derive some expressions of Bcn,Y(x,y) and Bsn,Y(x,y) in terms of Bn,Y(x). We deduce one identity involving Bcn,Y(x,y) and another involving Bsn,Y(x,y) in Theorem 2.3. We define the probabilistic type 2 Bernoulli polynomials of order α associated with Y, B(α)n,Y(x), the probabilistic cosine-Bernoulli polynomials of order α associated with Y, B(c,α)n,Y(x,y), and the probabilistic sine-Bernoulli polynomials of order α associated with Y, B(s,α)n,Y(x,y). For any positive integer k, we show that B(k)n,Y=B(k)n,Y(0)=1(n+kk)TY(n+k,k) in Theorem 2.4. In Theorem 2.5, we find certain expressions for B(c,α)n,Y(x,y) and B(s,α)n,Y(x,y) in terms of B(α)n,Y=B(α)n,Y(0). For any positive integer k, we derive explicit expressions for B(c,k)n,Y(x,y) and B(s,k)n,Y(x,y) involving TY(n,k) in Theorem 2.6. We define the probabilistic type 2 cosine-Euler polynomials associated with Y, Ecn,Y(x,y), and the probabilistic type 2 sine-Euler polynomials associated with Y, Esn,Y(x,y). In Theorem 2.7, we get explicit expressions for Ecn,Y(x,y) and Ecn,Y(x,y) in terms of En,Y=En,Y(0).

    Now, we give a brief account of the literature in the References. In [2,6,7,16,17,18], one can find general facts on probability, combinatorics, polynomials and functions. The r-Stirling numbers of the first kind count restricted permutations, while those of the second kind count restricted partitions. When r=0 or r=1, they reduce to the usual Stirling numbers of the first and second kinds. The reader may refer to [3,4,12,13] for the r-Stirling numbers, the degenerate r-Stirling numbers, and probabilistic extensions of Stirling and degenerate Stirling numbers of the second kind. We refer the reader to [1,5,9,19,20] for the Bell numbers and polynomials, and for probabilistic extensions of the Bell, central Bell and degenerate Bell polynomials. We investigate probabilistic extensions of the Bernoulli and Euler polynomials in [10]. In [8,11,14], we study the type 2 degenerate Bernoulli and Euler polynomials (see [15]). The rest of this section is devoted to recalling the facts that are needed throughout this paper.

    It is known that the type 2 Bernoulli polynomials Bn(x) and the type 2 Euler polynomials En(x) are respectively defined by

    extt2cscht2=tet2et2ext=n=0Bn(x)tnn!, (1.1)

    and

    extsecht2=2et2+et2ext=n=0En(x)tnn!,(see [11,14]). (1.2)

    When x=0, Bn=Bn(0) and En=En(0) are respectively called the type 2 Bernoulli numbers and the type 2 Euler numbers. From (1.1) and (1.2), we note that

    n1k=0(k+12)m=1m+1(Bm+1(n)Bm+1),(n1), (1.3)

    and

    n1k=0(1)k(k+12)m=Em(n)+Em2, for n1 (mod 2), (1.4)

    (see [11,14]). By (1.1), the type 2 Bernoulli polynomials of the complex variable x+iy are given by

    tet2et2e(x+iy)t=n=0Bn(x+iy)tnn!,(i=1). (1.5)

    The type 2 cosine-Bernoulli polynomials Bcn(x,y) and the type 2 sine-Bernoulli polynomials Bsn(x,y) are respectively defined by

    n=0(Bn(x+iy)+Bn(xiy)2)tnn!=tet2et2extcosyt=n=0Bcn(x,y)tnn!, (1.6)

    and

    n=0(Bn(x+iy)Bn(xiy)2i)tnn!=tet2et2extsinyt=n=0Bsn(x,y)tnn!. (1.7)

    The type 2 cosine-Euler polynomials Ecn(x,y) and the type 2 sine-Euler polynomials Esn(x,y) are respectively given by

    2et2+et2extcosyt=n=0Ecn(x,y)tnn!, (1.8)
    2et2+et2extsinyt=n=0Esn(x,y)tnn!,(see [11,14]). (1.9)

    For n0, the Stirling numbers of the second kind are defined by

    xn=nk=0{nk}(x)k,(see [3,4,12,13]), (1.10)

    where (x)0=1, (x)k=x(x1)(xk+1), (k1).

    Let n be a nonnegative integer. Then the central factorial numbers of the second kind are given by

    1k!(et2et2)k=n=kT(n,k)tnn!,(nk0),(see [11,20]). (1.11)

    From (1.11), we have

    xn=nk=0T(n,k)x[k],(n0),(see [9,11]), (1.12)

    where

    x[0]=1,x[n]=x(x+n21)(x+n22)(xn2+1),(n1).

    Assume that Y is a random variable such that the moment generating function of Y,

    E[eYt]=n=0E[Yn]tnn!,(|t|<r),(see [3,9,13,18]),

    exists for some r>0.

    Let (Yj)j1 be a sequence of mutually independent copies of random variable Y, and let

    Sk=S1+S2++Sk, (n1),with S0=0.

    For nk>0, the probabilistic Stirling numbers of the second kind associated with Y are defined by

    {nk}Y=1k!km=0(km)(1)kmE[Snm],(see [3,9,13]). (1.13)

    When Y=1, we have {nk}Y={nk}.

    The probabilistic central factorial numbers of the second kind associated with Y are given by

    1k!(E[eY2t]E[eY2t])k=n=kTY(n,k)tnn!,(k0),(see [20]). (1.14)

    The probabilistic Bernoulli polynomials associated with Y are defined by

    βYn(x)=nm=0mk=0(nm)βYnm{mk}Y(x)k(n0),(see [9]). (1.15)

    When Y=1, we have βYn(x)=βn(x), where βn(x) are the ordinary Bernoulli polynomials given by

    tet1ext=n=0βn(x)tnn!,(see [1,2,6,17]). (1.16)

    The probabilistic Euler polynomials associated with Y are defined by

    EYn(x)=nm=0(nm)EYnmmk=0{mk}Y(x)k,(n0),(see [9]). (1.17)

    When Y=1, we have EYn(x)=En(x), where En(x) are the ordinary Euler polynomials given by

    2et+1ext=n=0En(x)tnn!,(see [1,2,6,7,17]).

    Let (Yj)j1 be a sequence of mutually independent copies of the random variable Y, and let

    S0=0,Sk=S1+S2++Sk,(kN).

    Now, we define the probabilistic type 2 Bernoulli polynomials associated with Y, Bn,Y(x), and the probabilistic type 2 Euler polynomials associated with Y, En,Y(x), respectively, by

    tE[eY2t]E[eY2t]ext=n=0Bn,Y(x)tnn!, (2.1)

    and

    2E[eY2t]+E[eY2t]ext=n=0En,Y(x)tnn!. (2.2)

    When Y=1, we have Bn,Y(x)=Bn(x) and  En,Y(x)=En(x). For x=0, Bn,Y=Bn,Y(0) and En,Y=En,Y(0) are respectively called the probabilistic type 2 Bernoulli numbers associated with Y and the probabilistic type 2 Euler numbers associated with Y.

    From (2.1), we note that

    tE[eY2t]E[eY2t]e(x+iy)t=n=0Bn,Y(x+iy)tnn!. (2.3)

    Thus, by (2.3), we get

    n=0(Bn,Y(x+iy)+Bn,y(xiy)2)tnn!=tE[eY2t]E[eY2t]extcosyt, (2.4)

    and

    n=0(Bn,Y(x+iy)Bn,y(xiy)2i)tnn!=tE[eY2t]E[eY2t]extsinyt. (2.5)

    We define the probabilistic type 2 cosine-Bernoulli polynomials associated with Y and the probabilistic type 2 sine-Bernoulli polynomials associated with Y as follows:

    tE[eY2t]E[eY2t]extcosyt=n=0Bcn,Y(x,y)tnn!, (2.6)

    and

    tE[eY2t]E[eY2t]extsinyt=n=0Bsn,Y(x,y)tnn!. (2.7)

    From (2.4)–(2.7), we obtain

    Bn,Y(x+iy)+Bn,Y(xiy)2=Bcn,Y(x,y),Bn,Y(x+iy)Bn,Y(xiy)2i=Bsn,Y(x,y),

    where n is a nonnegative integer.

    From (2.6), we observe that

    n=0Bcn(x,y)tnn!=tE[eY2t]E[eY2t]extcosyt=l=0Bl,Y(x)tll!m=0y2m(1)m(2m)!t2m=n=0[n2]m=0(n2m)(1)mBn2m,Y(x)y2mtnn!. (2.8)

    From (2.7), we note that

    n=0Bsn,Y(x,y)tnn!=tE[eY2t]E[eY2t]extsinyt=l=0Bl,Y(x)tll!m=0(1)my2m+1(2m+1)!t2m+1=n=1[n12]m=0(n2m+1)(1)mBn2m1,Y(x)y2m+1tnn!. (2.9)

    Therefore, by (2.8) and (2.9), we obtain the following theorem.

    Theorem 2.1. We have the following expressions:

    Bcn,Y(x,y)=[n2]m=0(1)m(n2m)Bn2m,Y(x)y2m,(n0),

    and

    Bsn,Y(x,y)=[n12]m=0(1)m(n2m+1)Bn2m1,Y(x)y2m+1,(n1).

    By (2.1), we get

    n=0Bn,Y(x)tnn!=tE[eY2t]E[eY2t]ext=l=0Bl,Ytll!m=0xmtmm!=n=0nl=0(nl)Bl,Yxnltnn!. (2.10)

    The next theorem follows immediately from (2.10).

    Theorem 2.2. For n0, we have

    Bn,Y(x)=nl=0(nl)Bl,Yxnl.

    On the one hand, from (2.6) and (2.7), we have

    etxcosyt=1t(E[eY2t]E[eY2t])l=0Bcl,Y(x,y)tll!=1tk=1(12)kE[Yk](1(1)k)tkk!l=0Bcl,Y(x,y)tll!=k=0(12)k+11k+1E[Yk+1](1+(1)k)tkk!l=0Bcl,Y(x,y)tll!=n=0nk=0(12)k+1E[Yk+1]k+1(nk)(1+(1)k)Bcnk,Y(x,y)tnn!=n=01n+1nk=0(12)k+1E[Yk+1](n+1k+1)(1+(1)k)Bcnk,Y(x,y)tnn!, (2.11)
    etxsinyt=1t(E[eY2t]E[eY2t])l=0Bsl,Y(x,y)tll!=n=01n+1nk=0(12)k+1E[Yk+1](n+1k+1)(1+(1)k)Bsnk,Y(x,y)tnn!. (2.12)

    On the other hand, we also have

    etxcosyt=l=0xll!tlm=0(1)my2m(2m)!t2m=n=0[n2]m=0(1)m(n2m)y2mxn2mtnn!, (2.13)

    and

    etxsinyt=l=0xll!tlm=0(1)my2m+1(2m+1)!t2m+1=n=1[n12]m=0(1)m(n2m+1)y2m+1xn2m1tnn!. (2.14)

    Taking (2.11)–(2.14) altogether, we obtain the following theorem.

    Theorem 2.3. For n0, we have the following identities:

    1n+1nk=0(12)k+1(1+(1)k)(n+1k+1)E[Yk+1]Bcnk,Y(x,y)=[n2]m=0(1)m(n2m)y2mxn2m,

    and

    1n+1nk=0(12)k+1(1+(1)k)(n+1k+1)E[Yk+1]Bsnk,Y(x,y)=[n2]m=0(1)m(n2m+1)y2m+1xn2m.

    For αR, the probabilistic type 2 Bernoulli polynomials of order α associated with Y are defined by

    (tE[eY2t]E[eY2t])αext=n=0B(α)n,Y(x)tnn!. (2.15)

    For x=0, B(α)n,Y=B(α)n,Y(0) are called the probabilistic type 2 Bernoulli numbers of order α associated with Y. For kN and x=0, we have

    n=0B(k)n,Ytnn!=k!tk1k!(E[eY2t]E[eY2t])k=k!tkn=kTY(n,k)tnn!=n=01(n+kk)TY(n+k,k)tnn!. (2.16)

    The next theorem follows readily from (2.16).

    Theorem 2.4. For n0 and kN, we have

    B(k)n,Y=1(n+kk)TY(n+k,k).

    For any αR, we define the probabilistic cosine-Bernoulli polynomials of order α associated with Y and the probabilistic sine-Bernoulli polynomials of order α associated with Y, respectively, by

    (tE[eY2t]E[eY2t])αextcosyt=n=0B(c,α)n,Y(x,y)tnn!, (2.17)

    and

    (tE[eY2t]E[eY2t])αextsinyt=n=0B(s,α)n,Y(x,y)tnn!. (2.18)

    Then we obtain

    B(c,α)n,Y(x,y)=B(α)n,Y(x+iy)+B(α)n,Y(xiy)2,B(s,α)n,Y=B(α)n,Y(x+iy)B(α)n,Y(xiy)2i, (2.19)

    where n is a nonnegative integer.

    From (2.15), we note that

    n=0(B(α)n,Y(x+iy)+B(α)n,Y(xiy)2)tnn!=(tE[eY2t]E[eY2t])αextcosyt=k=0B(α)k,Ytkk!l=0[l2]m=0(l2m)(1)my2mxl2mtll!=n=0nl=0[l2]m=0(nl)(l2m)(1)m×y2mxl2mB(α)nl,Ytnn!, (2.20)

    and

    n=0(B(α)n,Y(x+iy)B(α)n,Y(xiy)2i)tnn!=(tE[eY2t]E[eY2t])αextsinyt=l=0B(α)l,Ytll!m=0(1)m(2m+1)!y2m+1x2m+1j=0xjj!tj=l=0B(α)l,Ytll!k=1[k12]m=0(k2m+1)(1)m×y2m+1xk2m1tkk!=n=1nk=1[k12]m=0(nk)(k2m+1)(1)m×y2m+1xk2m1B(α)nk,Ytnn!. (2.21)

    Therefore, by (2.19)–(2.21), we have the following theorems.

    Theorem 2.5. We have the following expressions:

    B(c,α)n,Y(x,y)=nl=0[l2]m=0(1)m(nl)(l2m)B(α)nl,Yy2mxl2m,(n0),

    and

    B(s,α)n,Y(x,y)=nk=1[k12]m=0(1)m(nk)(k2m+1)B(α)nk,Yy2m+1xk2m1,(n1).

    For kN, we have

    n=0B(c,k)n,Y(x,y)tnn!=k!tk1k!(E[eY2t]E[eY2t])kextcosyt=l=0TY(l+k,k)(l+kk)tll!j=0[j2]m=0(j2m)y2mxj2m(1)mtjj!=n=0nj=0[j2]m=0(j2m)TY(nj+k,k)(nj+kk)(nj)(1)my2mxj2mtnn!, (2.22)

    and

    n=0B(s,k)n,Y(x,y)tnn!=k!tk1k!(E[eY2t]E[eY2t])kextsinyt=n=1nj=1[j12]m=0(j2m+1)TY(nj+k,k)(nj+kk)(nj)(1)my2m+1xl2m1tnn!. (2.23)

    Therefore, we deduce the next theorem from (2.22) and (2.23).

    Theorem 2.6. For kN, we have the following expressions:

    B(c,k)n,Y(x,y)=nj=0[j2]m=0(j2m)TY(nj+k,k)(nj+kk)(1)m(nj)y2mxl2m,(n0),

    and

    B(s,k)n,Y(x,y)=nj=1[j12]m=0(j2m+1)TY(nj+k,k)(nj+kk)(1)m(nj)y2m+1xl2m1,(n1).

    By using (2.2), we get

    n=0(En,Y(x+iy)+En,Y(xiy)2)tnn!=2E[eY2t]+E[eY2t]extcosyt, (2.24)

    and

    n=0(En,Y(x+iy)En,Y(xiy)2i)tnn!=2E[eY2t]+E[eY2t]extsinyt. (2.25)

    Now, we define the probabilistic type 2 cosine-Euler polynomials associated with Y and the probabilistic type 2 sine-Euler polynomials associated with Y, respectively, by

    2E[eY2t]+E[eY2t]extcosyt=n=0Ecn,y(x,y)tnn!, (2.26)

    and

    2E[eY2t]+E[eY2t]extsinyt=n=0Esn,Y(x,y)tnn!. (2.27)

    By (2.26) and (2.27), we get

    n=0Ecn,Y(x,y)tnn!=2E[eY2t]+E[eY2t]extcosyt=l=0El,Ytll!j=0[j2]m=0(j2m)y2m(1)mxj2mtjj!=n=0nj=0[j2]m=0(nj)(j2m)(1)mEnj,Yy2mxj2mtnn!, (2.28)

    and

    n=0Esn,Y(x,y)tnn!=2E[eY2t]+E[eY2t]extsinyt=l=0El,Ytll!j=1[j12]m=0(j2m+1)xj2m1y2m+1(1)mtjj!=n=1nj=1[j12]m=0(nj)(j2m+1)(1)mEnj,Yy2m+1xj2m1tnn!. (2.29)

    Therefore, by (2.28) and (2.29), we get the following theorem.

    Theorem 2.7. For n0, we have

    Ecn,Y(x,y)=nj=0[j2]m=0(1)m(nj)(j2m)Enj,Yy2mxj2m,

    and

    Esn,Y(x,y)=nj=1[j12]m=0(1)m(nj)(j2m+1)Enj,Yy2m+1xj2m1.

    Let Y be a random variable such that the moment-generating function of Y exists in a neighborhood of the origin. We investigated probabilistic extensions of the type 2 Bernoulli polynomials and the type 2 Euler polynomials, namely the probabilistic type 2 Bernoulli polynomials associated with Y and the probabilistic type 2 Euler polynomials associated with Y. Along with these, we also considered the probabilistic type 2 cosine-Bernoulli polynomials associated with Y, the probabilisitic type 2 sine-Bernoulli polynomials associated with Y, the probabilistic type 2 cosine-Euler polynomials associated with Y, and the probabilistic type 2 sine-Euler polynomials associated with Y. We discussed their properties, related identities and explicit expressions.

    As one of our future projects, we would like to continue to study probabilistic extensions of many special polynomials and numbers and to find their applications to physics, science and engineering as well as to mathematics.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The first author of this work is supported by the Natural Science Basic Research Plan in Shaanxi Province of China (2022JQ-072) and the second author of this research has been conducted by the Research Grant of Kwangwoon University in 2024.

    The authors declare no conflicts of interest.



    [1] M. Abbas, S. Bouroubi, On new identities for Bell's polynomials, Discrete Math., 293 (2005), 5–10. https://doi.org/10.1016/j.disc.2004.08.023 doi: 10.1016/j.disc.2004.08.023
    [2] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, 1992.
    [3] J. A. Adell, Probabilistic Stirling numbers of the second kind and applications, J. Theor. Probab., 35 (2022), 636–652. https://doi.org/10.1007/s10959-020-01050-9 doi: 10.1007/s10959-020-01050-9
    [4] A. Z. Broder, The r-Stirling numbers, Discrete Math., 49 (1984), 241–259. https://doi.org/10.1016/0012-365X(84)90161-4 doi: 10.1016/0012-365X(84)90161-4
    [5] L. Carlitz, Some remarks on the Bell numbers, Fibonacci Quart., 18 (1980), 66–73.
    [6] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Berlin: Springer, 1974.
    [7] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2 Eds., Massachusetts: Addison Wesley Publishing Company, 1994.
    [8] G. W. Jang, T. Kim, A note on type 2 degenerate Euler and Bernoulli polynomials, Adv. Stud. Contemp. Math., 29 (2019), 147–159.
    [9] T. Kim, D. S. Kim, Probabilistic degenerate Bell polynomials associated with random variables, Russ. J. Math. Phys., 30 (2023), 528–542. https://doi.org/10.1134/S106192082304009X doi: 10.1134/S106192082304009X
    [10] T. Kim, D. S. Kim, Probabilistic Bernoulli and Euler polynomials, Russ. J. Math. Phys., 31 (2024), 94–105. https://doi.org/10.1134/S106192084010072 doi: 10.1134/S106192084010072
    [11] T. Kim, D. S. Kim, L. C. Jang, H. Y. Kim, On type 2 degenerate Bernoulli and Euler polynomials of complex variable, Adv. Differ. Equ., 2019 (2019), 490. https://doi.org/10.1186/s13662-019-2419-3 doi: 10.1186/s13662-019-2419-3
    [12] T. Kim, D. S. Kim, Some identities on degenerate r-Stirling numbers via boson operators, Russ. J. Math. Phys., 29 (2022), 508–517. https://doi.org/10.1134/S1061920822040094 doi: 10.1134/S1061920822040094
    [13] T. Kim, D. S. Kim, J. Kwon, Probabilistic degenerate Stirling polynomials of the second kind and their applications, Math. Comput. Model. Dyn. Syst., 30 (2024), 16–30. https://doi.org/10.1080/13873954.2023.2297571 doi: 10.1080/13873954.2023.2297571
    [14] T. Kim, L. C. Jang, D. S. Kim, H. Y. Kim, Some identities on type 2 degenerate Bernoulli polynomials of the second kind, Symmetry, 12 (2020), 510. https://doi.org/10.3390/sym12040510 doi: 10.3390/sym12040510
    [15] M. Masjed-Jamei, M. R. Beyki, W. Koepf, A new type of Euler polynomials and numbers, Mediterr. J. Math., 15 (2018), 138. https://doi.org/10.1007/s00009-018-1181-1 doi: 10.1007/s00009-018-1181-1
    [16] J. Riordan, Combinatorial Identities, New York: John Wiley & Sons, 1968.
    [17] S. Roman, The Umbral Calculus, New York: Springer, 1984.
    [18] S. M. Ross, Introduction to Probability Models, 13 Eds., London: Academic Press, 2024.
    [19] S. Soni, P. Vellaisamy, A. K. Pathak, A probabilistic generalization of the Bell polynomials, J. Anal., 32 (2024), 711–732. https://doi.org/10.1007/s41478-023-00642-y doi: 10.1007/s41478-023-00642-y
    [20] R. Xu, Y. Ma, T. Kim, D. S. Kim, S. Boulaarasp, Probabilistic central Bell polynomials, preprint paper, 2024. https://doi.org/10.48550/arXiv.2403.00468
  • This article has been cited by:

    1. T. Kim, D. S. Kim, Explicit Formulas for Probabilistic Multi-Poly-Bernoulli Polynomials and Numbers, 2024, 31, 1061-9208, 450, 10.1134/S1061920824030087
    2. Robert E. Gaunt, A probabilistic proof of some integral formulas involving incomplete gamma functions, 2024, 0361-0926, 1, 10.1080/03610926.2024.2363870
    3. Ayse Karagenc, Mehmet Acikgoz, Serkan Araci, Exploring probabilistic Bernstein polynomials: identities and applications, 2024, 32, 2769-0911, 10.1080/27690911.2024.2398591
    4. Mikyoung Ha, Suhyun Lee, Youngsoo Seol, On degenerate Poisson random variable, 2024, 30, 1387-3954, 721, 10.1080/13873954.2024.2395808
    5. Taekyun Kim, Dae San Kim, Probabilistic degenerate Stirling numbers of the first kind and their applications, 2024, 10, 2199-675X, 10.1007/s40879-024-00789-3
    6. Wencong Liu, Yuankui Ma, Taekyun Kim, Dae San Kim, Probabilistic poly-Bernoulli numbers, 2024, 30, 1387-3954, 840, 10.1080/13873954.2024.2427306
    7. Taekyun Kim, Dae San Kim, Wonjoo Kim, Jongkyum Kwon, Some identities related to degenerate Bernoulli and degenerate Euler polynomials, 2024, 30, 1387-3954, 882, 10.1080/13873954.2024.2425155
    8. D. S. Kim, T. Kim, Moment Representations of Fully Degenerate Bernoulli and Degenerate Euler Polynomials, 2024, 31, 1061-9208, 682, 10.1134/S1061920824040071
    9. Ayse Karagenc, Mehmet Acikgoz, Serkan Araci, A new family of q- Bernstein polynomials: probabilistic viewpoint , 2025, 32, 2576-5299, 42, 10.1080/25765299.2025.2474305
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1006) PDF downloads(82) Cited by(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog