The main objective of this study is to establish error estimates of the new parameterized quadrature rule similar to and covering the second Simpson formula. To do this, we start by introducing a new parameterized identity involving the right and left Riemann-Liouville integral operators. On the basis of this identity, we establish some fractional Simpson-type inequalities for functions whose absolute value of the first derivatives are s-convex in the second sense. Also, we examine the special cases m=1/2 and m=3/8, as well as the two cases s=1 and α=1, which respectively represent the classical convexity and the classical integration. By applying the definition of convexity, we derive larger estimates that only used the extreme points. Finally, we provide applications to quadrature formulas, special means, and random variables.
Citation: Nassima Nasri, Badreddine Meftah, Abdelkader Moumen, Hicham Saber. Fractional 3/8-Simpson type inequalities for differentiable convex functions[J]. AIMS Mathematics, 2024, 9(3): 5349-5375. doi: 10.3934/math.2024258
[1] | Areej A. Almoneef, Abd-Allah Hyder, Fatih Hezenci, Hüseyin Budak . Simpson-type inequalities by means of tempered fractional integrals. AIMS Mathematics, 2023, 8(12): 29411-29423. doi: 10.3934/math.20231505 |
[2] | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814 |
[3] | Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara . New Simpson type inequalities for twice differentiable functions via generalized fractional integrals. AIMS Mathematics, 2022, 7(3): 3959-3971. doi: 10.3934/math.2022218 |
[4] | Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Jongsuk Ro, Najla M. Aloraini . A novel fractional approach to finding the upper bounds of Simpson and Hermite-Hadamard-type inequalities in tensorial Hilbert spaces by using differentiable convex mappings. AIMS Mathematics, 2024, 9(12): 35151-35180. doi: 10.3934/math.20241671 |
[5] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
[6] | Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu . Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831 |
[7] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[8] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[9] | Chanon Promsakon, Muhammad Aamir Ali, Hüseyin Budak, Mujahid Abbas, Faheem Muhammad, Thanin Sitthiwirattham . On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters. AIMS Mathematics, 2021, 6(12): 13954-13975. doi: 10.3934/math.2021807 |
[10] | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217 |
The main objective of this study is to establish error estimates of the new parameterized quadrature rule similar to and covering the second Simpson formula. To do this, we start by introducing a new parameterized identity involving the right and left Riemann-Liouville integral operators. On the basis of this identity, we establish some fractional Simpson-type inequalities for functions whose absolute value of the first derivatives are s-convex in the second sense. Also, we examine the special cases m=1/2 and m=3/8, as well as the two cases s=1 and α=1, which respectively represent the classical convexity and the classical integration. By applying the definition of convexity, we derive larger estimates that only used the extreme points. Finally, we provide applications to quadrature formulas, special means, and random variables.
Over the last several decades, the study of error estimation of quadrature rules has grown in interest and become an appealing and active subject of research. Numerous extensions and improvements have been suggested for various categories of functions; for example, [1,2,3,4,5].
The 3/8-Simpson rule for four-times continuously differentiable functions, can be declared as follows:
|18(P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2))−1γ2−γ1γ2∫γ1P(u)du|≤(γ2−γ1)46480‖P(4)‖∞, | (1.1) |
where ‖P(4)‖∞=supx∈[γ1,γ2]|P(4)(x)|.
Numerous scholars have examined different Simpson-type disparities. The majority of research has been done on convex function classes, which are significant in many scientific domains including finance, economics, and optimization. Here, we recall the classical definition of the notion of convexity.
Definition 1.1. [6] A function P:I→R is said to be convex, if
P(κγ1+(1−κ)γ2)≤κP(γ1)+(1−κ)P(γ2) |
holds for all γ1,γ2∈I and all κ∈[0,1].
The idea of inequality and the aforementioned principle are closely related, and readers who are interested in learning more about this topic are referred to a rich and diverse literature, see for instance [7,8,9,10,11,12].
In [13], Laribi and Meftah proposed the following 3/8 -Simpson inequalities for s-convex first derivatives.
|18(P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2))−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ19(s+1)(s+2)((2(58)s+2+3s−28)(|P′(γ1)|+|P′(γ2)|)+((1+(34)s+2)(12)s+1+9s+28)(|P′(2γ1+γ23)|+|P′(γ1+2γ23)|)), |
where s∈(0,1]. For s=1, the above inequality reduces to:
|18(P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2))−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ113824(157(|P′(γ1)|+|P′(γ2)|)+443(|P′(2γ1+γ23)|+|P′(γ1+2γ23)|)). |
For functions whose absolute value of the first derivatives are s-convex, they established the following:
|18(P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2))−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ19(p+1)1p((3p+1+5p+18p+1)1p(|P′(γ1)|q+|P′(2γ1+γ23)|qs+1)1q+12(|P′(2γ1+γ23)|q+|P′(γ1+2γ23)|qs+1)1q+(3p+1+5p+18p+1)1p(|P′(γ1+2γ23)|q+|P′(γ2)|qs+1)1q) |
and
|18(P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2))−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ19(2(s+1)(s+2))1q((1764)1−1q(((58)s+2+3s−216)|P′(γ1)|q+((38)s+2+5s+216)|P′(2γ1+γ23)|q)1q+(14)1−1q(s4+(12)s+2)1q(|P′(2γ1+γ23)|q+|P′(γ1+2γ23)|q)1q+(1764)1−1q(((38)s+2+5s+216)|P′(γ1+2γ23)|q+((58)s+2+3s−216)|P′(γ2)|q)1q), |
where p,q>1 with 1p+1q=1 and s∈(0,1].
Erden et al. [14], discussed the above inequality for absolutely continuous functions whose first derivatives belong, to Lp[γ1,γ2], as well as Lipschitzian mappings with bounded variation.
Mahmoudi and Meftah [15] studied a more general form of Simpson's second rule and developed the following results:
|12+2θ(P(γ1)+θP(2γ1+γ23)+θP(γ1+2γ23)+P(γ2))−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ19(s+1)(s+2)((3s+4−2θ2+2θ+2(2θ−12+2θ)s+2)(|P′(γ1)|+|P′(γ2)|)+(3θs+(2θ−4)2+2θ+(12)s+1+2(32+2θ)s+2)(|P′(2γ1+γ23)|+|P′(γ1+2γ23)|)), |
|12+2θ(P(γ1)+θP(2γ1+γ23)+θP(γ1+2γ23)+P(γ2))−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ118(p+1)p+1((3p+1+(2θ−1)p+12(1+θ)p+1)1p(|P′(γ1)|q+|P′(2γ1+γ23)|qs+1)1q+(|P′(2γ1+γ23)|q+|P′(γ1+2γ23)|qs+1)1q+(3p+1+(2θ−1)p+12(1+θ)p+1)1p(|P′(γ1+2γ23)|q+|P′(γ2)|qs+1)1q) |
and
|12+2θ(P(γ1)+θP(2γ1+γ23)+θP(γ1+2γ23)+P(γ2))−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ19((s+1)(s+2))1q((9+(2θ−1)28(1+θ)2)1−1q((3s+4−2θ2+2θ+2(2θ−12+2θ)s+2)|P′(γ1)|q+((2θ−1)s+(2θ−4)2+2θ+2(32+2θ)s+2)|P′(2γ1+γ23)|q)1q+14(2s+(12)s−1)1q(|P′(2γ1+γ23)|q+|P′(γ1+2γ23)|q)1q+(9+(2θ−1)28(1+θ)2)1−1q(((2θ−1)s+(2θ−4)2+2θ+2(32+2θ)s+2)|P′(γ1+2γ23)|q+(3s+4−2θ2+2θ+2(2θ−12+2θ)s+2)|P′(γ2)|q)1q), |
where θ is a positive number, s∈(0,1], and p,q>1 with 1p+1q=1.
Because of its wide range of applications across several domains and its ability to give a better description for evaluating the dynamics of complex systems, fractional calculus, also known as non-integer calculus, has grown in popularity and appeal. This type of computation is often attributed to Liouville, however there are other fractional operators in the literature. First, we review what the Riemann-Liouville operator is.
Definition 1.2. [16] Let P∈L1[γ1,γ2]. The Riemann-Liouville fractional integrals Iαγ+1P and Iαγ−2P of order α>0 with γ1≥0 are defined by
Iαγ+1P(x)=1Γ(α)x∫γ1(x−κ)α−1P(κ)dκ, x>γ1Iαγ−2P(x)=1Γ(α)γ2∫x(κ−x)α−1P(κ)dκ, γ2>x |
respectively, where Γ(α)=∞∫0 e−ttα−1dt is the Gamma function and I0γ+1P(x)=I0b−P(x)=P(x).
For papers dealing with fractional integral inequalities, we refer readers to [17,18,19,20,21,22,23,24,25].
Recently, Ali et al. [7] established some fractional Newton type inequalities for functions whose absolute value of the first derivative is convex by using the follow identity:
Lemma 1.1. For a differentiable function P :[γ1,γ2]→R over (γ1,γ2) with P∈L[γ1,γ2], the following equality holds:
(1−λ−ν)(P(γ1)+P(γ2))+(ν−λ)(P(2γ1+γ23)+P(γ1+2γ23))−Γ(α+1)(γ2−γ1)α(Iαγ+1P(γ2)+Iαγ−2P(γ1))=(γ2−γ1)1∫0Δ(κ)[P′((1−κ)γ1+κγ2)−P′(κγ1+(1−κ)γ2)]dκ, |
where λ,μ,ν≥0 and
Δ(κ)={κα−λ, κ∈[0,13)κα−μ, κ∈[13,23)κα−ν, κ∈[23,1]. |
Motivated by the above cited results, in this paper, we first introduce a new parameterized identity. Using this identity, we establish some new parameterized Simpson's like type inequalities for differentiable convex functions via Riemann-Liouville integral operators. The obtained results include most of the existing studies. Several estimates are proposed, some of which are finer, and others are larger. Indeed, our results refine those obtained in [7] for the particular case of 3/8 -Simpson. It also recovers the results given in [15] by setting m=32+2θ and α=1, in addition to the case m=34 and α=1. Some of the results obtained in [13] are recaptured by taking m=38. Applications to composite quadrature formula, special means, and random variables are provided. Note that, in this study, several estimates are proposed, some of which are finer, and others larger.
In order to prove our results, we need the following definitions and lemmas.
Definition 2.1. [16] For any complex numbers γ1,γ2 such that ℜ(γ1)>0 and ℜ(γ2)>0, the Beta function is defined by
B(γ1,γ2)=1∫0κγ1−1(1−κ)y−1dκ=Γ(γ1)Γ(γ2)Γ(γ1+γ2), |
where Γ(.) is the Euler Gamma function.
Definition 2.2. [16] The Hypergeometric function is defined for ℜc>ℜb>0 and |z|<1, as follows:
2F1(a,b,c;z)=1B(b,c−b)1∫0κb−1(1−κ)c−b−1(1−zκ)−adκ, |
where c>b>0,|z|<1 and B(.,.) is the beta function.
Lemma 2.1. Let α>0,l∈(0,1] and p≥1. Then, we have
1∫0|κα−l|pdκ=lp+1αB(1α,p+1)α+(1−l)p+1.2F1(α−1α,1,p+2;1−l)α(p+1). |
Proof. We have
1∫0|κα−l|pdκ=l1α∫0(l−κα)pdκ+1∫l1α(κα−l)pdκ=1αl∫0(l−u)pu1α−1du+1α1∫l(u−l)pu1α−1du=lp+1αα1∫0(1−u)pu1α−1du+1α1−l∫0(1−l−u)p(1−u)1α−1du=lp+1ααB(1α,p+1)+(1−l)p+1α1∫0(1−u)p(1−(1−l)u)1α−1du=lp+1ααB(1α,p+1)+(1−l)p+1α(p+1).2F1(α−1α,1,p+2;1−l). |
The proof is completed.
Lemma 2.2. Let P:[γ1,γ2]→R be a differentiable function on [γ1,γ2] with γ1<γ2 and P′∈L1[γ1,γ2], then the following equality holds:
2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)=γ2−γ19(1∫0(κα−m)P′((1−κ)γ1+κ2γ1+γ23)dκ−1∫0((1−κ)α−12)P′((1−κ)2γ1+γ23+κγ1+2γ23)dκ+1∫0(κα−(1−m))P′((1−κ)γ1+2γ23+κγ2)dκ), |
where m∈[0,1] and
Q(γ1,γ2,P)=Iα(2γ1+γ23)−P(γ1)+Iα(2γ1+γ23)+P(γ1+2γ23)+Iαγ−2P(γ1+2γ23). |
Proof. Let
I=I1−I2+I3, | (2.1) |
where
I1=1∫0(κα−m)P′((1−κ)γ1+κ2γ1+γ23)dκ,I2=1∫0((1−κ)α−12)P′((1−κ)2γ1+γ23+κγ1+2γ23)dκ,I3=1∫0(κα−(1−m))P′((1−κ)γ1+2γ23+κγ2)dκ. |
Integrating by parts I1, we obtain
I1=3γ2−γ1(κα−m)P((1−κ)γ1+κ2γ1+γ23)|κ=1κ=0−3αγ2−γ11∫0κα−1P((1−κ)γ1+κ2γ1+γ23)dκ=3(1−m)γ2−γ1P(2γ1+γ23)+3mγ2−γ1P(γ1)−3αγ2−γ11∫0κα−1P((1−κ)γ1+κ2γ1+γ23)dκ=3(1−m)γ2−γ1P(2γ1+γ23)+3mγ2−γ1P(γ1)−α(3γ2−γ1)α+12γ1+γ23∫γ1(u−γ1)α−1P(u)du=3(1−m)γ2−γ1P(2γ1+γ23)+3mγ2−γ1P(γ1)−3α+1Γ(α+1)(γ2−γ1)α+1Iα(2γ1+b3)−P(γ1). | (2.2) |
Similarly, we obtain
I2=3γ2−γ1((1−κ)α−12)P((1−κ)2γ1+γ23+κγ1+2γ23)|κ=1κ=0+3αγ2−γ11∫0(1−κ)α−1P((1−κ)2γ1+γ23+κγ1+2γ23)dκ=−32(γ2−γ1)P(γ1+2γ23)−32(γ2−γ1)P(2γ1+γ23)+α(3γ2−γ1)α+1γ1+2γ23∫2γ1+γ23(γ1+2γ23−u)α−1P(u)du=−32(γ2−γ1)P(γ1+2γ23)−32(γ2−γ1)P(2γ1+γ23)+3α+1Γ(α+1)(γ2−γ1)α+1Iα(2γ1+γ23)+P(γ1+2γ23) | (2.3) |
and
I3=3γ2−γ1(κα−(1−m))P((1−κ)γ1+2γ23+κγ2)|κ=1κ=0−3αγ2−γ11∫0κα−1P((1−κ)γ1+2γ23+κγ2)dκ=3mγ2−γ1P(γ2)+3(1−m)γ2−γ1P(γ1+2γ23)−3αγ2−γ11∫0κα−1P((1−κ)γ1+2γ23+κγ2)dκ=3mγ2−γ1P(γ2)+3(1−m)γ2−γ1P(γ1+2γ23)−α(3γ2−γ1)α+1γ2∫γ1+2γ23(u−γ1+2γ23)α−1P(u)du=3mγ2−γ1P(γ2)+3(1−m)γ2−γ1P(γ1+2γ23)−3α+1Γ(α+1)(γ2−γ1)α+1.Iαγ−2P(γ1+2γ23). | (2.4) |
Using (2.2)–(2.4) in (2.1), and then multiplying the resulting equality by γ2−γ19, we get the desired result.
We are now ready to prove our main results. Note that, at the end of each result, we treat certain particular cases which repeat or generalize certain inequalities already known in the literature.
Theorem 2.1. Let P:[γ1,γ2]→R be a differentiable function on [γ1,γ2] with γ1<γ2 and P′∈L1[γ1,γ2]. If |P′| is convex, then we have
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19((2−m(α+1)(α+2)2(α+1)(α+2)+m1+1α2αα+1−m1+2ααα+2)|P′(γ1)|+(8−(1+2m)(α+2)4(α+2)+((12)1+2α+m1+2α)αα+2)|P′(2γ1+γ23)|+(8−(3−2m)(α+1)(α+2)4(α+1)(α+2)+((12)1+1α+(1−m)1+1α)2αα+1−((12)1+2α+(1−m)1+2α)αα+2)|P′(γ1+2γ23)|+(2−(1−m)(α+2)2(α+2)+(1−m)1+2ααα+2)|P′(γ2)|). |
Proof. From Lemma 2.2, properties of the modulus, and the convexity of |P′|, we have
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19(1∫0|κα−m||P′((1−κ)γ1+κ2γ1+γ23)|dκ+1∫0|(1−κ)α−12||P′((1−κ)2γ1+γ23+κγ1+2γ23)|dκ+1∫0|κα−(1−m)||P′((1−κ)γ1+2γ23+κγ2)|dκ) |
≤γ2−γ19(1∫0|κα−m|((1−κ)|P′(γ1)|+κ|P′(2γ1+γ23)|)dκ+1∫0|(1−κ)α−12|((1−κ)|P′(2γ1+γ23)|+κ|P(γ1+2γ23)|)dκ+1∫0|κα−(1−m)|((1−κ)|P′(γ1+2γ23)|+κ|P′(γ2)|)dκ)=γ2−γ19(|P′(γ1)|1∫0(1−κ)|κα−m|dκ+|P′(2γ1+γ23)|(1∫0κ|κα−m|dκ+1∫0(1−κ)|(1−κ)α−12|dκ)+|P′(γ1+2γ23)|(1∫0κ|(1−κ)α−12|dκ+1∫0(1−κ)|κα−(1−m)|dκ)+|P′(γ2)|1∫0κ|κα−(1−m)|dκ)=γ2−γ19((2−m(α+1)(α+2)2(α+1)(α+2)+m1+1α2αα+1−m1+2ααα+2)|P′(γ1)|+(8−(1+2m)(α+2)4(α+2)+((12)1+2α+m1+2α)αα+2)|P′(2γ1+γ23)|+(4−(α+1)(α+2)4(α+1)(α+2)+2−(1−m)(α+1)(α+2)2(α+1)(α+2)+((12)1+1α+(1−m)1+1α)2αα+1−((12)1+2α+(1−m)1+2α)αα+2)|P′(γ1+2γ23)|+(2−(1−m)(α+2)2(α+2)+(1−m)1+2ααα+2)|P′(γ2)|), |
where we have used the fact that
1∫0(1−κ)|κα−m|dκ=2−m(α+1)(α+2)2(α+1)(α+2)+2αα+1m1+1α−αα+2m1+2α, | (2.5) |
1∫0κ|κα−m|dκ=2−m(α+2)2(α+2)+αα+2m1+2α, | (2.6) |
1∫0(1−κ)|(1−κ)α−12|dκ=4−(α+2)4(α+2)+αα+2(12)1+2α, | (2.7) |
1∫0κ|(1−κ)α−12|dκ=4−(α+1)(α+2)4(α+1)(α+2)+2αα+1(12)1+1α−αα+2(12)1+2α, | (2.8) |
1∫0(1−κ)|κα−(1−m)|dκ=2−(1−m)(α+1)(α+2)2(α+1)(α+2)+2α(1−m)1+1αα+1−α(1−m)1+2αα+2 | (2.9) |
and
1∫0κ|κα−(1−m)|dκ=2−(1−m)(α+2)2(α+2)+αα+2(1−m)1+2α. | (2.10) |
The proof is completed.
Remark 2.1. Theorem 2.1 will be reduced to Corollary 2.3 from [15], if we take α=1 and m=32+2θ.
Corollary 2.1. In Theorem 2.1, if we take m=38, we obtain
|P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2)8−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19((16−3(α+1)(α+2)16(α+1)(α+2)+(38)1+1α2αα+1−(38)1+2ααα+2)|P′(γ1)|+(18−7α16(α+2)+((12)1+2α+(38)1+2α)αα+2)|P′(2γ1+γ23)|+(32−9(α+1)(α+2)16(α+1)(α+2)+((12)1+1α+(58)1+1α)2αα+1−((12)1+2α+(58)1+2α)αα+2)|P′(γ1+2γ23)|+(6−5α16(α+2)+αα+2(58)1+2α)|P′(γ2)|). |
Corollary 2.2. In Theorem 2.1, if we take m=12, we obtain
|P(γ1)+2P(2γ1+γ23)+2P(γ1+2γ23)+P(γ2)6−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19((4−(α+1)(α+2)4(α+1)(α+2)+αα+1(12)1α−αα+2(12)1+2α)|P′(γ1)|+(2−α2(α+2)+(12)2ααα+2)|P′(2γ1+γ23)|+(4−(α+1)(α+2)2(α+1)(α+2)+(12)1α2αα+1−(12)2ααα+2)|P′(γ1+2γ23)|+(2−α4(α+2)+αα+2(12)1+2α)|P′(γ2)|). |
Corollary 2.3. In Theorem 2.1, if we use the convexity of |P′|, i.e. |P′(nγ1+zγ2n+z)|≤nn+z|P′(γ1)|+zn+z|P′(γ2)|, we get
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19(16α+36−(5+8m)(α+1)(α+2)12(α+1)(α+2)+((12)1+1α+3m1+1α+(1−m)1+1α)2α3(α+1)+((12)1+2α−m1+2α−(1−m)1+2α)α3(α+2))|P′(γ1)|+(36+20α−(13−8m)(α+1)(α+2)12(α+1)(α+2)+((12)1+1α+(1−m)1+1α)4α3(α+1)+(m1+2α+(1−m)1+2α−(12)1+2α)α3(α+2))|P′(γ2)|). |
Corollary 2.4. In Corollary 2.3, if we take m=38, we obtain
|P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2)8−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19(16α+36−8(α+1)(α+2)12(α+1)(α+2)+((12)1+1α+3(38)1+1α+(58)1+1α)2α3(α+1)+((12)1+2α−(38)1+2α−(58)1+2α)α3(α+2))|P′(γ1)|+(36+20α−10(α+1)(α+2)12(α+1)(α+2)+((12)1+1α+(58)1+1α)4α3(α+1)+((38)1+2α+(58)1+2α−(12)1+2α)α3(α+2))|P′(γ2)|). |
Corollary 2.5. In Corollary 2.3, if we take m=12, we obtain
|P(γ1)+2P(2γ1+γ23)+2P(γ1+2γ23)+P(γ2)6−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19((4−(α+1)(α+2)4(α+1)(α+2)+αα+1(12)1α−αα+2(12)1+2α)|P′(γ1)|+(2−α2(α+2)+(12)2ααα+2)|P′(2γ1+γ23)|+(4−(α+1)(α+2)2(α+1)(α+2)+(12)1α2αα+1−(12)2ααα+2)|P′(γ1+2γ23)|+(2−α4(α+2)+αα+2(12)1+2α)|P′(γ2)|). |
Corollary 2.6. In Corollary 2.3, if we take α=1, then we get
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−1γ2−γ1γ2∫γ1P(u)du|≤(5−8m+8m2)(γ2−γ1)72(|P′(γ1)|+|P′(γ2)|). |
Corollary 2.7. In Corollary 2.6, if we take m=38, then we get
|P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2)8−1γ2−γ1γ2∫γ1P(u)du|≤25(γ2−γ1)576(|P′(γ1)|+|P′(γ2)|). |
Corollary 2.8. In Corollary 2.6, if we take m=12, then we get
|P(γ1)+2P(2γ1+γ23)+2P(γ1+2γ23)+P(γ2)6−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ124(|P′(γ1)|+|P′(γ2)|). |
Corollary 2.9. In Theorem 2.1, if we take α=1, then we get
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ19(1−3m+6m2−2m36|P′(γ1)|+11−12m+8m324|P′(2γ1+γ23)|+11−12m+8m324|P′(γ1+2γ23)|+1−3m+6m2−2m36|P′(γ2)|). |
Remark 2.2. Corollary 2.9 recaptures the second inequality of Corollary 2.5 from [15] if we take m=34.
Corollary 2.10. In Corollary 2.9, if we take m=38, then we get
|P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2)8−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ19(157|P′(γ1)|+443|P′(2γ1+γ23)|+443|P′(γ1+2γ23)|+157|P′(γ2)|1536). |
Remark 2.3. The same results were obtained in Corollary 2.1 from [13].
Corollary 2.11. In Corollary 2.9, if we take m=12, then we get
|P(γ1)+2P(2γ1+γ23)+2P(γ1+2γ23)+P(γ2)6−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ172(|P′(γ1)|+2|P′(2γ1+γ23)|+2|P′(γ1+2γ23)|+|P′(γ2)|). |
Theorem 2.2. Let P:[γ1,γ2]→R be a differentiable function on [γ1,γ2] with γ1<γ2 and P′∈L1[γ1,γ2]. If |P′|q is convex where q>1 with 1p+1q=1, then we have
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19((mp+1αB(1α,p+1)α+(1−m)p+1.2F1(α−1α,1,p+2;1−m)α(p+1))1p(|P′(γ1)|q+|P′(2γ1+γ23)|q2)1q+(B(1α,p+1)2p+1αα+2F1(α−1α,1,p+2;12)2p+1α(p+1))1p(|P′(2γ1+γ23)|q+|P′(γ1+2γ23)|q2)1q+((1−m)p+1αB(1α,p+1)α+mp+1.2F1(α−1α,1,p+2;m)α(p+1))1p(|P′(γ1+2γ23)|q+|P′(γ2)|q2)1q), |
where B and 2F1 are Beta and Hypergeometric functions, respectively.
Proof. From Lemma 2.2, properties of the modulus, Hölder's inequality, and the convexity of |P′|q, we have
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19(1∫0|κα−m||f′((1−κ)γ1+κ2γ1+γ23)|dκ+1∫0|(1−κ)α−12||P′((1−κ)2γ1+γ23+κγ1+2γ23)|dκ+1∫0|κα−(1−m)||P′((1−κ)γ1+2γ23+κγ2)|dκ)≤γ2−γ19((1∫0|κα−m|pdκ)1p(1∫0|P′((1−κ)γ1+κ2γ1+γ23)|qdκ)1q |
+(1∫0|(1−κ)α−12|pdκ)1p(1∫0|P′((1−κ)2γ1+γ23+κγ1+2γ23)|qdκ)1q+(1∫0|κα−(1−m)|pdκ)1p(1∫0|P′((1−κ)γ1+2γ23+κγ2)|qdκ)1q)≤γ2−γ19((1∫0|κα−3|pdκ)1p(1∫0((1−κ)|P′(γ1)|q+κ|P′(2γ1+γ23)|q)dκ)1q+(1∫0|κα−12|pdκ)1p(1∫0((1−κ)|P′(2γ1+γ23)|q+κ|P′(γ1+2γ23)|q)dκ)1q+(1∫0|κα−(1−m)|pdκ)1p(1∫0((1−κ)|P′(γ1+2γ23)|q+κ|P′(γ2)|q)dκ)1q)=γ2−γ19((mp+1αB(1α,p+1)α+(1−m)p+1.2F1(α−1α,1,p+2;1−m)α(p+1))1p(|P′(γ1)|q+|P′(2γ1+γ23)|q2)1q+(B(1α,p+1)2p+1αα+2F1(α−1α,1,p+2;12)2p+1α(p+1))1p(|P′(2γ1+γ23)|q+|P′(γ1+2γ23)|q2)1q+((1−m)p+1αB(1α,p+1)α+mp+1.2F1(α−1α,1,p+2;m)α(p+1))1p(|P′(γ1+2γ23)|q+|P′(γ2)|q2)1q), |
where we have used Lemma 1.1 with l=m,12, and 1−m, respectively. The proof is completed.
Remark 2.4. Theorem 2.2 will be reduced to Corollary 2.7 from [15] if we take α=1 and m=32+2θ.
Corollary 2.12. In Theorem 2.2, if we take m=38, we obtain
|P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2)8−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19((3p+1αB(1α,p+1)8p+1α+5p+1.2F1(α−1α,1,p+2;58)8p+1α(p+1))1p(|P′(γ1)|q+|P′(2γ1+γ23)|q2)1q+(B(1α,p+1)2p+1αα+2F1(α−1α,1,p+2;12)2p+1α(p+1))1p(|P′(2γ1+γ23)|q+|P′(γ1+2γ23)|q2)1q+(5p+1αB(1α,p+1)8p+1α+3p+1.2F1(α−1α,1,p+2;38)8p+1α(p+1))1p(|P′(γ1+2γ23)|q+|P′(γ2)|q2)1q). |
Corollary 2.13. In Theorem 2.2, if we take m=12, we obtain
|P(γ1)+2P(2γ1+γ23)+2P(γ1+2γ23)+P(γ2)6−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ118((B(1α,p+1)21αα+2F1(α−1α,1,p+2;12)2α(p+1))1p(|P′(γ1)|q+|P′(2γ1+γ23)|q2)1q+(B(1α,p+1)21αα+2F1(α−1α,1,p+2;12)2α(p+1))1p(|P′(2γ1+γ23)|q+|P′(γ1+2γ23)|q2)1q+(B(1α,p+1)21αα+2F1(α−1α,1,p+2;m)2α(p+1))1p(|P′(γ1+2γ23)|q+|P′(γ2)|q2)1q). |
Corollary 2.14. In Theorem 2.2, if we use the convexity of |P′|q, i.e. |P′(nγ1+zγ2n+z)|q≤nn+z|P′(γ1)|q+zn+z|P′(γ2)|q, we get
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19((mp+1αB(1α,p+1)α+(1−m)p+1.2F1(α−1α,1,p+2;1−m)α(p+1))1p(5|P′(γ1)|q+|P′(γ2)|q6)1q+(B(1α,p+1)2p+1αα+2F1(α−1α,1,p+2;12)2p+1α(p+1))1p(|P′(γ1)|q+|P′(γ2)|q2)1q+((1−m)p+1αB(1α,p+1)α+mp+1.2F1(α−1α,1,p+2;m)α(p+1))1p(|P′(γ1)|q+5|P′(γ2)|q6)1q). |
Corollary 2.15. In Corollary 2.14, if we take m=38, we obtain
|P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2)8−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19((3p+1αB(1α,p+1)8p+1αα+5p+1.2F1(α−1α,1,p+2;58)8p+1α(p+1))1p(5|P′(γ1)|q+|P′(γ2)|q6)1q+(B(1α,p+1)2p+1αα+2F1(α−1α,1,p+2;12)2p+1α(p+1))1p(|P′(γ1)|q+|P′(γ2)|q2)1q+(5p+1αB(1α,p+1)8p+1αα+3p+1.2F1(α−1α,1,p+2;m)8p+1α(p+1))1p(|P′(γ1)|q+5|P′(γ2)|q6)1q). |
Corollary 2.16. In Corollary 2.14, if we take m=12, we obtain
|P(γ1)+2P(2γ1+γ23)+2P(γ1+2γ23)+P(γ2)6−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19((B(1α,p+1)2p+1αα+2F1(α−1α,1,p+2;12)2p+1α(p+1))1p(5|P′(γ1)|q+|P′(γ2)|q6)1q+(B(1α,p+1)2p+1αα+2F1(α−1α,1,p+2;12)2p+1α(p+1))1p(|P′(γ1)|q+|P′(γ2)|q2)1q+(B(1α,p+1)2p+1αα+2F1(α−1α,1,p+2;12)2p+1α(p+1))1p(|P′(γ1)|q+5|P′(γ2)|q6)1q). |
Corollary 2.17. In Corollary 2.14, if we take α=1, then we get
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ19(12(1p+1)1p(|P′(γ1)|q+|P′(γ2)|q2)1q+(mp+1+(1−m)p+1p+1)1p((5|P′(γ1)|q+|P′(γ2)|q6)1q+(|P′(γ1)|q+5|P′(γ2)|q6)1q)). |
Corollary 2.18. In Corollary 2.17, if we take m=38, then we get
|P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2)8−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ19(1p+1)1p(12(|P′(γ1)|q+|P′(γ2)|q2)1q+(3p+1+5p+18p+1)1p((5|P′(γ1)|q+|P′(γ2)|q6)1q+(|P′(γ1)|q+5|P′(γ2)|q6)1q)), |
Remark 2.5. The same result was obtained in Corollary 3.5 from [12].
Corollary 2.19. In Corollary 2.17, if we take m=12, then we get
|P(γ1)+2P(2γ1+γ23)+2P(γ1+2γ23)+P(γ2)6−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ118(1p+1)1p((|P′(γ1)|q+|P′(γ2)|q2)1q+(5|P′(γ1)|q+|P′(γ2)|q6)1q+(|P′(γ1)|q+5|P′(γ2)|q6)1q). |
Corollary 2.20. In Theorem 2.2, if we take α=1, then we get
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ19((mp+1+(1−m)p+1p+1)1p(|P′(γ1)|q+|P′(2γ1+γ23)|q2)1q+12(1p+1)1p(|P′(2γ1+γ23)|q+|P′(γ1+2γ23)|q2)1q+(mp+1+(1−m)p+1p+1)1p(|P′(γ1+2γ23)|q+|P′(γ2)|q2)1q). |
Corollary 2.21. In Corollary 2.20, if we take m=38, then we get
|P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2)8−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ19(1p+1)1p(12(|P′(2γ1+γ23)|q+|P′(γ1+2γ23)|q2)1q+(3p+1+5p+18p+1)1p((|P′(γ1)|q+|P′(2γ1+γ23)|q2)1q+(|P′(γ1+2γ23)|q+|P′(γ2)|q2)1q)). |
Corollary 2.22. In Corollary 2.20, if we take m=38, then we get
|P(γ1)+2P(2γ1+γ23)+2P(γ1+2γ23)+P(γ2)6−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ118(1p+1)1p((|P′(γ1)|q+|P′(2γ1+γ23)|q2)1q+(|P′(2γ1+γ23)|q+|P′(γ1+2γ23)|q2)1q+(|P′(γ1+2γ23)|q+|P′(γ2)|q2)1q). |
Corollary 2.23. In Corollary 2.17, using the discrete power mean inequality we get
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ118(((1p+1)1p+4(mp+1+(1−m)p+1p+1)1p)(|P′(γ1)|q+|P′(γ2)|q2)1q). |
Corollary 2.24. In Corollary 2.23, if we take m=38, we get
|P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2)8−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ136(1p+1)1p(2+(3p+1+5p+18)1p)(|P′(γ1)|q+|P′(γ2)|q2)1q. |
Corollary 2.25. In Corollary 2.23, if we take m=12, then we get
|P(γ1)+2P(2γ1+γ23)+2P(γ1+2γ23)+P(γ2)6−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ16(1p+1)1p(|P′(γ1)|q+|P′(γ2)|q2)1q. |
Theorem 2.3. Let P:[γ1,γ2]→R be a differentiable function on [γ1,γ2] with γ1<γ2 and P′∈L1[γ1,γ2]. If |P′|q is convex where q≥1, then we have
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19((1−m(α+1)α+1+2αα+1m1+1α)1−1q((2−m(α+1)(α+2)2(α+1)(α+2)+2αα+1m1+1α−αα+2m1+2α)|P′(γ1)|q+(2−m(α+2)2(α+2)+αα+2m1+2α)|P′(2γ1+γ23)|q)1q+(1−α2(α+1)+2αα+1(12)1+1α)1−1q((2−α4(α+2)+αα+2(12)1+2α)|P′(2γ1+γ23)|q+(4−(α+1)(α+2)4(α+1)(α+2)+2αα+1(12)1+1α−αα+2(12)1+2α)|P′(γ1+2γ23)|q)1q+(m(α+1)−αα+1+2αα+1(1−m)1+1α)1−1q((2−(1−m)(α+1)(α+2)2(α+1)(α+2)+2α(1−m)1+1αα+1−α(1−m)1+2αα+2)|P′(γ1+2γ23)|q+(2−(1−m)(α+2)2(α+2)+αα+2(1−m)1+2α)|P′(γ2)|q)1q. |
Proof. From Lemma 2.2, properties of the modulus, the power mean inequality, and the convexity of |P′|q, we have
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19(1∫0|κα−m||P′((1−κ)γ1+κ2γ1+γ23)|dκ+1∫0|(1−κ)α−12||P′((1−κ)2γ1+γ23+κγ1+2γ23)|dκ+1∫0|κα−(1−m)||P′((1−κ)γ1+2γ23+κγ2)|dκ)≤γ2−γ19((1∫0|κα−m|dκ)1−1q(1∫0|κα−m||P′((1−κ)γ1+κ2γ1+γ23)|qdκ)1q+(1∫0|(1−κ)α−12|dκ)1−1q×(1∫0|(1−κ)α−12||P′((1−κ)2γ1+γ23+κγ1+2γ23)|qdκ)1q+(1∫0|κα−(1−m)|dκ)1−1q×(1∫0|κα−(1−m)||P′((1−κ)γ1+2γ23+κγ2)|qdκ)1q)≤γ2−γ19((1−m(α+1)α+1+2αα+1m1+1α)1−1q×(1∫0|κα−m|((1−κ)|P′(γ1)|q+κ|P′(2γ1+γ23)|q)dκ)1q+(1−α2(α+1)+2αα+1(12)1+1α)1−1q×(1∫0|(1−κ)α−12|((1−κ)|P′(2γ1+γ23)|q+κ|P′(γ1+2γ23)|q)dκ)1q+(m(α+1)−αα+1+2αα+1(1−m)1+1α)1−1q |
×(1∫0|κα−(1−m)|((1−κ)|P′(γ1+2γ23)|q+κ|P′(γ2)|q)dκ)1q)=γ2−γ19((1−m(α+1)α+1+2αα+1m1+1α)1−1q((2−m(α+1)(α+2)2(α+1)(α+2)+2αα+1m1+1α−αα+2m1+2α)|P′(γ1)|q+(2−m(α+2)2(α+2)+αα+2m1+2α)|P′(2γ1+γ23)|q)1q+(1−α2(α+1)+2αα+1(12)1+1α)1−1q((2−α4(α+2)+αα+2(12)1+2α)|P′(2γ1+γ23)|q+(4−(α+1)(α+2)4(α+1)(α+2)+2αα+1(12)1+1α−αα+2(12)1+2α)|P′(γ1+2γ23)|q)1q+(m(α+1)−αα+1+2αα+1(1−m)1+1α)1−1q((2−(1−m)(α+1)(α+2)2(α+1)(α+2)+2α(1−m)1+1αα+1−α(1−m)1+2αα+2)|P′(γ1+2γ23)|q+(2−(1−m)(α+2)2(α+2)+αα+2(1−m)1+2α)|P′(γ2)|q)1q, |
where we have used (2.5)–(2.10). The proof is achieved.
Remark 2.6. Theorem 2.3 will be reduced to Corollary 2.11 from [15] if we take α=1 and m=32+2θ.
Corollary 2.26. In Theorem 2.3, if we take m=38, we obtain
|P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2)8−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤b−a9((5−3α8(α+1)+2αα+1(38)1+1α)1−1q((16−3(α+1)(α+2)16(α+1)(α+2)+2α(α+1)(38)1+1α−αα+2(38)1+2α)|f′(a)|q+(16−3(α+2)16(α+2)+αα+2(38)1+2α)|f′(2a+b3)|q)1q+(1−α2(α+1)+2αα+1(12)1+1α)1−1q((2−α4(α+2)+αα+2(12)1+2α)|f′(2a+b3)|q+(4−(α+1)(α+2)4(α+1)(α+2)+2αα+1(12)1+1α−αα+2(12)1+2α)|f′(a+2b3)|q)1q+(3−5α8(α+1)+2αα+1(58)1+1α)1−1q((16−5(α+1)(α+2)16(α+1)(α+2)+2αα+1(58)1+1α−αα+2(58)1+2α)|f′(a+2b3)|q+(6−5α16(α+2)+αα+2(58)1+2α)|f′(b)|q)1q. |
Corollary 2.27. In Theorem 2.3, if we take m=12, we obtain
|P(γ1)+2P(2γ1+γ23)+2P(γ1+2γ23)+P(γ2)6−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19(1−α2(α+1)+α21α(α+1))1−1q((Π1(α)|P′(γ1)|q+Π2(α)|P′(2γ1+γ23)|q)1q+(Π2(α)|P′(2γ1+γ23)|q+Π1(α)|P′(γ1+2γ23)|q)1q+(Π1(α)|P′(γ1+2γ23)|q+Π2(α)|P′(γ2)|q)1q), |
where
Π1(α)=4−(α+1)(α+2)4(α+1)(α+2)+α21α(α+1)−α21+2α(α+2) |
and
Π2(α)=2−α4(α+2)+α21+2α(α+2). |
Corollary 2.28. In Theorem 2.3, if we use the convexity of |P′|q, we get
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19((1−m(α+1)α+1+2αα+1m1+1α)1−1q((10+4α−5m(α+1)(α+2)6(α+1)(α+2)+2αm1+1αα+1−αm1+2α3(α+2))|P′(γ1)|q+(2−m(α+2)6(α+2)+αm1+2α3(α+2))|P′(γ2)|q)1q+(1−α2(α+1)+2αα+1(12)1+1α)1−1q×((4+(α+1)(2−3α)12(α+1)(α+2)+2α3(α+1)(12)1+1α+α3(α+2)(12)1+2α)|P′(γ1)|q+(8−(α+1)(2+3α)12(α+1)(α+2)+4α3(α+1)(12)1+1α−α3(α+2)(12)1+2α)|P′(γ2)|q)1q+(m(α+1)−αα+1+2αα+1(1−m)1+1α)1−1q×((2−(1−m)(α+1)(α+2)6(α+1)(α+2)+2α(1−m)1+1α3(α+1)−α(1−m)1+2α3(α+2))|P′(γ1)|q+(10+6α−5(1−m)(α+1)(α+2)6(α+1)(α+2)+4α(1−m)1+1α3(α+1)+α(1−m)1+2α3(α+2))|P′(γ2)|q)1q. |
Corollary 2.29. In Corollary 2.28, if we take m=38, we obtain
|P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2)8−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19((5−3α8(α+1)+2αα+1(38)1+1α)1−1q((80+32α−15(α+1)(α+2)48(α+1)(α+2)+2αα+1(38)1+1α−α3(α+2)(38)1+2α)|P′(γ1)|q+(10−3α48(α+2)+α3(α+2)(38)1+2α)|P′(γ2)|q)1q+(1−α2(α+1)+2αα+1(12)1+1α)1−1q×((4+(α+1)(2−3α)12(α+1)(α+2)+2α3(α+1)(12)1+1α+α3(α+2)(12)1+2α)|P′(γ1)|q+(8−(α+1)(2+3α)12(α+1)(α+2)+4α3(α+1)(12)1+1α−α3(α+2)(12)1+2α)|P′(γ2)|q)1q+(3−5α8(α+1)+2αα+1(58)1+1α)1−1q×((16−5(α+1)(α+2)48(α+1)(α+2)+2α3(α+1)(58)1+1α−α3(α+2)(58)1+2α)|P′(γ1)|q+(80+48α−25(α+1)(α+2)48(α+1)(α+2)+4α3(α+1)(58)1+1α+α3(α+2)(58)1+2α)|P′(γ2)|q)1q. |
Corollary 2.30. In Corollary 2.28, if we take m=12, we obtain
|P(γ1)+2P(2γ1+γ23)+2P(γ1+2γ23)+P(γ2)6−3α−1Γ(α+1)(γ2−γ1)αQ(γ1,γ2,P)|≤γ2−γ19((1−α2(α+1)+2αα+1(12)1+1α)1−1q((20+8α−5(α+1)(α+2)12(α+1)(α+2)+2αα+1(12)1+1α−α3(α+2)(12)1+2α)|P′(γ1)|q+(2−α12(α+2)+α3(α+2)(12)1+2α)|P′(γ2)|q)1q+(1−α2(α+1)+2αα+1(12)1+1α)1−1q×((4+(α+1)(2−3α)12(α+1)(α+2)+2α3(α+1)(12)1+1α+α3(α+2)(12)1+2α)|P′(γ1)|q+(8−(α+1)(2+3α)12(α+1)(α+2)+4α3(α+1)(12)1+1α−α3(α+2)(12)1+2α)|P′(γ2)|q)1q+(1−α2(α+1)+2αα+1(12)1+1α)1−1q×((4−(α+1)(α+2)12(α+1)(α+2)+2α3(α+1)(12)1+1α−α3(α+2)(12)1+2α)|P′(γ1)|q+(20+12α−5(α+1)(α+2)12(α+1)(α+2)+4α3(α+1)(12)1+1α+α3(α+2)(12)1+2α)|P′(γ2)|q)1q. |
Corollary 2.31. In Corollary 2.28, if we take α=1, then we get
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ19((1−2m+2m22)1−1q(((7−15m+18m2−2m3)|P′(γ1)|q+(2−3m+2m3)|P′(γ2)|q18)1q+((2−3m+2m3)|P′(γ1)|q+(7−15m+18m2−2m3)|P′(γ2)|q18)1q)+14(|P′(γ1)|q+|P′(γ2)|q2)1q). |
Corollary 2.32. In Corollary 2.31, if we take m=38, then we get
|P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2)8−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ1576(17((973|P′(γ1)|q+251|P′(γ2)|q1224)1q+(251|P′(γ1)|q+973|P′(γ2)|q1224)1q+16(|P′(γ1)|q+|P′(γ2)|q2)1q). |
Corollary 2.33. In Corollary 2.31, if we take m=12, then we get
|P(γ1)+2P(2γ1+γ23)+2P(γ1+2γ23)+P(γ2)6−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ136(((5|P′(γ1)|q+|P′(γ2)|q6)1q+(|P′(γ1)|q+5|P′(γ2)|q6)1q)+(|P′(γ1)|q+|P′(γ2)|q2)1q). |
Corollary 2.34. In Theorem 2.3, if we take α=1, then we get
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ19((1−2m+2m22)1−1q((1−3m+6m2−2m36|P′(γ1)|q+2−3m+2m36|P′(2γ1+γ23)|q)1q+14(|P′(2γ1+γ23)|q+|P′(γ1+2γ23)|q2)1q+(1−2m+2m22)1−1q(2−3m+2m36|P′(γ1+2γ23)|q+1−3m+6m2−2m36|P′(γ2)|q)1q). |
Remark 2.7. Corollary 2.34 recaptures the second inequality of Corollary 2.13 from [15] if we take m=34.
Corollary 2.35. In Corollary 2.34, if we take m=38, then we get
|P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2)8−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ1576(16(|P′(2γ1+γ23)|q+|P′(γ1+2γ23)|q2)1q+17((157|P′(γ1)|q+251|P′(2γ1+γ23)|q408)1q+(251|P′(γ1+2γ23)|q+157|P′(γ2)|q408)1q)). |
Remark 2.8. The same result was obtained in Corollary 2.3 from [15].
Corollary 2.36. In Corollary 2.34, if we take m=12, then we get
|P(γ1)+2P(2γ1+γ23)+2P(γ1+2γ23)+P(γ2)6−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ136(((|P′(γ1)|q+|P′(2γ1+γ23)|q2)1q+(|P′(2γ1+γ23)|q+|P′(γ1+2γ23)|q2)1q+(|P′(γ1+2γ23)|q+|P′(γ2)|q2)1q). |
Corollary 2.37. In Corollary 2.31, using the discrete power mean inequality, we get
|2mP(γ1)+(3−2m)P(2γ1+γ23)+(3−2m)P(γ1+2γ23)+2mP(γ2)6−1γ2−γ1γ2∫γ1P(u)du|≤(5−8m+8m2)(γ2−γ1)36(|P′(γ1)|q+|P′(γ2)|q2)1q. |
Corollary 2.38. In Corollary 2.37, if we take m=38, then we get
|P(γ1)+3P(2γ1+γ23)+3P(γ1+2γ23)+P(γ2)8−1γ2−γ1γ2∫γ1P(u)du|≤25(γ2−γ1)288(|P′(γ1)|q+|P′(γ2)|q2)1q. |
Corollary 2.39. In Corollary 2.37, if we take m=12, then we get
|P(γ1)+2P(2γ1+γ23)+2P(γ1+2γ23)+P(γ2)6−1γ2−γ1γ2∫γ1P(u)du|≤γ2−γ112(|P′(γ1)|q+|P′(γ2)|q2)1q. |
Let Q be the partition of the interval [L1,L2] such that L1=u0<u1<...<un=L2, and take the quadrature formula into consideration.
L2∫L1P(u)du=Q(P,Q)+E(P,Q), |
where
Q(λ,P,Q)=n−1∑i=0(ui+1−ui)(2mP(ui)+(3−2m)P(2ui+ui+13)+(3−2m)P(ui+2ui+13)+2mP(ui+1)6), |
with m∈[0,1] and where E(P,Q) denotes the associated approximation error.
Proposition 3.1. Let P be as in Theorem 2.1. Then, for m∈[0,1], we have
|E(P,Q)|≤5−8m+8m272n−1∑i=0(ui+1−ui)2(|P′(ui)|+|P′(ui+1)|). |
Proof. When we apply Corollary 2.6 to the partition Q of the subintervals [ui,ui+1] (i=0,1,...,n−1), we obtain
|2mP(ui)+(3−2m)P(2ui+ui+13)+(3−2m)P(ui+2ui+13)+2mP(ui+1)6−1ui+1−uiui+1∫uiP(k)dk|≤(5−8m+8m2)(ui+1−ui)72(|P′(ui)|+|P′(ui+1)|). |
We reach the necessary result by multiplying both sides of the aforementioned inequality by (ui+1−ui), summing the generated inequalities for all i=0,1,...,n−1 and applying the triangular inequality.
For arbitrary real numbers ϱ1,ϱ2 we have:
The generalized arithmetic mean: A(ϱ1,ϱ2)=ϱ1+ϱ22.
The p-logarithmic mean: Lp(ϱ1,ϱ2)=(ϱp+12−ϱp+11(p+1)(ϱ2−ϱ1))1p, ϱ1,ϱ2>0,ϱ1≠ϱ2 and p∈R∖{−1,0}.
Proposition 3.2. Let ϱ1,ϱ2∈R with 0<ϱ2<ϱ2. Then, we have
|A(ϱ31,ϱ32)+A3(ϱ1,ϱ1,ϱ2)+A3(ϱ1,ϱ2,ϱ2)−3L33(ϱ1,ϱ2)|≤3(ϱ2−ϱ1)8(ϱ21+ϱ22). |
Proof. Applying Corollary 2.8 to the function P(u)=u3 leads to this conclusion.
Proposition 3.3. Let X be a random variable, and let P be its probability density function that takes values in the finite interval [γ1,γ2] i.e., P:[γ1,γ2]→[0,1] with the cumulative distribution function F(x)=Pr(X≤x)=x∫γ1P(u)du. Then, we have
|1+2F(2γ1+γ23)+2F(γ1+2γ23)6−γ2−E[X]γ2−γ1|≤γ2−γ172(|P(γ1)|+2|P(2γ1+γ23)|+2|P(γ1+2γ23)|+|P(γ2)|). |
Proof. Replace P=F in Corollary 2.11 and take into account that F(γ1)=0,F(γ2)=1, and E[X]= γ2∫γ1kP(k)dk=γ2F(γ2)−γ1F(γ1)−γ2∫γ1F(k)dk=γ2−γ2∫γ1F(k)dk.
In this work, we established new a parameterized identity involving the Riemann-Liouville integral operator, thus leading to the construction some fractional 3/8-Simpson type integral inequalities for functions whose absolute value of the first derivatives are convex. We succeeded in obtaining refinements as well as generalizations of certain known results. Moreover, we presented some applications in numerical integration, special means, and random variables.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research has been funded by Scientific Research Deanship at University of Ha'il - Saudi Arabia through project number RG-23 036.
The authors declare no conflicts of interest.
[1] | M. Alomari, M. Darus, On some inequalities of Simpson-type via quasi-convex functions and applications, Transylv. J. Math. Mech., 2 (2010), 15–24. |
[2] |
A. Kashuri, B. Meftah, P. O. Mohammed, Some weighted Simpson type inequalities for differentiable s-convex functions and their applications, J. Fractional Calculus Nonlinear Syst., 1 (2021), 75–94. https://doi.org/10.48185/jfcns.v1i1.150 doi: 10.48185/jfcns.v1i1.150
![]() |
[3] |
M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for functions whose second derivatives absolute values are convex, J. Appl. Math. Stat. Inf., 9 (2013), 37–45. https://doi.org/10.2478/jamsi-2013-0004 doi: 10.2478/jamsi-2013-0004
![]() |
[4] | E. Set, M. E. Özdemir, M. Z. Sarıkaya, On new inequalities of Simpson's type for quasi-convex functions with applications, Tamkang J. Math., 43 (2012), 357–364. |
[5] |
J. E. N. Valdés, B. Bayraktar, S. I. Butt, New integral inequalities of Hermite-Hadamard type in a generalized context, Punjab Univ. J. Math., 53 (2021), 765–777. https://doi.org/10.52280/pujm.2021.531101 doi: 10.52280/pujm.2021.531101
![]() |
[6] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, 1992. |
[7] |
M. A. Ali, C. S. Goodrich, H. Budak, Some new parameterized Newton-type inequalities for differentiable functions via fractional integrals, J. Inequal. Appl., 2023 (2023), 49. https://doi.org/10.1186/s13660-023-02953-x doi: 10.1186/s13660-023-02953-x
![]() |
[8] | T. Chiheb, N. Boumaza, B. Meftah, Some new Simpson-like type inequalities via preqausiinvexity, Transylv. J. Math. Mech., 12 (2020), 1–10. |
[9] | B. Meftah, Fractional Hermite-Hadamard type integral inequalities for functions whose modulus of derivatives are co-ordinated log -preinvex, Punjab Univ. J. Math., 51 (2019), 21–37. |
[10] |
B. Meftah, A. Souahi, M. Merad, Some local fractional Maclaurin type inequalities for generalized convex functions and their applications, Chaos Solitons Fractals, 162 (2022), 112504. https://doi.org/10.1016/j.chaos.2022.112504 doi: 10.1016/j.chaos.2022.112504
![]() |
[11] |
M. Rostamian Delavar, A. Kashuri, M. De La Sen, On weighted Simpson's 38 rule, Symmetry, 13 (2021), 1933. https://doi.org/10.3390/sym13101933 doi: 10.3390/sym13101933
![]() |
[12] |
M. A. Noor, K. I. Noor, S. Iftikhar, Newton inequalities for p-harmonic convex functions, Honam Math. J., 40 (2018), 239–250. https://doi.org/10.5831/HMJ.2018.40.2.239 doi: 10.5831/HMJ.2018.40.2.239
![]() |
[13] | N. Laribi, B. Meftah, 3/8-Simpson type inequalities for functions whose modulus of first derivatives and its q-th powers are s -convex in the second sense, Jordan J. Math. Stat., 16 (2023), 79–98. |
[14] |
S. Erden, S. Iftikhar, M. R. Delavar, P. Kumam, P. Thounthong, W. Kumam, On generalizations of some inequalities for convex functions via quantum integrals, RACSAM, 114 (2020), 110. https://doi.org/10.1007/s13398-020-00841-3 doi: 10.1007/s13398-020-00841-3
![]() |
[15] |
L. Mahmoudi, B. Meftah, Parameterized Simpson-like inequalities for differential s-convex functions, Analysis, 43 (2023), 59–70. https://doi.org/10.1515/anly-2022-1068 doi: 10.1515/anly-2022-1068
![]() |
[16] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, New York: Elsevier, 2006. |
[17] |
T. A. Aljaaidi, D. B. Pachpatte, T. Abdeljawad, M. S. Abdo, M. A. Almalahi, S. S. Redhwan, Generalized proportional fractional integral Hermite-Hadamard's inequalities, Adv. Differ. Equ., 2021 (2021), 493. https://doi.org/10.1186/s13662-021-03651-y doi: 10.1186/s13662-021-03651-y
![]() |
[18] |
Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (2010), 51–58. https://doi.org/10.15352/afa/1399900993 doi: 10.15352/afa/1399900993
![]() |
[19] |
T. Du, J. Liao, L. Chen, M. U. Awan, Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (α,m)-preinvex functions, J. Inequal. Appl., 2016 (2016), 306. https://doi.org/10.1186/s13660-016-1251-5 doi: 10.1186/s13660-016-1251-5
![]() |
[20] |
T. Du, M. U. Awan, A. Kashuri, S. Zhao, Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m,h)-preinvexity, Appl. Anal., 100 (2021), 642–662. https://doi.org/10.1080/00036811.2019.1616083 doi: 10.1080/00036811.2019.1616083
![]() |
[21] |
A. Kashuri, B. Meftah, P. O. Mohammed, A. A. Lupaş, B. Abdalla, Y. S. Hamed, et al., Fractional weighted Ostrowski-type inequalities and their applications, Symmetry, 13 (2021), 968. https://doi.org/10.3390/sym13060968 doi: 10.3390/sym13060968
![]() |
[22] |
P. O. Mohammed, I. Brevik, A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 610. https://doi.org/10.3390/sym12040610 doi: 10.3390/sym12040610
![]() |
[23] | M. A. Noor, K. I. Noor, M. U. Awan, Fractional Ostrowski inequalities for s-Godunova-Levin functions, Int. J. Anal. Appl., 5 (2014), 167–173. |
[24] |
S. Rashid, A. O. Akdemir, F. Jarad, M. A. Noor, K. I. Noor, Simpson's type integral inequalities for k-fractional integrals and their applications, AIMS Mathematics, 4 (2019), 1087–1100. https://doi.org/10.3934/math.2019.4.1087 doi: 10.3934/math.2019.4.1087
![]() |
[25] |
S. S. Zhou, S. Rashid, F. Jarad, H. Kalsoom, Y. M. Chu, New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 275. https://doi.org/10.1186/s13662-020-02730-w doi: 10.1186/s13662-020-02730-w
![]() |
1. | Abdelkader Moumen, Rabah Debbar, Badreddine Meftah, Khaled Zennir, Hicham Saber, Tariq Alraqad, Etaf Alshawarbeh, On a Certain Class of GA-Convex Functions and Their Milne-Type Hadamard Fractional-Integral Inequalities, 2025, 9, 2504-3110, 129, 10.3390/fractalfract9020129 |