In this work, we introduced a generalized concept of Caputo fractional derivatives, specifically the Caputo fractional delta derivative (Fr$ \Delta $D) and Caputo fractional delta Dini derivative (Fr$ \Delta $DiD) of order $ \alpha \in (0, 1) $, on an arbitrary time domain $ \mathbb{T} $, which was a closed subset of $ \mathbb{R} $. By bridging the gap between discrete and continuous time domains, this unified framework enabled a more thorough approach to stability and asymptotic stability analysis on time scales. A key contribution of this work was the new definition of the Caputo Fr$ \Delta $D for a Lyapunov function, which served as the basis for establishing comparison results and stability criteria for Caputo fractional dynamic equations. The proposed framework extended beyond the limitations of traditional integer-order calculus, offering a more flexible and generalizable tool for researchers working with dynamic systems. The inclusion of fractional orders enabled the modeling of more complex dynamics that occur in real-world systems, particularly those involving both continuous and discrete time components. The results presented in this work contributed to the broader understanding of fractional calculus on time scales, enriching the theoretical foundation of dynamic systems analysis. Illustrative examples were included to demonstrate the effectiveness, relevance, and practical applicability of the established stability and asymptotic stability results. These examples highlighted the advantage of our definition of fractional-order derivative over integer-order approaches in capturing the intricacies of dynamic behavior.
Citation: Michael Precious Ineh, Edet Peter Akpan, Hossam A. Nabwey. A novel approach to Lyapunov stability of Caputo fractional dynamic equations on time scale using a new generalized derivative[J]. AIMS Mathematics, 2024, 9(12): 34406-34434. doi: 10.3934/math.20241639
In this work, we introduced a generalized concept of Caputo fractional derivatives, specifically the Caputo fractional delta derivative (Fr$ \Delta $D) and Caputo fractional delta Dini derivative (Fr$ \Delta $DiD) of order $ \alpha \in (0, 1) $, on an arbitrary time domain $ \mathbb{T} $, which was a closed subset of $ \mathbb{R} $. By bridging the gap between discrete and continuous time domains, this unified framework enabled a more thorough approach to stability and asymptotic stability analysis on time scales. A key contribution of this work was the new definition of the Caputo Fr$ \Delta $D for a Lyapunov function, which served as the basis for establishing comparison results and stability criteria for Caputo fractional dynamic equations. The proposed framework extended beyond the limitations of traditional integer-order calculus, offering a more flexible and generalizable tool for researchers working with dynamic systems. The inclusion of fractional orders enabled the modeling of more complex dynamics that occur in real-world systems, particularly those involving both continuous and discrete time components. The results presented in this work contributed to the broader understanding of fractional calculus on time scales, enriching the theoretical foundation of dynamic systems analysis. Illustrative examples were included to demonstrate the effectiveness, relevance, and practical applicability of the established stability and asymptotic stability results. These examples highlighted the advantage of our definition of fractional-order derivative over integer-order approaches in capturing the intricacies of dynamic behavior.
[1] | R. Agarwal, D. O'Regan, S. Hristova, Stability of Caputo fractional differential equations by Lyapunov functions, Appl. Math., 60 (2015), 653–676. https://doi.org/10.1007/s10492-015-0116-4 doi: 10.1007/s10492-015-0116-4 |
[2] | R. Agarwal, S. Hristova, D. O'Regan, Applications of Lyapunov functions to Caputo fractional differential equations, Mathematics, 6 (2018), 229. https://doi.org/10.3390/math6110229 doi: 10.3390/math6110229 |
[3] | R. P. Agarwal, D. O'Regan, S. Hristova, Stability with initial time difference of Caputo fractional differential equations by Lyapunov functions, Z. Anal. Anwend., 36 (2017), 49–77. https://doi.org/10.4171/ZAA/1579 doi: 10.4171/ZAA/1579 |
[4] | A. Ahmadkhanlu, M. Jahanshahi, On the existence and uniqueness of solution of initial value problem for fractional order differential equations on time scales, Bull. Iran. Math. Soc., 38 (2012), 241–252. |
[5] | N. R. O. Bastos, Fractional calculus on time scales, 2012, arXiv: 1202.2960. https://doi.org/10.48550/arXiv.1202.2960 |
[6] | C. A. Benaissa, L. F. Zohra, New properties of the time-scale fractional operators with application to dynamic equations, Math. Morav., 25 (2021), 123–136. https://doi.org/10.5937/MatMor2101123B doi: 10.5937/MatMor2101123B |
[7] | M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Birkhäuser Boston: Springer, 2001. https://doi.org/10.1007/978-1-4612-0201-1 |
[8] | J. Čermák, T. Kisela, L. Nechvátal, Stability and asymptotic properties of a linear fractional difference equation, Adv. Differ. Equ., 2012 (2012), 122. https://doi.org/10.1186/1687-1847-2012-122 doi: 10.1186/1687-1847-2012-122 |
[9] | S. E. Ekoro, A. E. Ofem, F. A. Adie, J. Oboyi, G. I. Ogban, M. P. Ineh, On a faster iterative method for solving nonlinear fractional integro-differential equations with impulsive and integral conditions, Palest. J. Math., 12 (2023), 477–484. |
[10] | S. Georgiev, Boundary value problems: Advanced fractional dynamic equations on time scales, Cham: Springer, 2024. https://doi.org/10.1007/978-3-031-38200-0 |
[11] | B. Gogoi, U. K. Saha, B. Hazarika, Impulsive fractional dynamic equation with non-local initial condition on time scales, Bol. Soc. Paran. Mat., 42 (2024), 1–13. https://doi.org/10.5269/bspm.65039 doi: 10.5269/bspm.65039 |
[12] | T. S. Hassan, C. Cesarano, R. A. El-Nabulsi, W. Anukool, Improved Hille-type oscillation criteria for second-order quasilinear dynamic equations, Mathematics, 10 (2022), 3675. https://doi.org/10.3390/math10193675 doi: 10.3390/math10193675 |
[13] | T. S. Hassan, R. A. El-Nabulsi, N. Iqbal, A. A. Menaem, New criteria for oscillation of advanced noncanonical nonlinear dynamic equations, Mathematics, 12 (2024), 824. https://doi.org/10.3390/math12060824 doi: 10.3390/math12060824 |
[14] | S. Hilger, Analysis on measure chains — A unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56. https://doi.org/10.1007/BF03323153 doi: 10.1007/BF03323153 |
[15] | J. Hoffacker, C. C. Tisdell, Stability and instability for dynamic equations on time scales, Comput. Math. Appl., 49 (2005), 1327–1334. https://doi.org/10.1016/j.camwa.2005.01.016 doi: 10.1016/j.camwa.2005.01.016 |
[16] | D. K. Igobi, M. P. Ineh, Results on existence and uniqueness of solutions of dynamic equations on time scale via generalized ordinary differential equations, Int. J. Appl. Math., 37 (2024), 1–20. https://doi.org/10.12732/ijam.v37i1.1 doi: 10.12732/ijam.v37i1.1 |
[17] | D. K. Igobi, E. Ndiyo, M. P. Ineh, Variational stability results of dynamic equations on time-scales using generalized ordinary differential equations, World J. Appl. Sci. Technol., 15 (2024), 245–254. https://doi.org/10.4314/wojast.v15i2.14 doi: 10.4314/wojast.v15i2.14 |
[18] | M. P. Ineh, J. O. Achuobi, E. P. Akpan, J. E. Ante, CDq On the uniform stability of Caputo fractional differential equations using vector Lyapunov functions, J. Niger. Assoc. Math. Phys., 68 (2024), 51–64. https://doi.org/10.60787/jnamp.v68no1.416 doi: 10.60787/jnamp.v68no1.416 |
[19] | S. M. Jung, Functional equation and its Hyers-Ulam stability, J. Inequal. Appl., 2009 (2009), 181678. https://doi.org/10.1155/2009/181678 doi: 10.1155/2009/181678 |
[20] | E. Karapınar, N. Benkhettou, J. E. Lazreg, M. Benchohra, Fractional differential equations with maxima on time scale via Picard operators, Fac. Sci. Math., 37 (2023), 393–402. https://doi.org/10.2298/FIL2302393K doi: 10.2298/FIL2302393K |
[21] | B. Kaymakçalan, Lyapunov stability theory for dynamic systems on time scales, Int. J. Stoch. Anal., 5 (1992), 312068. https://doi.org/10.1155/S1048953392000224 doi: 10.1155/S1048953392000224 |
[22] | B. Kaymakcalan, Existence and comparison results for dynamic systems on a time scale, J. Math. Anal. Appl., 172 (1993), 243–255. https://doi.org/10.1006/jmaa.1993.1021 doi: 10.1006/jmaa.1993.1021 |
[23] | M. E. Koksal, Stability analysis of fractional differential equations with unknown parameters, Nonlinear Anal. Model., 24 (2019), 224–240. https://doi.org/10.15388/NA.2019.2.5 doi: 10.15388/NA.2019.2.5 |
[24] | V. Kumar, M. Malik, Existence, stability and controllability results of fractional dynamic system on time scales with application to population dynamics, Int. J. Nonlinear Sci. Numer. Simul., 22 (2021), 741–766. https://doi.org/10.1515/ijnsns-2019-0199 doi: 10.1515/ijnsns-2019-0199 |
[25] | V. Lakshmikantham, S. Sivasundaram, B. Kaymakçalan, Dynamic systems on measure chains, New York: Springer, 1996. https://doi.org/10.1007/978-1-4757-2449-3 |
[26] | N. Laledj, A. Salim, J. E. Lazreg, S. Abbas, B. Ahmad, M. Benchohra, On implicit fractional q‐difference equations: Analysis and stability, Math. Methods Appl. Sci., 45 (2022), 10775–10797. https://doi.org/10.1002/mma.8417 doi: 10.1002/mma.8417 |
[27] | J. P. LaSalle, Stability theory and the asymptotic behavior of dynamical systems, Dyn. Stab. Struct., 1967, 53–63. https://doi.org/10.1016/B978-1-4831-9821-7.50008-9 |
[28] | X. Liu, B. Jia, L. Erbe, A. Peterson, Stability analysis for a class of nabla $(q, h) $-fractional difference equations, Turk. J. Math., 43 (2019), 664–687. https://doi.org/10.3906/mat-1811-96 doi: 10.3906/mat-1811-96 |
[29] | N. K. Mahdi, A. R. Khudair, An analytical method for $q$-fractional dynamical equations on time scales, Partial Differ. Equ. Appl. Math., 8 (2023), 100585. https://doi.org/10.1016/j.padiff.2023.100585 doi: 10.1016/j.padiff.2023.100585 |
[30] | N. K. Mahdi, A. R. Khudair, Some analytical results on the $\Delta$-fractional dynamic equations, TWMS J. Appl. Eng. Math., 2022. |
[31] | K. Mekhalfi, D. F. Torres, Generalized fractional operators on time scales with application to dynamic equations, Eur. Phys. J. Spec. Top., 226 (2017), 3489–3499. https://doi.org/10.1140/epjst/e2018-00036-0 doi: 10.1140/epjst/e2018-00036-0 |
[32] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[33] | K. S. Nisar, C. Anusha, C. Ravichandran, A non-linear fractional neutral dynamic equations: Existence and stability results on time scales, AIMS Mathematics, 9 (2024), 1911–1925. https://doi.org/10.3934/math.2024094 doi: 10.3934/math.2024094 |
[34] | S. Rashid, N. M. Aslam, K. S. Nisar, D. Baleanu, G. Rahman, A new dynamic scheme via fractional operators on time scale, Front. Phys., 8 (2020). https://doi.org/10.3389/fphy.2020.00165 |
[35] | S. J. Sadati, R. Ghaderi, A. Ranjbar, Some fractional comparison results and stability theorem for fractional time delay systems, Rom. Rep. Phys., 65 (2013), 94–102. |
[36] | M. R. Segi Rahmat, M. S. Md Noorani, Caputo type fractional difference operator and its application on discrete time scales, Adv. Differ. Equ., 2015 (2015), 160. https://doi.org/10.1186/s13662-015-0496-5 doi: 10.1186/s13662-015-0496-5 |
[37] | B. D. Singleton, The life and work of D.H. Hyers, 1913–1997, Nonlinear Funct. Anal. Appl., 11 (2006), 697–732. |
[38] | T. T. Song, G. C. Wu, J. L. Wei, Hadamard fractional calculus on time scales, Fractals, 30 (2022), 2250145. https://doi.org/10.1142/S0218348X22501456 doi: 10.1142/S0218348X22501456 |
[39] | S. Streipert, Dynamic equations on time scales, In: Nonlinear systems-Recent developments and advances, 2023. https://doi.org/10.5772/intechopen.104691 |
[40] | P. Veeresha, N. S. Malagi, D. G. Prakasha, H. M. Baskonus, An efficient technique to analyze the fractional model of vector-borne diseases, Phys. Scr., 97 (2022), 054004. https://doi.org/10.1088/1402-4896/ac607b doi: 10.1088/1402-4896/ac607b |