Research article Special Issues

An analysis of fractional integral calculus and inequalities by means of coordinated center-radius order relations

  • Received: 21 August 2024 Revised: 12 October 2024 Accepted: 18 October 2024 Published: 31 October 2024
  • MSC : 26A48, 26A51, 33B10, 39A12, 39B62

  • Interval-valued maps adjust integral inequalities using different types of ordering relations, including inclusion and center-radius, both of which behave differently. Our purpose was to develop various novel bounds and refinements for weighted Hermite-Hadamard inequalities as well as their product form by employing new types of fractional integral operators under a cr-order relation. Mostly authors have used inclusion order to adjust inequalities in interval maps, but they have some flaws, specifically they lack the property of comparability between intervals. However, we show that under cr-order, it satisfies all relational properties of intervals, including reflexivity, antisymmetry, transitivity, and comparability and preserves integrals as well. Furthermore, we provide numerous interesting remarks, corollaries, and examples in order to demonstrate the accuracy of our findings.

    Citation: Waqar Afzal, Mujahid Abbas, Jongsuk Ro, Khalil Hadi Hakami, Hamad Zogan. An analysis of fractional integral calculus and inequalities by means of coordinated center-radius order relations[J]. AIMS Mathematics, 2024, 9(11): 31087-31118. doi: 10.3934/math.20241499

    Related Papers:

  • Interval-valued maps adjust integral inequalities using different types of ordering relations, including inclusion and center-radius, both of which behave differently. Our purpose was to develop various novel bounds and refinements for weighted Hermite-Hadamard inequalities as well as their product form by employing new types of fractional integral operators under a cr-order relation. Mostly authors have used inclusion order to adjust inequalities in interval maps, but they have some flaws, specifically they lack the property of comparability between intervals. However, we show that under cr-order, it satisfies all relational properties of intervals, including reflexivity, antisymmetry, transitivity, and comparability and preserves integrals as well. Furthermore, we provide numerous interesting remarks, corollaries, and examples in order to demonstrate the accuracy of our findings.



    加载中


    [1] Q. D. Sun, J. C. Ren, F. Zhao, Sliding mode control of discrete-time interval type-2 fuzzy Markov jump systems with the preview target signal, Appl. Math. Comput., 435 (2022), 127479. https://doi.org/10.1016/j.amc.2022.127479 doi: 10.1016/j.amc.2022.127479
    [2] M. Sarwar, T. Li, Fuzzy fixed point results and applications to ordinary fuzzy differential equations in complex valued metric spaces, Hacet. J. Math. Stat., 48 (2019), 1712–1728. https://doi.org/10.15672/HJMS.2018.633 doi: 10.15672/HJMS.2018.633
    [3] J. Q. Ge, S. T. Zhang, Adaptive inventory control based on fuzzy neural network under uncertain environment, Complexity, 2020 (2020), 6190936. https://doi.org/10.1155/2020/6190936 doi: 10.1155/2020/6190936
    [4] M. Gao, L. H. Zhang, W. H. Qi, J. D. Cao, J. Cheng, Y. G. Kao, et al., SMC for semi-Markov jump T-S fuzzy systems with time delay, Appl. Math. Comput., 374 (2020), 125001. https://doi.org/10.1016/j.amc.2019.125001 doi: 10.1016/j.amc.2019.125001
    [5] Z. H. Huang, K. H. Li, Y. H. Jiang, Z. H. Jia, L. Y. Lv, Y. J. Ma, Graph relearn network: reducing performance variance and improving prediction accuracy of graph neural networks, Knowl. Based Syst., 301 (2024), 112311. https://doi.org/10.1016/j.knosys.2024.112311 doi: 10.1016/j.knosys.2024.112311
    [6] D. Q. Zhou, Z. Y. Peng, Z. Lin, J. J. Wang, Continuity of the solution set mappings to parametric unified weak vector equilibrium problems via free-disposal sets, RAIRO Oper. Res., 2024. https://doi.org/10.1051/ro/2024028
    [7] L. Yu, Y. Z. Lei, Y. Ma, M. Liu, J. J. Zheng, D. Dan, et al., A comprehensive review of fluorescence correlation spectroscopy, Front. Phys., 9 (2021), 644450. https://doi.org/10.3389/fphy.2021.644450 doi: 10.3389/fphy.2021.644450
    [8] Z. Y. Xiao, Y. J. Li, W. Zhang, Y. J. Han, D. Li, Q. Chen, et al., Enhancement of torque efficiency and spin Hall angle driven collaboratively by orbital torque and spin-orbit torque, Appl. Phys. Lett., 121 (2022), 072404. https://doi.org/10.1063/5.0086125 doi: 10.1063/5.0086125
    [9] H. Kara, H. Budak, M. A. Ali, M. Z. Sarikaya, Y. M. Chu, Weighted Hermite-Hadamard type inclusions for products of co-ordinated convex interval-valued functions, Adv. Differ. Equ., 2021 (2021), 1–16. https://doi.org/10.1186/s13662-021-03261-8 doi: 10.1186/s13662-021-03261-8
    [10] T. Sitthiwirattham, K. Nonlaopon, M. A. Ali, H. Budak, Riemann-Liouville fractional Newton's type inequalities for differentiable convex functions, Fractal Fract., 6 (2022), 1–15. https://doi.org/10.3390/fractalfract6030175 doi: 10.3390/fractalfract6030175
    [11] T. S. Du, Y. J. Li, Z. Q. Yang, A generalization of Simpson's inequality via differentiable mapping using extended $(s, m)$-convex functions, Appl. Math. Comput., 293 (2017), 358–369. https://doi.org/10.1016/j.amc.2016.08.045 doi: 10.1016/j.amc.2016.08.045
    [12] T. S. Du, C. Y. Luo, Z. J. Cao, On the Bullen-type inequalities via generalized fractional integrals and their applications, Fractals, 29 (2021), 2150188. https://doi.org/10.1142/S0218348X21501887 doi: 10.1142/S0218348X21501887
    [13] C. Hermite, Sur deux limites d'une intégrale définie, Mathesis, 3 (1883), 82–97.
    [14] F. X. Chen, S. H. Wu, Fejér and Hermite-Hadamard type inequalities for harmonically convex functions, J. Appl. Math., 2014 (2014), 386806. https://doi.org/10.1155/2014/386806 doi: 10.1155/2014/386806
    [15] J. R. Wang, C. Zhu, Y. Zhou, New generalized Hermite-Hadamard type inequalities and applications to special means, J. Inequal. Appl., 2013 (2013), 1–15. https://doi.org/10.1186/1029-242X-2013-325 doi: 10.1186/1029-242X-2013-325
    [16] M. K. Bakula, J. Pečarić, On the Jensen's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 10 (2006), 1271–1292.
    [17] S. S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775–788. http://dx.doi.org/10.11650/twjm/1500574995 doi: 10.11650/twjm/1500574995
    [18] D. F. Zhao, M. A. Ali, G. Murtaza, Z. Y. Zhang, On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions, Adv. Differ. Equ., 2020 (2020), 570. http://dx.doi.org/10.1186/s13662-020-03028-7 doi: 10.1186/s13662-020-03028-7
    [19] M. Alomari, M. Darus, Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities, Int. J. Contemp. Math. Sci., 3 (2008), 1557–1567.
    [20] M. E. Özdemir, E. Set, M. Z. Sarıkaya, Some new Hadamard type inequalities for co-ordinated $m$-convex and $({{\alpha}}, m)$-convex functions, Hacet. J. Math. Stat., 40 (2011), 219–229.
    [21] M. Alomari, M. Darus, On the Hadamard's inequality for log-convex functions on the coordinates, J. Inequal. Appl., 2009 (2009), 1–13.
    [22] K. K. Lai, S. K. Mishra, J. Bisht, M. Hassan, Hermite-Hadamard type inclusions for interval-valued coordinated preinvex functions, Symmetry, 14 (2022), 1–18. https://doi.org/10.3390/sym14040771 doi: 10.3390/sym14040771
    [23] F. Wannalookkhee, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, On Hermite-Hadamard type inequalities for coordinated convex functions via $(p, q)$-calculus, Mathematics, 9 (2021), 1–19. https://doi.org/10.3390/math9070698 doi: 10.3390/math9070698
    [24] H. Kalsoom, S. Rashid, M. Idrees, F. Safdar, S. Akram, D. Baleanu, et al., Post quantum integral inequalities of Hermite-Hadamard-type associated with co-ordinated higher-order generalized strongly pre-Invex and quasi-pre-invex mappings, Symmetry, 12 (2020), 1–20. https://doi.org/10.3390/sym12030443 doi: 10.3390/sym12030443
    [25] A. Akkurt, M. Z. Sarıkaya, H. Budak, H. Yıldırım, On the Hadamard's type inequalities for co-ordinated convex functions via fractional integrals, J. King Saud Univ. Sci., 29 (2017), 380–387. https://doi.org/10.1016/j.jksus.2016.06.003 doi: 10.1016/j.jksus.2016.06.003
    [26] F. F. Shi, G. J. Ye, D. F. Zhao, W. Liu, Some fractional Hermite-Hadamard type inequalities for interval-valued functions, Mathematics, 8 (2020), 1–10. https://doi.org/10.3390/math8040534 doi: 10.3390/math8040534
    [27] Z. A. Khan, W. Afzal, M. Abbas, J. S. Ro, A. A. Zaagan, Some well known inequalities on two dimensional convex mappings by means of pseudo $\mathcal{L-R}$ interval order relations via fractional integral operators having non-singular kernel, AIMS Math., 9 (2024), 16061–16092. https://doi.org/10.3934/math.2024778 doi: 10.3934/math.2024778
    [28] T. Saeed, A. Cătaș, M. B. Khan, A. M. Alshehri, Some new fractional inequalities for coordinated convexity over convex set pertaining to fuzzy-number-valued settings governed by fractional integrals, Fractal Fract., 7 (2023), 1–27. https://doi.org/10.3390/fractalfract7120856 doi: 10.3390/fractalfract7120856
    [29] A. Almutairi, A. Kılıçman, New refinements of the Hadamard inequality on coordinated convex function, J. Inequal. Appl., 2019 (2019), 1–9. https://doi.org/10.1186/s13660-019-2143-2 doi: 10.1186/s13660-019-2143-2
    [30] W. Afzal, D. Breaz, M. Abbas, L. I. Cotîrlă, Z. A. Khan, E. Rapeanu, Hyers-Ulam stability of $2D$-convex mappings and some related new Hermite-Hadamard, Pachpatte, and Fejér type integral inequalities using novel fractional integral operators via totally interval-order relations with open problem, Mathematics, 12 (2024), 1–33. https://doi.org/10.3390/math12081238 doi: 10.3390/math12081238
    [31] T. Saeed, E. R. Nwaeze, M. B. Khan, K. H. Hakami, New version of fractional Pachpatte-type integral inequalities via coordinated $h$-convexity via left and right order relation, Fractal Fract., 8 (2024), 1–24. https://doi.org/10.3390/fractalfract8030125 doi: 10.3390/fractalfract8030125
    [32] Z. Z. Zhou, A. A. Al. Ahmadi, A. A. Lupas, K. H. Hakami, A new contribution in fractional integral calculus and inequalities over the coordinated fuzzy codomain, Axioms, 13 (2024), 1–25. https://doi.org/10.3390/axioms13100666 doi: 10.3390/axioms13100666
    [33] W. Afzal, N. M. Aloraini, M. Abbas, J. S. Ro, A. A. Zaagan, Hermite-Hadamard, Fejér and trapezoid type inequalities using Godunova-Levin Preinvex functions via Bhunia's order and with applications to quadrature formula and random variable, Math. Biosci. Eng., 21 (2024), 3422–3447. https://doi.org/10.3934/mbe.2024151 doi: 10.3934/mbe.2024151
    [34] H. Budak, P. Agarwal, On Hermite-Hadamard-type inequalities for coordinated convex mappings utilizing generalized fractional integrals, In: Fractional calculus, Singapore: Springer, 2019,227–249. https://doi.org/10.1007/978-981-15-0430-3_13
    [35] Y. Hu, X. C. Zhang, G. Q. Wang, X. P. Zhang, H. Z. Li, Hovering efficiency optimization of ducted propeller with large blade tip clearance based on grooved duct configuration, Aerosp. Sci. Technol., 150 (2024), 109226. https://doi.org/10.1016/j.ast.2024.109226 doi: 10.1016/j.ast.2024.109226
    [36] X. H. Bao, H. Yuan, J. Shen, C. X. Liu, X. S. Chen, H. Z. Cui, Numerical analysis of seismic response of a circular tunnel-rectangular underpass system in liquefiable soil, Comput. Geotech., 174 (2024), 106642. https://doi.org/10.1016/j.compgeo.2024.106642 doi: 10.1016/j.compgeo.2024.106642
    [37] W. Liu, F. F. Shi, G. J. Ye, D. F. Zhao, Some inequalities for $cr$-log-$h$-convex functions, J. Inequal. Appl., 2022 (2022), 160. https://doi.org/10.1186/s13660-022-02900-2 doi: 10.1186/s13660-022-02900-2
    [38] W. Liu, F. F. Shi, G. J. Ye, D. F. Zhao, The properties of Harmonically $cr$-$h$-convex function and its applications, Mathematics, 10 (2022), 1–15. https://doi.org/10.3390/math10122089 doi: 10.3390/math10122089
    [39] D. Khan, S. I. Butt, Superquadraticity and its fractional perspective via center-radius $cr$-order relation, Chaos Solitons Fract., 182 (2024), 114821. https://doi.org/10.1016/j.chaos.2024.114821 doi: 10.1016/j.chaos.2024.114821
    [40] A. Fahad, Y. H. Wang, Z. Ali, R. Hussain, S. Furuichi, Exploring properties and inequalities for geometrically arithmetically-Cr-convex functions with Cr-order relative entropy, Inform. Sci., 662 (2024), 120219. https://doi.org/10.1016/j.ins.2024.120219 doi: 10.1016/j.ins.2024.120219
    [41] W. Afzal, M. Abbas, J. E. Macías-Díaz, S. Treanţă, Some H-Godunova-Levin function inequalities using center radius (Cr) order relation, Fractal Fract., 6 (2022), 1–14. https://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518
    [42] W. Afzal, K. Shabbir, T. Botmart, S. Treanţă, Some new estimates of well known inequalities for $ (h_1, h_2) $-Godunova-Levin functions by means of center-radius order relation, AIMS Math., 8 (2023), 3101–3119. http://dx.doi.org/10.3934/math.2023160 doi: 10.3934/math.2023160
    [43] W. Afzal, W. Nazeer, T. Botmart, S. Treanţă, Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation, AIMS Math., 8 (2023), 1696–1712. http://dx.doi.org/10.3934/math.2023087 doi: 10.3934/math.2023087
    [44] T. Saeed, W. Afzal, M. Abbas, S. Treanţă, M. De. la Sen, Some new generalizations of integral inequalities for Harmonical $cr$-$(h_1, h_2)$-Godunova-Levin functions and applications, Mathematics, 10 (2022), 1–16. https://doi.org/10.3390/math10234540 doi: 10.3390/math10234540
    [45] S. K. Sahoo, E. Al-Sarairah, P. O. Mohammed, M. Tariq, K. Nonlaopon, Modified inequalities on center-radius order interval-valued functions pertaining to Riemann-Liouville fractional integrals, Axioms, 11 (2022), 1–18. https://doi.org/10.3390/axioms11120732 doi: 10.3390/axioms11120732
    [46] S. K. Sahoo, M. A. Latif, O. M. Alsalami, S. Treanţă, W. Sudsutad, J. Kongson, Hermite-Hadamard, Fejér and Pachpatte-type integral inequalities for center-radius order interval-valued preinvex functions, Fractal Fract., 6 (2022), 1–24. https://doi.org/10.3390/fractalfract6090506 doi: 10.3390/fractalfract6090506
    [47] H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, D. Baleanu, B. Kodamasingh, Hermite-Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators, Int. J. Comput. Intell. Syst., 15 (2022), 8. https://doi.org/10.1007/s44196-021-00061-6 doi: 10.1007/s44196-021-00061-6
    [48] A. A. H. Ahmadini, W. Afzal, M. Abbas, E. S. Aly, Weighted Fejér, Hermite-Hadamard, and Trapezium-type inequalities for $(h_1, h_2)$-Godunova-Levin preinvex function with applications and two open problems, Mathematics, 12 (2024), 1–28. https://doi.org/10.3390/math12030382 doi: 10.3390/math12030382
    [49] M. B. Khan, H. G. Zaini, J. E. Macías-Díaz, M. S. Soliman, Up and down $h$-pre-invex fuzzy-number valued mappings and some certain fuzzy integral inequalities, Axioms, 12 (2023), 1–22. https://doi.org/10.3390/axioms12010001 doi: 10.3390/axioms12010001
    [50] H. Román-Flores, V. Ayala, A. Flores-Franulič, Milne type inequality and interval orders, Comput. Appl. Math., 40 (2021), 130. https://doi.org/10.1007/s40314-021-01500-y doi: 10.1007/s40314-021-01500-y
    [51] A. K. Bhunia, S. S. Samanta, A study of interval metric and its application in multi-objective optimization with interval objectives, Comput. Ind. Eng., 74 (2014), 169–178. https://doi.org/10.1016/j.cie.2014.05.014 doi: 10.1016/j.cie.2014.05.014
    [52] M. A. Khan, S. Z. Ullah, Y. M. Chu, The concept of coordinate strongly convex functions and related inequalities, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 113 (2019), 2235–2251. https://doi.org/10.1007/s13398-018-0615-8 doi: 10.1007/s13398-018-0615-8
    [53] M. B. Khan, H. M. Srivastava, P. O. Mohammed, K. Nonlaopon, Y. S. Hamed, Some new estimates on coordinates of left and right convex interval-valued functions based on pseudo order relation, Symmetry, 14 (2022), 1–21. https://doi.org/10.3390/sym14030473 doi: 10.3390/sym14030473
    [54] H. Budak, H. Kara, M. A. Ali, S. Khan, Y. M. Chu, Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions, Open Math., 19 (2021), 1081–1097. https://doi.org/10.1515/math-2021-0067 doi: 10.1515/math-2021-0067
    [55] M. Z. Sarıkaya, On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integral Transforms Spec. Funct., 25 (2014), 134–147. https://doi.org/10.1080/10652469.2013.824436 doi: 10.1080/10652469.2013.824436
    [56] W. Afzal, M. Abbas, D. Breaz, L. I. Cotîrlă, Fractional Hermite-Hadamard, Newton-Milne, and convexity involving arithmetic-geometric mean-type inequalities in Hilbert and mixed-norm Morrey spaces $\ell_{\mathrm{q}(\cdot)}\left(\mathrm{M}_{\mathrm{p}(\cdot) \mathrm{v}(\cdot)}\right)$ with variable exponents, Fractal Fract., 8 (2024), 1–32. https://doi.org/10.3390/fractalfract8090518 doi: 10.3390/fractalfract8090518
    [57] W. Afzal, M. Abbas, O. M. Alsalami, Bounds of different integral operators in tensorial Hilbert and variable exponent function spaces, Mathematics, 12 (2024), 1–33. https://doi.org/10.3390/math12162464 doi: 10.3390/math12162464
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(121) PDF downloads(30) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog