Research article Topical Sections

Practical consensus of time-varying fuzzy positive multi-agent systems

  • Received: 18 July 2024 Revised: 23 September 2024 Accepted: 21 October 2024 Published: 01 November 2024
  • MSC : 60K15, 93C10, 93C28, 93E15

  • This paper considers the practical consensus of time-varying fuzzy positive multi-agent systems. A novel error variable is introduced by adding an additional constant term. Under the framework of time-varying fuzzy copositive Lyapunov functions, a fuzzy control protocol with time-varying gain matrices is designed in terms of matrix decomposition technique. Some consensus conditions are addressed via time-varying linear programming. Moreover, the design is developed for false data injection attacks. Finally, two examples are provided for verifying the validity of the design.

    Citation: Junfeng Zhang, Renjie Fu, Yuanyuan Wu, Bhatti Uzair Aslam. Practical consensus of time-varying fuzzy positive multi-agent systems[J]. AIMS Mathematics, 2024, 9(11): 31119-31141. doi: 10.3934/math.20241500

    Related Papers:

  • This paper considers the practical consensus of time-varying fuzzy positive multi-agent systems. A novel error variable is introduced by adding an additional constant term. Under the framework of time-varying fuzzy copositive Lyapunov functions, a fuzzy control protocol with time-varying gain matrices is designed in terms of matrix decomposition technique. Some consensus conditions are addressed via time-varying linear programming. Moreover, the design is developed for false data injection attacks. Finally, two examples are provided for verifying the validity of the design.



    加载中


    [1] T. Hu, Z. He, X. Zhang, S. Zhong, Event-triggered consensus strategy for uncertain topological fractional-order multiagent systems based on Takagi-Sugeno fuzzy models, Inform. Sciences, 551 (2021), 304–323. https://doi.org/10.1016/j.ins.2020.11.005 doi: 10.1016/j.ins.2020.11.005
    [2] J. Chen, J. Li, X. Yuan, Distributed fuzzy adaptive consensus for high-order multi-agent systems with an imprecise communication topology structure, Fuzzy Set. Syst., 402 (2021), 1–15. https://doi.org/10.1016/j.fss.2020.03.018 doi: 10.1016/j.fss.2020.03.018
    [3] G. Liu, Q. Zhou, Y. Zhang, H. Liang, Fuzzy tracking control for nonlinear multi-agent systems with actuator faults and unknown control directions, Fuzzy Set. Syst., 385 (2020), 81–97. https://doi.org/10.1016/j.fss.2019.03.013 doi: 10.1016/j.fss.2019.03.013
    [4] A. Lu, G. Yang, Distributed consensus control for multi-agent systems under denial-of-service, Inform. Sciences, 439 (2018), 95–107. https://doi.org/10.1016/j.ins.2018.02.008 doi: 10.1016/j.ins.2018.02.008
    [5] Y. Li, Y. X. Li, S. Tong, Event-based finite-time control for nonlinear multi-agent systems with asymptotic tracking, IEEE T. Automat. Contr., 68 (2023), 3790–3797. https://doi.org/10.1109/TAC.2022.3197562 doi: 10.1109/TAC.2022.3197562
    [6] S. Gu, C. Qian, N. Zhang, Finite-time integral control for a class of nonlinear planar systems with non-vanishing uncertainties, Automatica, 136 (2022), 110016. https://doi.org/10.1016/j.automatica.2021.110016 doi: 10.1016/j.automatica.2021.110016
    [7] K. Cao, C. Qian, Finite-time controllers for a class of planar nonlinear systems with mismatched disturbances, IEEE Control Syst. Lett., 5 (2020), 1928–1933. https://doi.org/10.1109/LCSYS.2020.3044983 doi: 10.1109/LCSYS.2020.3044983
    [8] F. Gao, C. Chen, J. Huang, Y. Wu, Prescribed-time stabilization of uncertain planar nonlinear systems with output constraints, IEEE T. Circuits II, 69 (2022), 2887–2891. https://doi.org/10.1109/TCSII.2022.3145098 doi: 10.1109/TCSII.2022.3145098
    [9] Y. Cheng, T. Hu, Y. Li, X. Zhang, S. Zhong, Delay-dependent consensus criteria for fractional-order Takagi-Sugeno fuzzy multi-agent systems with time delay, Inform. Sciences, 560 (2021), 456–475. https://doi.org/10.1016/j.ins.2021.01.074 doi: 10.1016/j.ins.2021.01.074
    [10] L. Zhang, B. Chen, C. Lin, Y. Shang, Fuzzy adaptive fixed-time consensus tracking control of high-order multiagent systems, IEEE T. Fuzzy Syst., 30 (2022), 567–578. https://doi.org/10.1109/TFUZZ.2020.3042239 doi: 10.1109/TFUZZ.2020.3042239
    [11] L. Farina, S. Rinaldi, Positive linear systems: theory and applications, John Wiley & Sons, 2000. https://doi.org/10.1002/9781118033029
    [12] H. Arneson, C. Langbort, A linear programming approach to routing control in networks of constrained linear positive systems, Automatica, 48 (2012), 800–807. https://doi.org/10.1016/j.automatica.2012.02.001 doi: 10.1016/j.automatica.2012.02.001
    [13] Y. Yang, J. Zhang, M. Huang, X. Tan, Disturbance observer-based event-triggered control of switched positive systems, IEEE T. Circuits II, 71 (2024), 1191–1195. https://doi.org/10.1109/TCSII.2023.3325160 doi: 10.1109/TCSII.2023.3325160
    [14] R. Li, Y. Zhang, Y. Tang, S. Li, Observer-based leader-following consensus for positive multi-agent systems over time-varying graphs, J. Franklin I., 360 (2023), 13380–13394. https://doi.org/10.1016/j.jfranklin.2023.10.014 doi: 10.1016/j.jfranklin.2023.10.014
    [15] M. E. Valcher, P. Misra, On the stabilizability and consensus of positive homogeneous multi-agent dynamical systems, IEEE T. Automat. Contr., 59 (2014), 1936–1941. https://doi.org/10.1109/TAC.2013.2294621 doi: 10.1109/TAC.2013.2294621
    [16] F. Mazenc, M. Malisoff, Stability analysis for time-varying systems with delay using linear Lyapunov functionals and a positive systems approach, IEEE T. Automat. Contr., 61 (2016), 771–776. https://doi.org/10.1109/TAC.2015.2446111 doi: 10.1109/TAC.2015.2446111
    [17] J. J. R. Liu, M. Zhang, J. Lam, B. Du, K. W. Kwok, PD control of positive interval continuous-time systems with time-varying delay, Inform. Sciences, 580 (2021), 371–384. https://doi.org/10.1016/j.ins.2021.08.034 doi: 10.1016/j.ins.2021.08.034
    [18] J. Jiang, Y. Jiang, Leader-following consensus of linear time-varying multi-agent systems under fixed and switching topologies, Automatica, 113 (2020), 108804. https://doi.org/10.1016/j.automatica.2020.108804 doi: 10.1016/j.automatica.2020.108804
    [19] L. Ma, Z. Wang, H. K. Lam, Event-triggered mean-square consensus control for time-varying stochastic multi-agent system with sensor saturations, IEEE T. Automat. Contr., 62 (2017), 3524–3531. https://doi.org/10.1109/TAC.2016.2614486 doi: 10.1109/TAC.2016.2614486
    [20] B. D. O. Anderson, G. Shi, J. Trumpf, Convergence and state reconstruction of time-varying multi-agent systems from complete observability theory, IEEE T. Automat. Contr., 62 (2017), 2519–2523. https://doi.org/10.1109/TAC.2016.2599274 doi: 10.1109/TAC.2016.2599274
    [21] X. Zhang, L. Liu, G. Feng, Leader-follower consensus of time-varying nonlinear multi-agent systems, Automatica, 52 (2015), 8–14. https://doi.org/10.1016/j.automatica.2014.10.127 doi: 10.1016/j.automatica.2014.10.127
    [22] A. Shariati, Q. Zhao, Robust leader-following output regulation of uncertain multi-agent systems with time-varying delay, IEEE-CAA J. Automatic., 5 (2019), 807–817. https://doi.org/10.1109/JAS.2018.7511141 doi: 10.1109/JAS.2018.7511141
    [23] Y. Gao, L. Wang, Sampled-data based consensus of continuous-time multi-agent systems with time-varying topology, IEEE T. Automat. Contr., 56 (2011), 1226–1231. https://doi.org/10.1109/TAC.2011.2112472 doi: 10.1109/TAC.2011.2112472
    [24] Z. Qu, Cooperative control of dynamical systems: Applications to autonomous vehicles, Springer Science & Business Media, 2009.
    [25] X. Zhang, L. Liu, G. Feng, Leader-follower consensus of time-varying nonlinear multi-agent systems, Automatica, 52 (2015), 8–14. https://doi.org/10.1016/j.automatica.2014.10.127 doi: 10.1016/j.automatica.2014.10.127
    [26] C. Wang, L. Guo, Adaptive cooperative tracking control for a class of nonlinear time-varying multi-agent systems, J. Franklin I., 354 (2017), 6766–6782. https://doi.org/10.1016/j.jfranklin.2017.08.029 doi: 10.1016/j.jfranklin.2017.08.029
    [27] H. Li, X. Li, Distributed model predictive consensus of heterogeneous time-varying multi-agent systems: With and without self-triggered mechanism, IEEE T. Circuits I, 67 (2020), 5358–5368. https://doi.org/10.1109/TCSI.2020.3008528 doi: 10.1109/TCSI.2020.3008528
    [28] J. Wang, Y. Li, Y. Wu, Z. Liu, K. Chen, C. L. P. Chen, Fixed-time formation control for uncertain nonlinear multi-agent systems with time-varying actuator failures, IEEE T. Fuzzy Syst., 32 (2024), 1965–1977. https://doi.org/10.1109/TFUZZ.2023.3342282 doi: 10.1109/TFUZZ.2023.3342282
    [29] A. Petrillo, A. Salvi, S. Santini, A. S. Valente, Adaptive multi-agents synchronization for collaborative driving of autonomous vehicles with multiple communication delays, Transport. Res. C-Emer., 86 (2018), 372–392. https://doi.org/10.1016/j.trc.2017.11.009 doi: 10.1016/j.trc.2017.11.009
    [30] Z. Tang, A. Loría, Localization and tracking control of autonomous vehicles in time-varying bearing formation, IEEE Control Syst. Lett., 7 (2023), 1231–1236. https://doi.org/10.1109/LCSYS.2022.3231413 doi: 10.1109/LCSYS.2022.3231413
    [31] G. Cai, L. Xu, Y. Liu, J. Feng, J. Liang, Y. Lu, et al., Robust preview path tracking control of autonomous vehicles under time-varying system delays and saturation, IEEE T. Veh. Technol., 72 (2023), 8486–8499. https://doi.org/10.1109/TVT.2023.3250328 doi: 10.1109/TVT.2023.3250328
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(118) PDF downloads(29) Cited by(0)

Article outline

Figures and Tables

Figures(13)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog