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1. Introduction

Fractional calculus represents a significant extension of classical calculus, enabling the analysis of
phenomena that cannot be adequately described by integer-order derivatives and integrals. Over the
centuries, mathematicians like Euler, Laplace, Riemann, and Liouville contributed to its development.
However, it was not until the 20th century that fractional calculus started gaining significant attention
and applications. Fractional calculus often provides more accurate and flexible models for real-world
phenomena. It can capture memory effects, non-locality, and complex dynamics that traditional
integer-order calculus might miss. It has numerous applications in various fields of science and
engineering, including: It is applied in the analysis of electromagnetic fields and waves, where
fractional derivatives help model complex behaviors. Fractional calculus is utilized in control systems
to model and analyze dynamical systems, enhancing the design of controllers for systems with memory
effects. In materials science, fractional calculus models the behavior of viscoelastic materials, which
exhibit both viscous and elastic characteristics, allowing for a more accurate representation of their
stress-strain relationships. For some other applications in various domains, check [1-4] and the
references therein.

Mathematical inequalities provide a foundational framework for understanding the behavior
of functions under integration, leading to significant applications in both theoretical and
applied mathematics. Convex integral inequalities are a powerful tool in mathematical analysis,
providing relationships between integrals of convex functions and their values at specific points.
They find applications in various fields, including probability theory, information theory, and
optimization (see [5-8]). These inequalities are crucial for numerical methods, especially for
estimating the error bounds in numerical integration techniques like the trapezoidal rule, Simpson’s
rule, and others. Several notable integral inequalities have been documented in the literature, including
Hermite-Hadamard [9], Newton [10], Simpson [11], Bullen [12], and others.

Through the use of the different classes of generalized convex mappings, authors have interpreted
the double Hermite and Hadamard (H-H) inequality in various ways. The double inequality was
proposed by Hermite (1822—-1901) and Hadamard (1865-1963). In addition to their contributions to
number theory, nonlinear analysis, and complex analysis, Hermite and Hadamard have made significant
contributions to other fields as well. To learn more about their contributions, see [13]. This inequality
is a significant discovery in convex analysis and is widely used in various fields of applied analysis,
particularly optimality analysis. Let us describe it as below.

Suppose that iy : Q € R — R is a convex mapping defined over the interval Q of real numbers, as
well as wy, w, € Q together with w; # w,. Then one has (see [14]):

t//(wl+w2)s : fwzw(e)desw. (1.1)
2 Wy — W1 Jy, 2

This inequality is applied in geometric contexts to determine correlations between a function’s value at
the midpoint of an interval and its average over that interval. In information theory, the inequality has
been used to set boundaries and estimations, especially in relation to quantum integral inequalities and
quantum calculus. An effective tool for examining a variety of economic phenomena involving convex
functions, such as asset pricing and optimization as well as income distribution and production, is due
to Hermite-Hadamard inequality (see [15]).
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The bidimensional convex function is primarily used to prove that all convex mappings are
convex over their coordinates. Additionally, there are bidimensional convex functions that are not
convex (see, for instance, [16]). Hermite-Hadamard type inequality of the following kind was
established for convex co-ordinated mappings on R, that is:

Let a function ¢ : [w;, ws] X [w3, ws] € R> — R is convex across its coordinate plane. Then, we
have the following double inequalities (see [17]):

w) + wy a)3+a)4)

4‘”(2’2

1 we + 1 “ W)+
S[ f W(X’ w3 w4)dx N f w(an wz’y) dy]
Wy — Wi Jy, 2 Wy — W3 w3 2

1 W2 W4

,y)dyd
oo o, ), eV

1 “2
S[ f [W(x, w3) + (X, wy)] dx +

Wy — Wy

f [W(w1,y) + Y(ws, y)] dy]

Wy — W3 Jy,
<YWy, w3) + Y(wi, wa) + YW, w3) + Y(wy, wWa). (1.2)

First, the authors in [18] employed inclusion order and interval-valued functions for two-
dimensional double inequality and proposed a number of innovative variations of inequalities in terms
of inclusions. They further show that when the interval is wrapped, these results generalize many
earlier discoveries. In [19], the authors provide several new refinements and reversals for bidimensional
double inequality using s-convex mappings on the rectangular plane. Furthermore, this inequality has
been investigated using different types of convex mappings as well as integral operators. For example,
in [20], the authors used different types of convex, continuous, and differentiable mappings and found
various bounds of double inequalities. In [21], the authors define two variable logarithmic convex
mappings and develop Hermite-Hadamard inequality with applications. In [22], the authors define
two-dimensional preinvex type mappings and develop various types of Hermite-Hadamard inequalities.
In [23], the authors exploited the g-jackson quantum double integral on the plane to established the
double inequality with its fascinating applications in quantum calculus. Kalsoom et al. [24] used
quantum integrals to established the Fejer and Pachapatte type inequalities utilizing two different
forms of invex mappings. In [25], authors introduced a new type of fractional integral operators
with singular kernels to develop Hermite-Hadamard inequality by employing several types of integral
identities. In the realm of interval maps, Shi et al. [26] created multiple new bounds for double
Hermite-Hadamard inequality using two types of generalized convex mappings. Zareen et al. [27]
exploited generalized double fractional integrals and generated numerous novel Hermite-Hadamard
type inequalities with coordinated convex mappings. Saeed et al. [28] employed generalized double
fractional integrals to establish numerous novel Hermite-Hadamard type inequalities over convex set
relevant to fuzzy-number-valued settings using coordinated convex mappings. In [29], the authors
refined the Hadamard inequality for coordinated convex functions and explored their applications.
Afzal et al. [30] exploited coordinated convex mappings to produce Hermite-Hadamard, Pachpatte,
and Fejer type integral inequalities using innovative fractional integral operators via fully interval-
order relations. For some further recent advancements for coordinated convex mappings, we refer
to [31-34] and the references therein.
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Since this article mainly deals with a cr-interval order relations, we should recollect recent
advancements focusing on center-radius order relations using some other form of convex mapping.
The concept of cr-order was introduced for the first time by the authors in [35] in 2014. This relation is
more compatible than other order relations and has several additional properties that other interval order
relations do not have. Based on their work, authors in [36] defined a new type of convex mapping for
convex optimizing problems in the realm of cr-order. Liu et al. [37,38] first created discrete versions of
Jensen and Hermite-Hadamard inequalities utilizing two distinct kinds of generalized convex mappings
employing cr-order as a result of these discoveries. Khan and Saad [39] created several novel bounds
for various kinds of double inequalities by utilizing superquadratic functions in the relam of fractional
frame of reference via cr-order relation. Fahad et al. [40] used geometric and arithmetic-cr-convex
functions to explore characteristics and several applications related to entropy and means. Using
the concepts of cr-order and various classes of convex and Godunova-Levin functions, the authors
of [41-44] generated a number of novel inequalities connected to these findings with applications.
For more recent developments on comparable results using different types of related convex classes,
see [45—-49] and the references therein.

“Order relations” and “convex mappings” are the basic concepts for adjusting inequalities within
interval set-valued mappings. Despite that, authors have extensively used the interval partial order
relation “C,” to develop different types of inequalities and analyze that this type of order relation
though it is not very suitable for adjusting inequalities in interval maps because there are some
inequalities that are not adjusted under the same assumptions. For instance, please see reference [50] in
which several major results are not developed in interval maps. To overcome this limitation, the authors
established a new sort of order relation known as cr-order, whose definition is now standard. This is
considered a natural generalization of all recently developed order relations such as inclusion, left-
right, pseudo, up and down, and various others. Furthermore, the cr-order is full order, which means
it possesses all relational features between intervals, including reflexivity, anti-symmetry, transitivity,
and comparability, but the inclusion partial order relation lacks comparability between two intervals.

Inspired by well built appropriate literature, particularly these works [18, 24,39-41], we derived
a novel and improved form of inequalities employing cr-interval order. This paper is organized into
five sections, beginning with an introduction and fundamental discussion of the subject connected to
preliminary. In Section 3, we first show that double integral preserves cr-order, and then we show that
the newly developed mappings after we apply cr-order, including midpoint and center, are both convex
in nature. Next, we developed different variants of double inequalities that generalize various previous
findings. Finally, in Section 4, we provide a precise conclusion and some future prospects.

2. Preliminaries

In this section, we discuss some basic concepts related to fractional and interval calculus. Further
some key concepts are not thoroughly discussed here, thus we refer to [39].

R;: intervals in R;

¥ =y interval maps become dysfunctional;
C: inclusion interval order;

or. cr-interval order;

: basic order;

It
<
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e jvfs: interval-valued functions.

2.1. Interval operations

Let R be the one-dimensional Euclidean space, and consider R, the family of all non-empty compact
convex subsets of R, that is

R = {lw1, ws] : w1, ws € R and w; < w,}.

To define the Hausdorff metric in R, use this formula:
D(wi, wy) = max{d(w, w,), d(w,, w1)}, (2.1)

where d(w1, w,) = sup,,,, d(v, w1), and d(v, wz) = minye,, d(v, u) = minge,, [v — yl.

Remark 2.1. The Hausdorff metric described in (2.1) is alternatively represented in the following
manner:
H([wi, 1], [ws, @31) = max{|w; — wal, [@7 - @al).

In interval space, we call this the Moore metric.

For instance, if H; = [wi, wi] and H, = [w2, w,] are two closed intervals, then the Minkowski sum,
scalar multiplication, and difference are defined as follows:

H; +H, = {(1)1 + wy | w; €H,w, € Hz} andl'H; = {FC{)] | w1 € Hl}

and
H —-H; = [ﬂ—w_z,w_l—ﬂ],

with the product

H; - Hy = [minfw;w), w107, 01w, W W2}, SUP{w; W), w107, W W2, W W2 1],

H,; Y w wr wp WL Wi ow wy

—=mny—,—=, —,— ¢, MaAX{ —, —, —, — ¢ |,

H, Wy Wy Wy W Wy Wy Wy W
where 0 ¢ H,.

The order relation that permeates our primary findings is outlined by Bhunia and Samanta [51]; it
is commonly referred to as center-radius order.

and the division

Definition 2.1. [41] For any two intervals the center-radius order relation is defined as H; =
Wit B-w Qi+ 0-0

01,31 = (e 07) = (57, T2 By = (91,8 = (@, 0 = (252, 252 ), where

We < Qc’ ifwc # Qc;

H < H &
P {w,éQr, ifw, = Q..

The relation <., satisfies the following relational properties for any three intervals H; = [w, w;] =
(We, Wr), Hy = [, 0] =(Q,, Q) and H3 = [m, 21 = (Me, ) @ Reflexivity: Hy <. Hy. Anti-symmetry:
H, < Hy and H; <. Hy. Transitivity: H; <. Hy and Hy <., Hs, then H; <. H3 . Comparability:
I'12 5cr H3 or H3 5cr H2~
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Theorem 2.1. [42] Let ¥ : [wy,w;] — Rc be an ivfs represented by y(w) = [g(w),a(a))]. /S
IR([a)l,sz’ Wﬂ(w)7 QZ(U)) € R([wlst]) and

(2

R) [ w(w) dw= [(R) f Y(w) do, (R) f T (w) dw].
Theorem 2.2. [41] Let s, x : [wy, w2] = Rc be an ivfs defined by y = [x,x1, ¥ = [, ¥]. If (W) <cr
x(w) for all w € [wy, W,], then B N

(W2

lﬁ(w)dw <cr fwz )(((l))da)

w1 w1

Theorem 2.3. [I8] Let A = [w1, w;] X [w3, w4]. If Y : A — R is UD-integrable over A, then we have

W4

(UD) f f Y(w, Q) dA = (IR) wZ(IR) Y(w, Q) dw dQ.
A w]

w3
Using Zhao et al. [18] concept of interval-valued double integrals, we provide the following
definitions for Hadamard and Katugampola integrals as follows:

Definition 2.2. Let y € IR (4, wix[ws.ws))- FOT bidimensional interval-valued functions, the Hadamard
integrals of order 0y, 0, > 0 with w, w; > 0 are represented as

1 X Yy X 6,—-1 y 6—1 l//(t S)
O ) = ——(R f f (l —) (l —) “—dtds, x> w;, ¥ > ws,
w1+, w3+w(x ) F(Ql)F(GZ)( ) o Jon n T n S ts S, X> w1, Y > w3

1 <o oxye-l o\ g s)
(591 02 , =— (IR f f (1 _) In - 22 77dtd , , ,
w|+w4—l//(x Y) F(QI)F(QZ)( ) w1 Jy n T n y s S, X>wi, Y < Wy

1 (W2 Yy t 01—1 y 6,—1 lﬁ(t S)
e , ::—IRf f(l —) (1 —) >5) deds, , ,
wWr— w3+ (x,y) I1(6’1)“92)( ) ] o n x n s ts S, X<wy, Y>> w3

and

1 (V2 (W4 t 6,—1 y 6,—1 l//(t S)
GO , ::—IRf f (1 —) (1 —) YE-S) stds, x < w, .
i V&) = s R) | , g "s ts S, X<y, ¥ <y

Definition 2.3. Let ¥ € IR(u, woix(wsws))  FOr bidimensional interval-valued functions, the
Katugampola fractional integrals are defined as

1 -0, 0'—1
01,0 —
O'Iw1+w3+ (X, Y) . l_,(g )1_,(92)(1 )\f‘;] \[m 27 — tn]l 91 = ]1 0, l//(t S)dtdS X>wi, V> ws,
nr (01,6 _n e ! 7 t,s)dtd
w1+, w4—lr//(x’ Y) M F(el)r(ez)( )\[(:)1 [xn tn]l 91 0_ _ yo_]l_ez lr//( b S) S’ X > a)]’ y < (,U4,
1—91 t”_ SO‘—])
o , ::umff t.s)dtds, X < W, ¥ > ws,
w1+, wz+¢’(x Y) F(HI)F(QZ)( ) . » [t’? _ XU]I_Hl [ya' _ SO‘]I_HZ '7[/( S) S, X CL)Q y CL)3
and
6, 2 4 n— So-—l
770—'(1)12 2a)4 l/’( Y) = F(el)r(gz)( )f f 1 -6, [SO_ _ y0']1_92 'ﬁ(t, S)dtds, X< wy, ¥ <ws4.
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We have now established a new type of double fractional integral operators under cr-order that
generalize various existing operators by specifying different sorts of functions.

Definition 2.4. Let { : [wy,w;] — R be a increasing and positive monotone function on (w;, w,],
having a continuous derivative on (wy,w,), and let k : [w3,ws] — R be a increasing and positive
monotone function on (w3, wal, having a continuous derivative on (w3, ws). Let ¥ € IR (4, wy1x[ws.wa))-
The fractional integral operators for interval-valued functions of two variables are defined by

01,0
le1+2w3+ {Kl//(x Y)

- (1) K (s)
‘ r(eor(ez)( )f f 2 — (O Tny) — (o) V(b S)drds, x> @y > s,
Jf)llf?am {kl//(x’ Y)

_ (V4 {/(t) K/(S)
"r(eor(ez)(IR) fw fy £ — (0T [x(s) — a(yyps V(& S)dTds, x> @y <,

Jil292w3+ {,K"//(X’ Y)

b 2 Yy é«/(t) K/(S)
“r<91>r<92>(IR) f fw 200 — 20T Tuy) — (o) (b S)Atds, X <@z y > s,

and

Ji‘fzm LW EY)

'_— 2 4 é«/(t) K,(S)
“Tanron Y fw fyw 200 — LT [x(s) — wyy s V(b S)dtds, X <z y <
fOl" 01, 02 > 0.

Similar to the preceding definitions, we can provide the following integrals:

* J'(t) w3 + Wy
e

w3 + Wy (IR)

2 )'_ r(91> o [E®) = Z(0)]0

o w3 + W\ 2 '(v) w3 + Wy
J‘*’Z‘;»"”(X’ ) = r(@»“ )f FOE e G R RS

J911+zlﬂ( )dt, X > wi,

W) + Wy _ Y K'(t) W) + Wy
L (F5729) = rwz)( R ), -1 (F55)ds. v > on
and (w1 + Wy ) . Y K'(t) (a)1 + Wy )d -
sl ’ r(ez)( RN TR A SR A

Next, according to the definition provided by the authors [17, 18], we discuss the bidimensional
convexity via classical and interval order relation.

Definition 2.5. [17] Let ¢ : Q = [w;, w»] X [w3, w4] € R?* = R* be a two-variable convex function if

lp(Sl(J)l + (1 - sl)w2, ryws + (1 - I']_)a)4)
<ris(wr, w3) + s1(1 —rP(wr, wg) + r1(1 = s)P(ws, w3) + (1 = s1)(1 = r1))Y(ws, ws)

holds true for every (w1, w»), (w3, wy) € Q along with ry, s; € [0, 1].
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Definition 2.6. [18] Let ¢ : Q = [w1, w»] X [w3, ws] € R?> — R;* be a two-variable set-valued convex
mapping defined as = W (w, Q), Y(w, Q)] with 0 < w; < wy,0 < W3 < wy, then we have
Y(s1wy + (1 = spwy, riws + (1 — r)ws)
2 ris(wy, w3) + s1(1 — ry(wy, wy) + ri(l = sY(wsz, w3) + (1 = s1)(1 — rY(ws, ws)
holds true for every (w1, w»), (w3, wy) € Q along with ry, s; € [0, 1].
Definition 2.7. [52] Let ¢ : Q = [wi,ws] X [w3,ws] € R> — R;* be a two-variable set-valued
strongly convex mapping defined as ¥ = [g(w, Q),J(w, Q) with0 < wy < w2,0 < w3 < wy and Ky, Ky
are positive real numbers, then we have
Y(s1wi + (1 = spwy, riws + (1 = ri)ws)
2 risiY(wr, ws) + s1(1 — r)Y(wy, wy) + ri(l = spP(wz, w3) + (1 = s1)(1 = r)P(ws, wg)
—kis1(1 = s1)(w1 — w2)* = 2,11 (1 — T1) (w3 — Wy)*
holds true for every (w1, w»), (w3, wy) € Q along with ry, s; € [0, 1].
Definition 2.8. [46] Let ¢ : Q = [wi,wy] — Ri*" be a ivfs defined as v = [g(w),a(w)] with
0 < wy < wy. Then y is cr-convex if
Y(riw; + (1 = r)w;) Ser rg(wr) + (1 = r)(w,)
holds true for every (wy, w,) € Q along with r; € [0, 1].

Motivated by the aforementioned definitions, we now effectively extend Definition 2.8 into R? by
the use of cr-order.

Definition 2.9. Let y : Q = [w;, w,] X [w3, ws] € R? = Ry* be a two-variable set-valued cr convex
mapping defined as = [ﬂ(w, Q),J(w, D] with 0 < w; < wy,0 < w3 < wy, then we have
Y(siw + (1 = sp)ws, riws + (1 — r)ws)
er Tis(wy, w3) + s1(1 — rY(w, wg) + ri1(1 = sP(w,, w3) + (1 — s — r)(wz, ws)
holds true for every (w1, w»), (w3, wy) € Q along with ry, s; € [0, 1].

Remark 2.2. (1) Ify # W, we have Definition 2, as stated by Zhao et al. in [18] and Definition 6, as
stated by Khan et al. in [53].
(2) Ifﬂ =y, we have Definition 2.1, as stated by Silvestru Sever in [17].

Example 2.1. Let i : [w;, ws] X [w3, ws] € R?> — R;* be a two variable set-valued function defined
as (see Figure 1)

¥ =[-w* — Q% — 107! — 7642 £ 7 207 + 207 + 1267 + 10 + 9],

(0, Q) e [-1,1] x [-1, 1]. (2.2)
Then (see Figure 2),
W + Q2 + 207901 | 3400 4 16 3w? + 302 4+ 22790 4 1742 4 2
c = 3 and wr = 2 . (23)
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31095

Figure 2. pictorial view of the cr set-valued functions . and Y.

3. The major results

In this section, we first show that double integral preserves cr-order, and then we show that the
newly developed mappings after we apply cr-order, including midpoint and center, are both convex in
nature. Finally, we developed different variants of double inequalities that generalize various previous
findings.

Theorem 3.1. Let ¥, ¢ : [wi,w:] X [ws,ws] — Rc given by ¢ = [Q(w, Q), p(w, Q)], and U=

[ﬂ(w, Q)’ J(w’ Q)] I,fws(p € IR([wl,wz]X[w3,w4]), and w(w’ Q) 5cr ¢((,U, Q) fOr all (,(),Q € [CL)],(U2] X
[w3, ws] — R, then

f f W(w, Q) dA = f ” f - W(w, Q) dw dQ < f " f - H(w, Q) dw dQ.
A w1 w3 wj w3

Proof. Since y(w, Q) <. ¢(w, Q) for all w, Q € [w;, w>] X [w3, ws] — R, then we have

Ye(w, Q) = ¢e(w,Q), if Ye(w, Q) # dpo(w,Q),
Yr(w, Q) Zor ¢, ), if Yr(w, Q) # ¢ (w, Q).

AIMS Mathematics Volume 9, Issue 11, 31087-31118.
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Since ¢,¢ € IR, wyixiwswil» by Theorem 2.1, we have y(w,Q),¥(w,Q), p(w,Q), p(w,Q) €
IR ([0 wnIxws.wsn- When ¢ (w, Q) # ¢(w, Q), Yo, Q € [wr, ws] X [ws, w4], then

f N f w4(ﬂ(w, Q) + Y(w, Q))dwdQ < f ” f m@(w’ Q) + d(w, Q))dwdQ.

(2 (W4 w2 W4
f f W(w, Q) dw dQ <. f d(w, Q) dw dQ.
w] w3 w1

w3

That is

When ¢ (w, Q) = ¢(w, Q), Yw, Q € [wi, w,] X [w3, ws], then

f - f " Fw.0) - Y(w, Q))dwdQ < f - f ReTOXe) ~ $(w, ))dwdC.

W) o W) W4
f f Y(w, Q) dw dQ <, f P(w, Q) dw dQ.
w] w3 wi

w3

That is

This completes the proof. O

Now, we have defined a coordinated strongly convex mapping utilizing the center-radius ordering
relation.

Definition 3.1. Let ¢ : Q = [wy, ws] X [w3, ws] € R?> = R;* be a two-variable cr set-valued strongly
convex mapping defined as ¢ = [g(w, ), Y(w, Q)] with 0 < w; < W,0 < w3 < w4 and Ky, k, are
positive real numbers, then we have
Y(siwy + (1 = spwy, riws + (1 = r)ws)
Zer T1S1¥(w1, w3) + s1(1 = r))Y(wr, wg) + r1(1 = s)P(wa, w3)
+ (1 = s)(1 = T)P(w2, g) — k181(1 = $1) (W) — W2)* = 2k11(1 — 11) (W3 — Wy)?
holds true for every (w1, w,), (w3, w,) € Q along with ry,s; € [0, 1].

Proposition 3.1. Let i : Q = [w, w»] X [w3, ws] € R*> — R;* be a two-variable set-valued function
represented as W = [ﬂ(w, Q), Y(w, Q)] with 0 < w; < w,, 0 < w3 < wyg and ky, k. Then Y is set-valued
cr-strongly convex iff Y. and Y, are strongly convex functions.

Proof. As . and ¥, are strongly coordinated convex in nature, then for all (w;, w»), (w3, w4) € [0, 1] X
[0, 1], we have

Ye(siwr + (1 = sy)wy, riws + (1 — r1)ws)
Zer F1S1Wc(wr, w3) + s1(1 = r)Yc(wi, wq) + ri(1 = s c(ws, w3)
+ (1 =s)(I = royY(ws, ws) — k181(1 = s1)(wi — wz)z = 2kr1(1 = ri)(ws — a)4)2,
and
Yr(siwi + (1 = spwy, riws + (1 — ri)ws)

Zer F1S1Yr(wr, w3) + 81(1 = r)Yc(wr, wq) + ri(1 = s)Yr(ws, w3)

+ (1= s1)(1 = T2, wa) — k181(1 = 51) (W1 — W2)* = 2ko11(1 — T1) (W3 — Wwy)*.
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Now, if

Ye(siwy + (1 = s)wy, r1ws + (1 — r1)ws)

# riS1c(wr, w3) + si(l — re(wr, wy) + ri(l = spYc(wz, w3)
+ (1 =s)(I = ryY(w,, ws) — k181(1 = s1)(w; — wz)z = 2Kkr1(1 = ri)(ws — w4)2.

This implies

Ye(siwi + (1 = spwy, riws + (1 — ri)ws)
Zer F1S1Wc(wr, w3) + 81(1 — rYc(wr, wq) + ri(1 = s (ws, w3)

+ (1= s1)(1 = T2, wy) — k181(1 = 1) (W1 — W2)* = 2ko11(1 — T1) (W3 — Wwy)*.
Otherwise, we have

Ye(siwr + (1 = sp)ws, riws + (1 — r1)ws)
S risr(wr, w3) + s1(l — re(wr, wy) + ri(l = spYr(wz, w3)
+ (1= s1)(1 = )W, ws) — k151(1 = s1) (W) — W2)* = 2ko11(1 — T1) (W3 — Wy)*.

This implies

Yr(siwi + (1 = spwy, riws + (1 — ri)ws)
Zer F1S1Yr(wr, w3) + 851(1 = rYc(wr, ws) + 111 = s (ws, w3)
+ (1 =s)(I = roY(w,, ws) — k181(1 = s1)(wi — w2)2 = 2Kkr1 (1 = ri)(ws — w4)2.

This can be summed up as follows using the Definition 3.1 and the previously mentioned results:

Y(siwy + (1 = s))ws, riws + (1 — ri)ws)
Ser F1S1Y(wr, w3) + s1(1 — r)(wr, wg) + ri(l = s)P(wr, w3)

+ (1= s1)(1 = )Y, ws) — k151(1 = 1) (W) — W2)* = 2ko11(1 — T1) (W3 — Wy)*.

This concludes the proof. O

3.1. Hermite-Hadamard type inequalities using coordinated center-radius order relations

In this section, we employ coordinated center and radius order relations to create various new
bounds for double inequality. Let ¢ € IRy, w)ix[ws.ws)- First, we specify the functions that will be
utilized frequently:

Ui(w, Q) = Y(w + wy — w,Q),

(W, Q) = Y(w, w3 + wg — Q),

Y3(w, Q) = Y(w) + w2 — W, W3 + Wy — Q),
G(w,Q) = ¥(w, Q) + ¥r(w,Q),

H(w, Q) = ¥(w,Q) + ¢(w, Q),

K(w, Q) = ¥1(w, Q) + ¥3(w, Q),
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L(w,Q) = ¢(w, Q) + Y3(w, Q),

F(w, Q) = ¢ (w, Q) + ¥a(w, Q) + Y3(w, Q) + Y(w, Q)

G(w,Q) + H(w, Q) + K(w, Q) + L(w,Q)
5 :

Theorem 3.2. Let { : [wy,w;] — R be a increasing and positive monotone function on (wy, w,],
having a continuous derivative on (wi, w,), and let k : w3, ws] — R be a increasing and positive
monotone function on (w3, w4], having a continuous derivative on (w3, wa). Let Y € IR ((u, w)]x[ws.w4])
then for 6,0, > O the following Hermite-Hadamard-type relation hold:

4¢/(

W + Wy ws+ w4)
2 T 2
. T, + DI, + 1)
T AL wr) - Lw)]? [K(ws) — k(w3)]®
X [0 @y, i) + IR wn, w3) + I wwrws) I i, ws)]

wi+,w3+d K w1 +,w4—38 K Wy —,w3+34,K w2—,w4—34 K

Zer Y(wi, w3) + YW1, wg) + YWy, w3) + YW, wy). 3.1

Proof. As i represents a set-valued coordinated cr-convex mapping on A, we have

(Kl +K K3+ K4) < ki, k3) + YKy, Ka) + (K3, k1) + Yk, Ka)

2 9 2 —Cr 4 b
for (k1, k3), (k2,k4) € A. Now, for t,s € [0,1], let k; = tw; + (1 — t)wy, ko = (1 — Vw; + tw,, k3 =
W3S + (1 = s)wy, and k4 = (1 — S)ws + swys. Then, we have

(3.2)

4 (a)] + wy w3+a)4)

2 2
Ser Y(twy + (1 = Y)wy, sws + (1 — s)wy) + Y(twr + (1 — t)ws, (1 — s)ws + swy)
+ (1 — )wy + twr, sws + (1 — s)wy) + ¥(1 — )w; + twy, (1 — S)w; + swy). 3.3)

; : ' (A-t)wi+twy) K (1=S)w3+swy)
Multiply the above relation by Gz G =l T e (s s 2

resulting relation with respect to t, s over [0, 1] X [0, 1], we get

(wr — W))Wy — w3)¢/(w1 +wy w3+ w4)(IR) fl fl [ (1 = tw + twy)
r'@)re,) 2 72 0 Jo |[{(wr) = (1 = t)wy + twy)]'0

K ((1 — s)wsz + swy)
[k(w4) — k(1 = S)ws + swy)]'
< (w2 — wi)(wyg — wS)(IR) fl fl [ J'((1 - Yw; + twy)
- 40(6))I'(62) o Jo |[{(wr) = 4((1 = Hw; + tw)]'"
K'((1 = s)ws + swy)
[K(wq) — k(1 = S)ws + swy)]' %

N (wr — wi)(wy — a)3)( IR) fl fl [ (1 = tw; + twy)
AT(0)I'(6,) o Jo |[{(wr) = 4((0 = Hw; + twy)]'~"
K ((1 — s)wsz + swy)

[K(ws) = k(1 = S)ws + swy)]1 0

then integrate the

] dtds

Y(tw; + (1 — twsy, sws + (1 - s)w4)] dtds

l!/(t(u] + (1 = t)wy, (1 = s)ws + S(,L)4):| dtds
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N (W — wi)wg — w3)(IR) fl fl [ (1 -Yw; + twy)
4r'6,)I'6.) 0 Jo |[{(wr) = (1 = Hw + twy)]o
/ 1 _
[K(w4)K_(f( T i):))iu: Jsra:;)) VI (1 = t)w; + tws, sws + (1 — s)w4)] dtds

(w2 — w)(ws — W3) fl fl [ (1 - Dw; + twy)
+ (IR)
4r6)I'6,) 0 [{(w2) — (1 — t)w + twy)]' o

/ 1 _
[K<w4>K—((K<<1 i):))iuj ?:24)]1_92 (1 = Yo + twy, (1 = s)ws + Sw4)] dtds.

Using basic computation, we have

(IR) f f (1 - Yw; + twy) K((1 = 8)w; + Sws)
[{(wy) = £((1 = D)w; + twy)]'0 [k(ws) — k(1 = S)ws + sw4)]! 2

f(wz) L(w)]? [k(wy) — K(w%)]f)z.

0,0x(wy — w1 ) (w4 — w3)

dtds

Making use of the variable change 7 = (1 — t)w; + tw; and 7 = (1 — s)ws + swy4, we obtain

[{(w2) — ()] [k(ws) — k(w3)]* (w1 +wy wy w4)
T, + DT, + 1) 2 7 2

_ @[ £@ K ()
<er 4r(91)r(92)( )Ll L} [é«(wz) g(T) 1—91 [k(wyq) — K()])]l_92 Y(w) +wr —T,w3 + wy — ﬂ)d?]dT

- J'(7) K'(n)
IR — . m)dnd
+ 4F(91 )F(Gz)( )fc;l fc;z [{(CUZ) — {(T)]l_el [K(w4) _ K(n)]]_92 w(wl +wy —T 7]) nat

! N (@) K ()
—— (IR : — vdnd
+ 4F(91)F(92)( )fwl fw3 [ (w>) — {(T)]l_gl [k(ws) — K(n)]l—gz U(T, w3 + wg — n)dndr

e J'(7) K (1)
,n)dnd
* )f fw [Cwn) — LT InCawn) — AT

01,60> 01,6, 01,6» 61,60
=12 [ ot W3Wawa) £ 070 (wrws) +,0 L Wo(wrws) + 7L (W), w4)]

_1 01,62

) o o (W2, w4). (3.4)

That is, we have

[£(w2) — L] [K(ws) — K(w3)]” (wl +wy Wi+ a)4) 01,62
’ —Cr ) . 3.5
T@ + D6, + 1) 2 2 JW i (02 @) )
In a similar manner, multiplying (3.3) on both sides by
(w2 — W)Wy — w3) J((1 - Yw; + tw,) K (1 = s)ws + swy)

['@)1',) [{(w2) — (1 — Y)w; + tw)]' [k((1 - S)w; + sws) — k(w3)]' %’

and by integrating the above relation across [0, 1] X [0, 1], we get

1 01,62

<cr ZJw1+,w4—;{9K¢/(w2’ w3)- (36)

[{(w2) — Lw)]” [k(ws) — k(w3)]* (w1 +w ws+ w4)
T, + DG, + 1) 2 0 2
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Moreover, multiplying both sides of (3.3) by

(w2 — wi)(ws — w3) J((1 = Yw, + tw,) K'((1 = s)ws + swy)
FODL0) (L1 = w + tws) = L)) [K(ws) = k(1 = S)ws + swy)]' =

and

(w2 — w)(ws — w3) (1 - Yw; + tws) K' (1 = s)ws + swy)
I'@)I'(6,) [£((1 = )w; + tw) — L)' [k((1 — 8)ws + Swy) — k(w3)]' 0"

then incorporating the aforementioned relation with reference to t, s across [0, 1] X [0, 1], we get

[{(w2) — L))" [K(ws) — K(W3)]” | (w1 + Wy w3 + wy 1 9.0,
T(6; + DIG, + 1) ( 2 2 ) Ser g @1 04), 3-7)
and
[{(w)) = L] [K(ws) = K(W3)]* (w1 +wy w3+ wy 1 6.0,
L@ + DG, + 1) ( 2 72 ) Ser gdon-an-ic. W @1 @3). (38)
respectively.

Summing the relations (3.5) to (3.8), we have

2 7 2
- e, +1Dr@E, +1)
T 16[L(w2) — JwD]? [K(ws) — k(w3)]*
X [ng’gz Y(ws, wy) + I Y(w, ws) + 0% Y(wi, wy) + 0" Ylwr, (‘)3)] - 3.9)

wi+,w3+3{ K w2—,w3+;4,K w2 —,w3+34,K w2—,w4—3¢ K

((,()1 + wr; w3 +w4)

This concludes the demonstration of the first part of relation in (3.1). To prove the second part
in (3.1), again taking into account bidimensional convex mappings, we have
lﬁ(ta)] + (1 - t)a)z, Sws3 + (1 - s)a)4) + lﬂ(ta)] + (1 - t)a)z, (1 - S)(,t)3 + sa)4)
+ (1 = Ywy + twy, sws + (1 = s)wy) + Y((1 — t)w; + tws, (1 — s)ws + swy)
Zer Y(W1, W3) + Y(W1, i) + Y(W2, W3) + Y(W2, wa). (3.10)
Multiplying both sides of (3.10) by

(w2 — w1) (W4 — W3) (1 - tw; + twy) K'((1 = s)ws + Swy)
I'6)Ie,) [{(w2) — £((1 = t)w; + tw)]' [k(wg) — k(1 = S)ws + swq)]' 7%’

then incorporating the aforementioned relation with reference to t, s across [0, 1] X [0, 1], we get

(w2 — w1 )(wyg — w3)(IR) fl fl [ (1 - Yw; + twy)
L(6)I(6,) o Jo |[{(wr) = 4((1 = Hw; + twr)]' "

K ((1 = s)ws + swy)
[K(ws) — k(1 = S)ws + swy)]1 =

N (W — wi)(ws — w3)(IR) fl fl l (1 = tw; + twy)
r'@)Ire,) 0 Jo |[{(wr) = (1 = )w + twy)]'~o

Y(tw; + (1 — t)wy, sws + (1 — s)wy) | dtds
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K ((1 = s)ws + swy)
[K(ws) — k(1 = S)ws + swy)]1 =
N (wr — wi) (w4 — w3)(IR) fl fl [ (1 - Ywy + tw,)

['(6)I'(62) 0 Jo |[{(wr)—2((1 - yw; + twy)]?

K'((1 — s)ws + swy)
[k(wq) — k(1 = S)ws + sw)]""2Y((1 — Y)w; + twy, sws + (1 — s)w,)] dtds
N (w2 — w)(wg — w3) fl fl [ (1 - Yw; + tws)
[(0)I(6,) o Jo |[{(wr) = 2((1 = Hw; + twy)]'~"
K ((1 = s)wsz + swy)

[k(wq) — k(1 = S)ws + sw)]" Y ((1 — t)w; + tw,, (1 — S)w; + swy)| dtds
(w2 — w)(wg — w3)
L(6)I(6,)

« (IR) fl (1 - tw + tw,) K'((1 = s)ws + Swy)
0 [{(w2) = 4(( = Dw; + tw) ] [k(wa) — k(1 — S)ws + swy)]'~*

Y(tw; + (1 — t)wsy, (1 — s)ws + swy) | dtds

(U (w1, w3) + Y(wr, wg) + Y(wr, W3) + YW, wy)]

dtds.

Then, we get

01,6 61,6 01,0 01,0
J,) U3(wr.wq) +J,)77 Yi(wrws) +J,7°0 s Wo(wrws) + 770 L (W, ws)

wi+,w3+;¢ K w1 +,w3+;4 .k
[{(w2) = L(w)]” [K(ws) — k(w3)]”

Zer [W(wr, w3) + YWy, wa) + Y(wsr, w3) + P(wr, wa)l T, + DI G, + 1) (3.11)
that is,
T + 1T + 1) oo
[ (@2) — Zan) P [x(@wa) — s{am)]Pe " rrossiad (€2 1)
Zer Y(wi, w3) + YW1, wg) + Y(wy, w3) + Y(W2, wy). (3.12)
Similarly, multiplying both sides of (3.10) by
(w2 — w) (w4 — w3) (1 - Yw; + twy) K' (1 = s)ws + swy)
['@)1,) [{(w2) — L((1 — D)w; + tw)]'0 [k(1 - S)ws + sws) — k(w3)]' %’
(w2 — wi)(ws — w3) (1 - Yw; + twy) K' (1 = s)ws + swy)

1'(6)1'(6>) [£((1 = D + twy) = L)' [k(ws) = k(1 = S)ws + swy)]'~?

and

(wy — wi)(ws — w3) J((1 - Yw + tw,) K'((1 = s)ws + swy)
FOENL6) (L1 = w + tws) = L) [k((1 = S)ws + Sws) — k(w3)]' =

and then incorporating the aforementioned relation with reference to t, s across [0, 1] X [0, 1], we get

re,+nDreE, +1) 0.0
J 1,92 ] ,
@) = C(oDT [K(wn) — ()]s o (02 ©03)
< YW1, w3) + Y(wi, wa) + Y(wr, w3) + Y(ws, wa),
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e, +Dr@, +1) 016
[ (@2) — Zan) 1P [x(ws) — s{am)]Pe " ermossicad (W1 08
Zer Y(wi, w3) + YWy, wyg) + Y(wy, w3) + Y(ws, wy), (3.13)
and
T, + DG, + 1) 0 oo
[{(@s2) = L) [k(ws) — k(ws)]Pr " ermesmda TR TS
Ser YW1, W3) + YW1, we) + Y(wr, W3) + YWz, wy). (3.14)
By adding the relations (3.12) to (3.14), we have
e, +nDreE,+1)
[{(w2) = {(w)] [k(ws) — k(w3)]%
X [Ji)lﬁz,wﬁ;{,xw(w% wy4) + qull’f—z,w4—;§,/<w(w2’ w3) + szz,éiz,t%*';ékw(wl’ W) + Ji’lﬁz’w“_g"(lp(wl’ (1)3)]
Zer Y (w1, w3) + Y(wi, ws) + Y(wr, w3) + Y(wy, wa)]. (3.15)

Dividing both sides of relation (3.15) by 16 yields the second relation in (3.1). This concludes
the proof.

Remark 3.1. The relationship for set-valued Riemann-Liouville integrals is as follows if we take into
account {(w) = w and k(Q) = Q with Y+ J in Theorem 3.2:

4w((u1 +wy; w3+ a)4)
2 7 2
e, +1nDreE,+1)
(W — W) (wy — w3)*
01,62 01,62 01,62 01,602
[jw1+,w3+ (LL)z, (L)4) + ja)1+,w4—w(w2’ (L)3) + wy—,w3+ ((L)] s (L)4) + jwz—,wz;—l//(a)l s (03)]

(W, w3) + Y(wi, wa) + Y(ws, w3) + Y(wy, wWy),

which was proved by the authors in [54].

Remark 3.2. The relationship for Riemann integrals is as follows if we take into account {(w) = w
and k(Q) = Q, 6, = 0, = 1 withy #  in Theorem 3.2:

w1 + wy w3+w4)

4‘”(2’2

4 w> w4
, Q)dQd
2(602 — wi)(ws — w3) fwl sfwg ¥lw, dtde

2wy, w3) + Y(wy, w3) + YWy, ws) + Y(wy, Wy),

which was proved by the authors in [18].

Remark 3.3. The relationship for Riemann-Liouville integrals is as follows if we take into account
{(w) = w and k(Q) = Q with Y= J in Theorem 3.2:
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W) +wy; w3+ Wy
(=)
v 2 2
r@o +nre,+1)
T (wr = W) (ws — w3)?
[j o (W, ) + To P d(ws, w3) + T, (wr, i) + T w(w, a)3)]

< Y(wr, w3) + YWy, wa) + Y(wr, w3) + YW, wy),

which was proved by the authors in [55].

Remark 3.4. The relationship for fractional integrals is as follows if we take into account = v in
Theorem 3.2:

w1 + Wy w3+ Wy
(=g =)
< e, +nHreé, +1)
~ 4L (w2) — L)) [K(ws) — k(w3)]?

X [Jelﬂz Y(ws, wy) + I Y(ws, ws) + I Y(wi, wy) + 0" Ylwr, w3)]

wi+,w3+d K w1 +,w4—38 K Wy —,w3+4,K W2—,w4—34 K

S Y(wr, w3) + Y(wy, wa) + Y(ws, w3) + Y(w), wWys).

which was proved by the authors in [34].

Remark 3.5. The relationship for Riemann integrals is as follows if we take into account {(w) = w
and k(Q) = Q, 0, = 6, = 1 with v # W in Theorem 3.2, which was proved by the authors in [53].

Corollary 3.1. The relationship for Hadamard fractional integrals is as follows if we take into account
{(w) = Inw and k(Q) = InQ in Theorem 3.2:

w1+ Wy w3+ wy
W= =)
\—> 2
TG, + DTG, + 1)
T 4w, — Inw]? [In wy — In w3]®
|60 2 t@n, 00) + G, P, @3) +60%, (w1, 00) + 6LE,_p(wr, w)]

Zer Y(wi, w3) + YW1, we) + YWy, W3) + YW, wy).

Corollary 3.2. The relationship for Katugampola fractional integrals is as follows if we take into
account {(w) = %p and k(Q) = £, n,o > 0in Theorem 3.2:

o

w1+ Wy W3+ wy
w(=52 2
e, + Hre, + 1)7701 o
T 4wy — 0" [ws” — ws]"

61,0 ,0101.,0 ,0 101,06, ,0 101,06,
(710 (@2 @3) + T, (@, w3) +TI, 0, w4) + I, d(wr, w3)]

Ser Y(wi, w3) + YW1, we) + Y(wr, W3) + YW, wy).
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Example 3.1. Let ¢(w, Q) = [24@“’ + 2462 + 469 + 144,216€% + 21662 + 366 + 1296] ,[wy, ws] =
[0, 1], [ws, w4] =[0,1],60, =6, =1, {(w) = Inw and k(€2) = In Q, then we have

+ +
w(an ! w2 W3 : “’4) ~ [88.4109,351.0176],

I'e,+1Dr@E,+1)
16[{(w>) — (w9 [k(ws) — k(w3)]*
X [0 wnw) + DR s, ws) +I0E ) + I, w3)]
~ [117.4421,557.1243],

Y(wy, w3) + YWy, w3) + Y(wy, ws) + YWy, ws)
4

~ [123.5321,741.1931].

Thus,
[88.4109,351.0176] <. [117.4421,557.1243] < [123.5321,741.1931].

As a result, Theorem 3.2 holds true.

Theorem 3.3. Considering the same hypotheses that were considered in Theorem 3.2, we get the
following center-radius order relationships:

w1+ wy w3+ wy
w5257
e, +1) [ o ( w3 + LL)4) 0, ( w3 + Wy )]
= g — L o9 T ) e T en =
F(GZ + 1) [ 0, (a)1 + Wy ) 0 (w1 + wy )]
* 2[k(ws4) — k(w3)]" JoreG A Jor-sG 2 W
I'e,+1Dr@E,+1)

= 2Z(@n) — LT [K(ws) — K@)]"

01,6 01,0 6,.,6 01,6
X S0 @ ) + I wr,w3) + I wa) + I8 (o, w3)]

wWr—, w3+ K Wy —,wa—3¢K
Jn Wy, w3)+J7" . wr.wy) +J7 wi,w3)+Jd7 wi, W
o) — L Yo H@r ) + I Hwrwn) + I, Hwrw3) + I, Hwr o)

F(Gz +1 ) 6, 6 0, 6>
+ o0 T [V 1B, wa) + J2, 1, Glwr.wa) + I8 Glwr, w3) + I Glwn, w3)]

Ser Y(wi, w3) + Y(wi, wg) + Y(wy, w3) + YW, wy). (3.16)

—Cr

Proof. As i is a bidimesional convex on A, if we have the mapping 0')1{ ws, wa] = R, o-}((y) =yY(x,y),

then ol(y) is convex Vx € [wy, ws] and H)(y) = ol(y) + oL(y) = ¥ (X, y) + ¥2(X,¥) = G(X,y), then for
the convex mapping oL(y), we have

1 [ W3 + y
(=)
I'e,+1)
A[k(wsg) — k(w3)]%
ox(w3) + oy (ws)

2 b

(98 ws) + 9, HE (w3)]

—Cr

—Cr
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that is,
w3 + Wy
‘”(x’ 2 )
0,
er
4lk(ws) — k(w3)]*
) K'(y) * K'(y)
IR C(x,y)d IR C(x,y)d
[( ) vy [K(ws) = k(y)]17 (& Vdy SR v [KY) = k(w3)]' S0y
<er lp(X, (1)3) ; l//(x’ (1)4). (317)
Multiplying the relation (3.17) by
6, J'(x)
[{(w2) = ()] [{(w2) = L))
and
6 {'(x)
[{(@2) = L(wD)]? [{(x) = L(w)]'
Next, we obtain by integrating the given results from w; to w, with regard to x.
Ie,+1) . f)lﬁgd/( (4)3+(.U4)
[{(w2) = {(w1)]” 2
'+ DI'6 + 1) 0162 010>
= @) = dan ] K@) — o] [ ot s CW2, 0a) + 72 ng(wz,wa)]
re, +1 1
<o ) L@ I (@r, w3) + 00w, i) (3.18)
and
1—‘(6.1 + 1) 91 w3 + Wy
T Gt (00 =5
I'(0; + DI6, + 1) 61,6, 0.6
e I Han i) e Vs 01 00 + S0 g Gl )
re, +1 ]
< 3t ~ L 90 (wrws) + I8 p(wr,wy). (3.19)
respectively.

Also, if we define another mapping o2 : [ws, ws] — R,02(y) = ¥(X,y), then o2(y) is convex
Vx € [wy, ws] and HZ(Y) = ¥1(X, y) + ¥3(X,y) = K(X,), then for the convex function o2(y), we have

5 [W3 + wy
(=)
I'e,+1)
A[k(wsg) — k(w3)]%
TH(ws3) + 02(wa)
—Cr 2 9

[Jw3+;/<7—{§(w4) + Jw4—;k7'{)%(w3)]

—Cr
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that is,

w3 +(,4)4)

2
6,

“ Ak(ws) — K(w3)]

K'(y) f“‘ K'(y)
IR , IR K(x.y)d
[( )fj [k(ws) — w(y)]1 -0 K, y)y + (IR) o () — K] (x,y)dy

- U1(X, w3) + i (X, wg)
<ecr 5 .

U (X,

(3.20)

Similarly, multiplying the relation (3.20) by

b {'®)
[{(w2) = L(@n]? [(w2) = £(x)]°

and

0 '(x)
[{(w2) = L(w)]? [{(x) = L(w)]'=0

Therefore, from w; to w,, integrating the acquired output with reference to x, we obtain

r(el + 1) 0, w3 + Wy
T it (0025
(6 + DI + 1) g
4[{(0)2) - {((1)1)]91 [K(a)4) — K(a)3)]92 W1 +,w3+;0 K

e, +1
2[{(0)2() 1—+g(3)1)]61 [ o+ 1 (@2, 03) + Jw (o, w4)] (3.21)

K(ws, wy) + I K(ws, w3)]

w1 +,04—38 K

—Cr

and

reé,+1) Py ( w3+w4)
mmgwmmf‘ 2

- L6, + DG, + 1) [ 6100
=T 4L (w,) — L)) [K(ws) — K(ws)]le LTermwstitn

@ +1) 1 1
<cr 2[§(w2)1—§(w1)]91 [ o (W, w3) +Jz)2_;§¢1(w1,w4)], (3.22)

respectively.

Moreover, if we have mapping o' : [wi,w,] = R,0,'(x) = ¥(x,y), then o' (x) is convex for
all Yy € [ws3, w4] and 7{; (x) = oy'(x) + (}7()() = Y(x,y) + ¥1(x,y) = H(x,y), then for the convex
function o, '(x), we have

1 [W1 + W2
Ty ( 2 )
o, +1)
ﬁCI’ [ +:
4L (w2) — Lwy))0r Lersem

O-yl(wl) + O-yl(wZ)
5CI‘ 2 )

K(wy, ws) +I”  K(w, wz)]

W2 —,w4—=3¢ K

H, (w2) + I, K7’(¥(w1)]
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that is,

(5

0,
= AL(wn) - L@

{'(x)

’ {(wy) f
IR H(x,y)dx + (IR H(x, y)d
k) T AV R [ s
<. Y(w,y) er Ylws. y) 523
Multiplying the relation (3.23) by
6> K'(y)
: 3.24
[k(ws) — k(W3)]% [K(ws) — w(y)]1 -0 (3.24)
and
Z <o) (3.25)

[k(wa) = k(@3)]% [w(y) — k(ws)]' %

Next, by integrating the known findings from w; to ws with respect to y, we derive the
subsequent relation:

re+1) (e )
[k(ws) — k(w3)]P2 ST 5 W
T + DI, + 1) e

_cr 4[4(&)2) §(w1)]91 [K((,L)4) — K((L)3)]92 w1 +,,w3+;4,K

NG 1
2[K(w:) 2—+K(a))3)]92 [ oy (W1, Wy) + Jw3+ W(w,, w4)] , (3.26)

H(wy.wy) + I H(w;, (u4)]

wy—,w3+;{ K

—Cr

and

T +1) (an + wy w)
[K(wq) = k(w3)]% 2

IO + DIG, + 1) [ 0o
= Hl@2) — L@ [K(ws) = s(a) ]2 Sorancs

INCES)) o
A0 = KT V8 (@i, w3) + I, (s, w3)] (3.27)

Hwn, w3) + 0%, H(wr,ws)]

wy—,wa—;¢ K

—Cr

respectively.

Furthermore, if we have mapping oy? : [w;,w,] — R,0,%(X) = ¥»(X,y), then oy?(x) is convex
for all y € [ws, ws] and H}(x) = o (x) + ;yz(x) = Yn(X,y) + ¥3(%,¥) = L(x,y), the for the convex
mapping oy?(x), we have

O'yz(wl) + 0-y2(w2)
2 b

Uyz(wl + a)z) . __Te+D

2 4[{(wy) = L(w)]” [ “’1+é“7_{2(w2) + sz K 3(0)1)] =<
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that is,

w1 + wy )
2 b
01

4[{(w2) — L(wy )]91
'(x%)

IR dx + (IR d
[( )f L 2) Zao o VIR |- {( Dy Lo

Yo(wr,Y) + Ya(ws, y)
cr 2 .

o

—CI‘

IA

(3.28)

Multiplying the relations (3.28) by

0, K'(y)
[k(ws) — k(W3)]% [K(wa) — &(y)]' =0’

and )
6, K'(y)

[k(ws) = K(w3)]% [K(y) = x(w3)]' =02
subsequently integrating the established findings from w3 to w, with respect to y, we derive the
following relations:

F(Qz + 1) X ((1)1 + w»y w )
[K(ws) — K(ws)]? " 2

e, +nDreE,+1) 6.6, 061
s 4[L(w2) = L(w)] [k(ws) — K(w3)]® [ wrrorea (@200 57 Hwr, w4)]
I'g, +1)
= D k(wy) — k(w3)]P2 [ el (@1, 0) + Klﬂ(wz,wzt)], (3.29)
and
', +1) 6, ((1)1 + Wy w )
[k(ws) — K(w3)]2 " 2
e, +10re,+1) 616, 0o
e ) = Pkt — K@ Lo @00 + 02y Hlen 03)
I'e, +1)
= 2fk(wa) — k(W) [ r w0) + @, w9)] (3.30)
respectively.

Again, if we define the mapping 0'y : [wr, wy] = R,0,%(X) = ¥r(x,y), then oy?(x) is convex
¥y € [ws,ws] and H}(x) = oy’ (x) + 0'y2(x) = Un(x,y) + Y3(x,y) = L(x,y), then for the convex
mapping oy2(x), we have

O'y2 (w1 + w2) < e, +1) 7‘(2((1)2) + inz Kﬂf(wl)]

2 T AL (w2) - Lw)))? [ wrre
0'y2(u)1) + O_yZ(U)Z)
—Cr 2 ’
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that is,

w1 + Wy )
2 b
0,
ﬁC]Z'
4L (w2) = L(w))]
“ é/(X) f‘“ {,(X)
IR dx + (IR d
[( )f (@) — o LN | L@ FE
(w1, y) +Ya(ws,y)
Scr 7 .

o

(3.31)

Similarly, multiplying the relations (3.31) by

0, K'(y)
[k(ws) — k(W3)]% [K(wa) — &k(¥)]' 70’

and )
0, K'(y)

[k(ws) — k(W3] [K(y) = k(w3)]'
upon integrating the acquired outcomes concerning y between ws; and w4, we derive the subsequent
relationships:

I, + 1) w1+ o)
[k(ws) — k(w3)] S K%( 2 4)
T + DI, + 1) e
_cI‘ 4[5((1)2) g(wl)]al [K((,L)4) — K((U3)]02 w1 +,w3+;4 .k

T +1) 2
TiCans) — s (Vo2 00+ G a(n). (332)

L(wy.wy) + S L(wy, w4)]

wy—,w3+;4,K

—Cr

and

'@, +1) ’ (w1+w2 w)
[K(ws) = k(w3)]” i\ =5

'@, +Hre, +1) [ 0o
4L (wy) — L(w)]? [k(w4) — k(w3)]P2 w1+,ws—3{ K

TG, + 1) 2 2
PG~ KT 98 (w1, w3) + I, oz, w3)] (3.33)

—Cr

L(wy, w3) + Jel’fz _ Lo, ws)]

Wy —,wa—3 K

—Cr

respectively.
Summing the relations (3.18), (3.19), (3.21), (3.22), (3.26), (3.28)—(3.30) and (3.33), we have the
following result:

[awrzggi Z(Bm@l [ o | ( 2 w4) ¥ (“’" =3
w0 (wz, %) N (wl, %)}

[K(wl;gé’i :(610)3)]92 [JziJ,;K (a)l ;‘ (@) ) + J94 Kw(wl + Wy w3)

AIMS Mathematics Volume 9, Issue 11, 31087-31118.



31110

+J2 (wl ; @2 w4) +J2 (wl er @2 w3)]
I'¢; + DI'@, + 1)
4L (wy) = L(wD)]% [k(ws) — k(w3)]*

61,0 61,0 61,0 61,0
X [0 G@rw) + I Gy, ws) +INE L G w) + I Gwi,ws)

Wr—,W3+34.K Wy —,wa—:¢ K

61,6 61,6, 01,6, 61,6,
+ Jw]|+2,w3+;{”<7<(a)2.a)4) + 7 7{((1)2, w3) + Jo 7{(6{)1, wy) + Je 7{((,()1, w3)

wi+,wa—3L K wr—,w3+:{ K wr—,wa—: K

+ 00 H@rw) +IN  Hwr,wg) + 0P Hwyw) + I8 Hw,ws)

wWr—,w3+;{,K w1 +,w4—:4K wr—,w4—:L K
0% e L) + 02 L)+ I0% L Ly, w3) + I L(wy, ws)
W+ ws i\ W2. W4 wr— w3+ W1 W4 wWr, W3 wi, W3

w1 +,ws—:4 K wr—,w4—:{ K
r(el + 1) 91 91 91 91
<er 2 2(n) — L [le+{lﬂ(w2, w3) +d,  lwr, wi) +J, W(wr,ws) +J, Ylwr, ws)

ﬁCI‘

+‘J§)11+;§lr//1 (w2, w3) + Jﬁ,lﬁgl//l(wz-cw) + Jz,lz,gllll (w1, w3) + Jz)lz,gl/ﬁ(wl, a)4)]
e, +1)
[k(w4) — k(w3)

0 p 0 0
Horul2(Wi, W) + Jg Wo(wr.ws) + Jg, (W, w3) + Jg, W (ws, w3)] .

B Vo s (@1, @3) + G (@3, 3) + G (@1, 3) + G, (s, w3)

That is, we have

[((wl;()gl Z(Bl )17 [J?‘j”;ﬂ-{ (wz, = ;— “)4) + Ji‘z_ﬂf (an, = ; ~ )]

I'é, +1) [ 0 (a)1 + Wy ) 0 ((J)l + w» )]
[K(wy) — k(w3)]% Josnb A JoiisG 2 M

- I'e,+1Dr@E,+1)
~ 2[wa) = L)) [k(ws) — k(w3)]
X [ijfi%wﬁ;,ldﬁ(wz, wy) + Jz)ll’iz,m—;{,ﬂﬁ(w% w3) + Jz)lﬁz,wﬁhkw(wl’ wy) + Jilﬂz’“’“;”(w(wl’ w3)]
I'g, +1)
2[{(w2) = L(wD)]” [
o, +1)
2[k(ws4) — k(w3)]"

SC]:‘

JZ)'H;g?-{(wz, ws3) + Jz)ll+;{7'((a)2.(1)4) + Jf}‘z_z?‘((u)l, ws3) + Jz)‘z_;ﬂ-{(wl, a)4)]

[JZ)Z3+;,KQ((U1’ 0)4) + JZ)23+;,Kg(w2-w4) + J?uz4—;/<g(wla CL)3) + in—l(;,g(a)l’ Ll)3)] .

This concludes the verification of relations second and third in (3.16). On the other hand, for
symmetric function, we have the following relation:

w + Wy 0, “2 (%)
‘”( 2 ) = (@) — LD Uw C(wn) — oy W) Y@+ 0 = x)ldx

” (%)
" fwl [Z(x) = Z(wy)]? [ (x) + Y(w) + w; — x)]dx

As ¥ is set-valued bidimensional convex on A, by using relation (3.34), we obtain

) (3.34)

((,4)1 +wy; w3 +w4)
2 2

6, «“2 g’(X) w3 + Wy w3 + Wy
= 2@n) — L [(IR) fw [{(w2) - L)1 [‘” (X’ 7 )* ‘”(“’1 twrm X )] dx
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ax

+(1R)jw [év(x)f(;()wl)]e1 [zp( ,w3;w4)+w((u1+w2—x, a)3-£a)4)

= W~ o [P (o P52 ) S w5

and similarly, we have

(3.35)

w(wl + wy; w3 +(1)4)
2 2

0, K'(y) w1 + Wy w; + Wy
ATk ~ Ko [( )f [k(ws) — k()] [‘”( ) ru(H e e y)] v

Y CEC N AR

T, + 1) [ 0

" k(ws) — K(@3)]” JoreG (% ) oG (“’1 sz =, w3)] ' (3:30)

Combining the relations (3.35) and (3.36), we obtain the first relation in ( 3.16). For the second relation,
we following double relation:

o [(IR) f Y C® )+ v + s — x))dx
AlL(wr) — L(w)]” o L) = L)1 e
) [ TR+ b + 2 - x)]dx}
SICHELIC) )
By using relation (3.37), we obtain the following relations:
'@, +1) ] U(wr, w3) + Y(ws, ws3)
4[§(w2)1— {(wn]” o Hlen w9+ S5, Hlen, w9)] < — 2 —
'@ +1) 1 Y(wi, wy) + P(wr, wy)
W) — LD [ o H(wrws) + ) W(wl,wzt)] Zer > :
'@+ 1) YWy, w3) + YW, wy)
Teon = Koo [Yon@n o0 + I Gne)] <a . . (338)
and
', + 1) Y(wr, w3) + Yl(ws, wy)
Tt = Koy [Jes@200 + Ji G0, 09)] < . . (339)

Combining the relations (3.38) to (3.39), we obtain the last relation in (3.16). This completes
the proof. O

Remark 3.6. If we consider {(t) = t and k(s) = s in Theorem 3.3, then we obtain the following
relationship for Riemann-Liouville integrals:
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4¢/(a)1 + a)z, w3 + w4)
2 2
e, +1) [ o ( w3 + a)4) o ( w3 + Wy )]
—Cr (a)z _ wl)gl ja)1+ (1)2, 2 ij—w wl’ 2

. M[jﬁi+ (cm +w2,w4)+jff_1//(wl +w2,w3)]

(wg — w3)* 2
I'g; + DI'@, + 1)

Hwr — w)" (g — w3)*
01,02 01,02 01,02 01,02
[jw1+,w3+ (0)2, (1)4) + jw1+,w4—w(w2’ (‘-)3) + jwz—,w3+ ((1.)1, (,()4) + jwz—,w4—w(wl’ 6()3)]

e, +1
<o 5 D |G wn,03) + T bn,03) + T 01, 05) + T e, )|
2(wy — w))

F(92 + 1) [
2wy — w3)®
Zer YW1, W3) + YW1, we) + YWy, W3) + YW, wy).

—Cr

TE (W1, 03) + T2 (w2, w3) + T2 (w1, w3) + T2 _h(ws, ws)|

Corollary 3.3. If we consider {(t) = t and k(s) = s in Theorem 3.3, then we obtain the following
relationship for Hadamard integrals:

w1+ Wy W3+ Wy
v 2 2
e, +1
<o —1O*D [cﬁfjlﬂ-{(wz, @t “’4) + 60 (a)l, e “’4)]
2[Inw; — Inw;]” 2

F(92 + 1) A w1 + Wy o w1 + Wy
2 [In ws — In w;]* [(6“’2” ( 2 "‘)4) " (5;4_@( 2 "”3)]

e, +nHre, +1)
" 4Inw, - Inw]” [In ws — In w;]”
| G0 % (@, w3) + OU L, (s, w3)+ OL2, pwr, i) + 6L, w(w),ws)]
e, +1) [

4[lnw,y — Inw; "
[, + 1)

4[In wy — Inw;]”

Ser Y(wi, w3) + YW1, we) + Y(ws, W3) + YWz, wy).

Iﬁj]+7{(w25 w3) + (55,‘1+7{(w2.w4) + 6o _H(w, w3) + 633)12—7{(601, w4)]

—cr wr—

[62.6w1,w) + 62, G(wr.00) + 6% _Glwy, w3) + 6,_Glwn, w3)]

Corollary 3.4. If we consider {(t) = t—; and k(s) = % in Theorem 3.3, then we obtain the following
relationship for Katugampola integrals:

4 ((1)1+(1)2 (1)3+(U4)
2 2
@, + Hn” + +
<. (1—)779 [|91 W (wz, w3 w4) N n|22_(H (wl, w3 + Wa )]
2 [wy™ — w7 Lt 2 2

L@+ Do [, W + Wy o0 W) + Wy
2[w4v—w3a]92[ Lo ( 2 ""4)+ -G ( 2 "”3)]
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T, + DI, + Do

—Cr
4wy — M [wg” — 371"

6,6 01010 ,07161,6 ,0161,0
P71 B (@2 ) + PN (), w3) IS @, @) + I, (w1, ws)]
Lo, + Hn"o® 4 0 0 0
Zer ["|w11+7{(w2, w3) + My H(wsr.wy) + "y, H(wr, w3) + ", H(w, w4)]

41 — an™
L6, + 1o [
4 [ws” — w37]"

Zer Y(wi, w3) + YW1, wg) + Y(wy, W3) + YW, wy).

[% o 0, [%
712, G(w1, i) + 712 Glwr.w0) + 71 _Glwr, w3) + 1% _Glwn, w3))|

4. Discussion and conclusions with future remarks

Coordinated convex functions apply the concept of convexity to functions defined as a product
of intervals, allowing for more detailed analysis in multivariable settings. The conclusion of these
functions focuses on their integral inequalities and applications in mathematical analysis. These
functions enable the application of mathematical inequalities that are essential for analyzing and
ensuring the stability, optimality, and control of complex systems. In this paper, we develop various
novel bounds and refinements for weighted Hermite-Hadamard inequalities as well as their product
form by employing new types of fractional integral operators under a cr-order relation. Additionally,
we demonstrate that by means of coordinated center-radius order relations for these integral operators,
various new findings can be obtained for Katugampola and Hadamard integrals operators. Furthermore,
we show that this type of order relation preserves the integral structure. In addition, as a distinct
characteristic from pictorial view, we show that this order is convex in nature, whereas inclusion order
is non-convex. A number of interesting examples are presented in support of the major findings. It will
be interesting in the future if readers take motivation from these findings and construct results using
It6’s lemma as well as quantum calculas, multiplicative calculas, fuzzy order relations, and various
other fractional integrals.

Additionally, in a very recent study, Afzal et al. [56,57] developed results using a new approach;
more specifically, they used tensor Hilbert spaces and variable exponent spaces, which is an extremely
new approach to Hermite-Hadamard inequality and its related results. We also suggest readers extend
these results in the sense of these spaces that utilize a variety of convex mappings under norm structures
and modular function spaces that have not been initiated yet for coordinated convexity of any kind.
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