Research article Special Issues

Wave solutions for the (3+1)-dimensional fractional Boussinesq-KP-type equation using the modified extended direct algebraic method

  • Received: 14 September 2024 Revised: 21 October 2024 Accepted: 28 October 2024 Published: 08 November 2024
  • MSC : 26A33, 35C07, 35C08, 76B15

  • In this study, we introduce the new (3+1)-dimensional $ \beta $-fractional Boussinseq-Kadomtsev-Petviashvili (KP) equation that describes the wave propagation in fluid dynamics and other physical contexts. By using the modified extended direct algebraic method, we investigate diverse wave solutions for the proposed fractional model. The acquired solutions, include (dark, bright) soliton, hyperbolic, rational, exponential, Jacobi elliptic function, and Weierstrass elliptic doubly periodic solutions. The primary objective is to investigate the influence of fractional derivatives on the characteristics and dynamics of wave solutions. Graphical illustrations are presented to demonstrate the distinct changes in the amplitude, shape, and propagation patterns of the soliton solutions as the fractional derivative parameters are varied.

    Citation: Wafaa B. Rabie, Hamdy M. Ahmed, Taher A. Nofal, Soliman Alkhatib. Wave solutions for the (3+1)-dimensional fractional Boussinesq-KP-type equation using the modified extended direct algebraic method[J]. AIMS Mathematics, 2024, 9(11): 31882-31897. doi: 10.3934/math.20241532

    Related Papers:

  • In this study, we introduce the new (3+1)-dimensional $ \beta $-fractional Boussinseq-Kadomtsev-Petviashvili (KP) equation that describes the wave propagation in fluid dynamics and other physical contexts. By using the modified extended direct algebraic method, we investigate diverse wave solutions for the proposed fractional model. The acquired solutions, include (dark, bright) soliton, hyperbolic, rational, exponential, Jacobi elliptic function, and Weierstrass elliptic doubly periodic solutions. The primary objective is to investigate the influence of fractional derivatives on the characteristics and dynamics of wave solutions. Graphical illustrations are presented to demonstrate the distinct changes in the amplitude, shape, and propagation patterns of the soliton solutions as the fractional derivative parameters are varied.



    加载中


    [1] G. Q. Xu, A. M. Wazwaz, A new (n+1)-dimensional generalized Kadomtsev–Petviashvili equation: Integrability characteristics and localized solutions, Nonlinear Dyn., 111 (2023), 9495–9507. https://doi.org/10.1007/s11071-023-08343-8 doi: 10.1007/s11071-023-08343-8
    [2] M. Jafari, S. Mahdion, A. Akgül, S. M. Eldin, New conservation laws of the Boussinesq and generalized Kadomtsev–Petviashvili equations via homotopy operator, Results Phys., 47 (2023), 106369. https://doi.org/10.1016/j.rinp.2023.106369 doi: 10.1016/j.rinp.2023.106369
    [3] S. A. Khuri, A. M. Wazwaz, Optical solitons and traveling wave solutions to Kudryashov's equation, Optik, 279 (2023), 170741. https://doi.org/10.1016/j.ijleo.2023.170741 doi: 10.1016/j.ijleo.2023.170741
    [4] Y. L. Ma, B. Q. Li, The dynamics on soliton molecules and soliton bifurcation for an extended generalization of Vakhnenko equation, Qual. Theory Dyn. Syst., 23 (2024), 137. https://doi.org/10.1007/s12346-024-01002-2 doi: 10.1007/s12346-024-01002-2
    [5] W. B. Rabie, H. M. Ahmed, Diverse exact and solitary wave solutions to new extended KdV6 equation using IM extended tanh-function technique, Pramana, 98 (2024), 81. https://doi.org/10.1007/s12043-024-02767-6 doi: 10.1007/s12043-024-02767-6
    [6] W. B. Rabie, H. M. Ahmed, A. R. Seadawy, A. Althobaiti, The higher-order nonlinear Schrödinger's dynamical equation with fourth-order dispersion and cubic-quintic nonlinearity via dispersive analytical soliton wave solutions, Opt. Quant. Electron., 53 (2021), 668. https://doi.org/10.1007/s11082-021-03278-z doi: 10.1007/s11082-021-03278-z
    [7] M. H. Ali, H. M. Ahmed, H. M. El-Owaidy, A. A. El-Deeb, I. Samir, Analytic wave solutions of nonlinear Maccari system using modified extended mapping method, Int. J. Theor. Phys., 62 (2023), 203. https://doi.org/10.1007/s10773-023-05459-w doi: 10.1007/s10773-023-05459-w
    [8] N. M. Kamel, H. M. Ahmed, W. B. Rabie, Retrieval of soliton solutions for 4th-order (2+1)-dimensional Schrödinger equation with higher-order odd and even terms by modified Sardar sub-equation method, Ain Shams Eng. J., 15 (2024), 102808. https://doi.org/10.1016/j.asej.2024.102808 doi: 10.1016/j.asej.2024.102808
    [9] Y. Pandir, Y. Gurefe, A new version of the generalized F‐expansion method for the fractional Biswas‐Arshed equation and Boussinesq equation with the Beta‐derivative, J. Funct. Space., 2023, (2023), 1980382. https://doi.org/10.1155/2023/1980382 doi: 10.1155/2023/1980382
    [10] M. Ozisik, A. Secer, M. Bayram, Soliton waves with the (3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation in water wave dynamics, Symmetry, 15 (2023), 165. https://doi.org/10.3390/sym15010165 doi: 10.3390/sym15010165
    [11] L. Akinyemi, M. Şenol, E. Az-Zo'bi, P. Veeresha, U. Akpan, Novel soliton solutions of four sets of generalized (2+1)-dimensional Boussinesq–Kadomtsev–Petviashvili-like equations, Mod. Phys. Lett. B, 36 (2022), 2150530. https://doi.org/10.1142/S0217984921505308 doi: 10.1142/S0217984921505308
    [12] W. Liu, Y. Zhang, Dynamics of localized waves and interaction solutions for the (3+1)-dimensional B-type Kadomtsev–Petviashvili–Boussinesq equation, Adv. Differ. Equ., 2020 (2020), 93. https://doi.org/10.1186/s13662-020-2493-6 doi: 10.1186/s13662-020-2493-6
    [13] H. Ma, X. Chen, A. Deng, Rational and semi-rational solution to the (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq-like equation, Phys. Scripta, 98 (2023), 055203. https://doi.org/10.1088/1402-4896/acc0a7 doi: 10.1088/1402-4896/acc0a7
    [14] K. J. Wang, G. D. Wang, F. Shi, Nonlinear dynamics of soliton molecules, hybrid interactions and other wave solutions for the (3+1)-dimensional generalized Kadomtsev–Petviashvili–Boussinesq equation, Mod. Phys. Lett. B, 38 (2024), 2450194. https://doi.org/10.1142/S021798492450194X doi: 10.1142/S021798492450194X
    [15] S. Singh, K. Sakkaravarthi, K. Murugesan, Localized nonlinear waves on spatio-temporally controllable backgrounds for a (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq model in water waves, Chaos Soliton. Fract., 155 (2022), 111652. https://doi.org/10.1016/j.chaos.2021.111652 doi: 10.1016/j.chaos.2021.111652
    [16] J. Manafian, Multiple rogue wave solutions and the linear superposition principle for a (3+1)‐dimensional Kadomtsev–Petviashvili–Boussinesq‐like equation arising in energy distributions, Math. Method. Appl. Sci., 44 (2021), 14079–14093. https://doi.org/10.1002/mma.7676 doi: 10.1002/mma.7676
    [17] H. Wang, S. F. Tian, Y. Chen, T. T. Zhang, Dynamics of kink solitary waves and lump waves with interaction phenomena in a generalized (3+1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation, Int. J. Comput. Math., 97 (2020), 2178–2190. https://doi.org/10.1080/00207160.2019.1685088 doi: 10.1080/00207160.2019.1685088
    [18] H. X. Jia, D. W. Zuo, Properties of the hybrid solutions for a generalized (3+1)-dimensional KP equation, Phys. Lett. A, 525 (2024), 129882. https://doi.org/10.1016/j.physleta.2024.129882 doi: 10.1016/j.physleta.2024.129882
    [19] D. Lu, K. U. Tariq, M. S. Osman, D. Baleanu, M. Younis, M. M. A. Khater, New analytical wave structures for the (3+1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications, Results Phys., 14 (2019), 102491. https://doi.org/10.1016/j.rinp.2019.102491 doi: 10.1016/j.rinp.2019.102491
    [20] M. A. El-Shorbagy, S. Akram, M. ur Rahman, Propagation of solitary wave solutions to (4+1)-dimensional Davey–Stewartson–Kadomtsev–Petviashvili equation arise in mathematical physics and stability analysis, Partial Differ. Equ. Appl. Math., 10 (2024), 100669. https://doi.org/10.1016/j.padiff.2024.100669 doi: 10.1016/j.padiff.2024.100669
    [21] W. Alhejaili, A. M. Wazwaz, S. A. El-Tantawy, On the multiple soliton and Lump solutions to the (3+1)-dimensional Painlev E integrable Boussinesq-type and Kp-type equations, Rom. Rep. Phys., 2024, 1–24.
    [22] W. Razzaq, A. Zafar, H. M. Ahmed, W. B. Rabie, Construction solitons for fractional nonlinear Schrödinger equation with $\beta$-time derivative by the new sub-equation method, J. Ocean Eng. Sci., 2022. In press. https://doi.org/10.1016/j.joes.2022.06.013
    [23] W. B. Rabie, H. H. Hussein, H. M. Ahmed, M. Alnahhass, W. Alexan, Abundant solitons for highly dispersive nonlinear Schrödinger equation with sextic-power law refractive index using modified extended direct algebraic method, Alex. Eng. J., 86 (2024), 680–689. https://doi.org/10.1016/j.aej.2023.12.022 doi: 10.1016/j.aej.2023.12.022
    [24] M. H. Ali, H. M. El-Owaidy, H. M. Ahmed, A. A. El-Deeb, I. Samir, Optical solitons and complexitons for generalized Schrödinger–Hirota model by the modified extended direct algebraic method, Opt. Quant. Electron., 55 (2023), 675. https://doi.org/10.1007/s11082-023-04962-y doi: 10.1007/s11082-023-04962-y
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(154) PDF downloads(49) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog