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Abstract: In this study, we introduce the new (3+1)-dimensional β-fractional Boussinseq-Kadomtsev-
Petviashvili (KP) equation that describes the wave propagation in fluid dynamics and other physical
contexts. By using the modified extended direct algebraic method, we investigate diverse wave
solutions for the proposed fractional model. The acquired solutions, include (dark, bright) soliton,
hyperbolic, rational, exponential, Jacobi elliptic function, and Weierstrass elliptic doubly periodic
solutions. The primary objective is to investigate the influence of fractional derivatives on the
characteristics and dynamics of wave solutions. Graphical illustrations are presented to demonstrate
the distinct changes in the amplitude, shape, and propagation patterns of the soliton solutions as the
fractional derivative parameters are varied.
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1. Introduction

In several scientific fields, like quantum mechanics, chemical physics, mathematical physics, and
optical fibers, nonlinear partial differential equations (NLPDEs) are utilized to mimic a wide range of
physical phenomena, such as Kadomtsev–Petviashvili [1, 2], Kudryashov’s equation [3],
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generalization of Vakhnenko Equation [4], extended sixth-order Korteweg–de Vries [5], nonlinear
Schrödinger equation [6] and others.

Acquiring the exact solution for NLPDEs is an extremely complex and usually challenging task
due to the intrinsic complexity of nonlinear systems. Unlike LPDEs, which can be solved utilizing
superposition principles and well-established methods such as the separation of variables, NLPDEs
often require more advanced techniques. These may involve methods, for example, the modified
extended mapping method [7], the modified Sardar sub-equation method [8], and the extended
F-expansion method [9].

This study focuses on the integrable Boussinseq-Kadomtsev-Petviashvili (KP) equation, which
merges the Boussinesq equation with the KP equation. The Boussinseq-KP equation is an important
mathematical model used to describe various phenomena in fluid dynamics, nonlinear wave
propagation, and mathematical physics. Many authors studied the Boussinseq-KP equation, for
example, Ozisik et al. investigated the soliton waves with the (3+ 1)-dimensional
Kadomtsev–Petviashvili–Boussinesq equation in water wave dynamics [10]. Akinyemi et al.
established the novel soliton solutions of four sets of generalized (2+ 1)-dimensional
Boussinesq–Kadomtsev–Petviashvili-like equations [11]. Liu and Zhang discussed the dynamics of
localized waves and interaction solutions for the (3+ 1)-dimensional B-type
Kadomtsev–Petviashvili–Boussinesq equation [12]. Ma et al. obtained the rational and semi-rational
solution to the (3+ 1)-dimensional Kadomtsev-Petviashvili-Boussinesq-like equation [13]. Wang et
al. studied the nonlinear dynamics of soliton molecules, hybrid interactions and other wave solutions
for the (3+ 1)-dimensional generalized Kadomtsev–Petviashvili–Boussinesq [14]. Singh et al.
discussed the localized nonlinear waves on spatio-temporally controllable backgrounds for a (3+
1)-dimensional Kadomtsev-Petviashvili-Boussinesq model in water waves [15]. Manafian studied the
multiple rogue wave solutions and the linear superposition principle for a (3+ 1)-dimensional
Kadomtsev–Petviashvili–Boussinesq-like equation arising in energy [16]. Wang et al investigated the
dynamics of kink solitary waves and lump waves with interaction phenomena in a generalized (3+
1)-dimensional Kadomtsev–Petviashvili–Boussinesq equation [17]. Jia and Zuo established the
properties of the hybrid solutions for a generalized (3+ 1)-dimensional KP equation [18]. Lu et al.
introduced new analytical wave structures for the (3+ 1)-dimensional Kadomtsev-Petviashvili and the
generalized Boussinesq models and their applications [19]. El-Shorbagy, et al. investigated the
propagation of solitary wave solutions to (4+ 1)-dimensional
Davey–Stewartson–Kadomtsev–Petviashvili equation arise in mathematical physics and stability
analysis [20].

In this work, for the first time, we present the (3+1)-dimensional β-fractional Boussinseq-KP
equation as follows [21]:

C
∂2βF

∂t2β + σ
∂βFx

∂tβ
+ Fxxxx + α Fxx + ρ Fxy + γ Fxz + η F

2
xx + µ Fyy = 0. (1.1)

The beta derivative of F (x, y, z, t) of order β is given by (see [22]):

∂βF (x, y, z, t)
∂tβ

= lim
h→0

F

(
x, y, z, t + h

(
1
Γ(β) + t

)1−β
)
− F (x, y, z, t)

h
, ∀ t > 0, β ∈ (0, 1], (1.2)

where C, σ, α, ρ, γ, η, and µ are arbitrary real parameters to be calculated, and F (x, y, z, t) is a function
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of the spatial variables x, y, z and the time variable t.
This study employs the modified extended direct algebraic method (MEDAM) to investigate the

traveling wave solutions of Eq (1.1). This approach yields a variety of exact solutions, including dark
and bright solitons, as well as, hyperbolic solutions, Weierstrass elliptic doubly periodic solutions,
Jacobi elliptic function solutions, and rational and exponential solutions. We further elucidate these
solutions through 2D and 3D graphical representations to validate our findings.

This paper is organized as follows: Section 2 outlines the proposed method, Section 3 details the
results from applying this method, Section 4 employs 3D simulations and 2D plots to illustrate various
dynamic wave patterns of different isolation solutions, and Section 5 concludes the work.

2. Outline of the proposed technique

In this section, we present a comprehensive introduction to the modified extended direct algebraic
method framework. This framework is designed specifically to be applied to the nonlinear fractional
partial differential equation (NLFPDE) that will be elaborated upon in the paragraphs that follow. We
aim to demonstrate how this innovative approach can effectively address the complexities associated
with the equation under consideration [23, 24]:

E

(
F ,Fx,Fy,Fz,

∂βF

∂tβ
,Fxx,Fxy,Fxz...

)
= 0, (2.1)

where E is a function represented by F (x, y, z, t) and its partial derivatives in both time and space
domains.
Step 1: To solve Eq (2.1) effectively, we use the wave transformation method outlined below:

F (x, y, z, t) = ϕ(ζ), ζ = x +K y +V z −
ω

β

(
1
Γ(β)

+ t
)β
, (2.2)

where K , V, and ω are constants to be determined later, while β represents a fractional derivative of
order β ∈ (0, 1].

By substituting Eq (2.2) into Eq (2.1) and rearranging, we can derive the following nonlinear
ordinary differential equation (NLODE):

Q(ϕ, ϕ′, ϕ′′, ϕ′′′, . . . . . .) = 0. (2.3)

Step 2: Based on the specific method that has been utilized, the resulting solution for the equation
denoted as Eq (2.3) can be expressed in the following manner:

ϕ(ζ) =
N∑

i=−N

Ai R(ζ)i, (2.4)

where Ai represent real constants to be determined later under constraint A2
N +A

2
−N , 0 , and also

R′(ζ) must satisfy the following equation;

R′(ζ) = ϵ
√
τ0 + τ1 R(ζ) + τ2 R(ζ)2 + τ3 R(ζ)3 + τ4 R(ζ)4 + τ6 R(ζ)6, (2.5)
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where ϵ = ±1 and τi (0, 1, 2, 3, 4, 6) are real-valued constants, while the value of N is determined by
balancing both nonlinearity and equation dispersion.
Step 3: Equation (2.4) is combined with Eq (2.5) into Eq (2.3), yielding a polynomial in R. Software
tools such as Mathematica can be used to solve a series of nonlinear algebraic equations (NLAEs) that
arise from setting the coefficients of the same powers to zero. Thus, Eq (2.1) can produce multiple
exact solutions.

3. Extract new solutions for the proposed system

To explore the analytical and precise solutions of Eq (1.1), the transformation indicated in Eq (2.2) is
used, and therefore Eq (1.1) can be converted into a nonlinear ordinary differential equation (NLODE)
as follows:

ϕ(4) +
[
α + C ω2 +K(K µ + ρ) − σ ω + γV

]
ϕ′′ + 2 ηϕ ϕ′′ + 2η

(
ϕ′

)2
= 0. (3.1)

Now, we can apply the principle of balance in Section 2 to Eq (3.1), and thus we can create the
exact solutions to Eq (3.1) in the manner shown below:

ϕ(ζ) = A2 R(ζ)2 +A1 R(ζ) +A0 +
A−2

R(ζ)2 +
A−1

R(ζ)
, (3.2)

whereA j, ( j = −2,−1, 0, 1, 2) are constants to be determined later by constraintA2
2 +A

2
−2 , 0.

We can now enter Eqs (3.2) and (2.5) into Eq (3.1), then the similar force coefficients are added and
all set to zero, followed by the creation of a system of NLAEs, which can be solved with the help of
Mathematica to obtain the results shown below:
Case-(1): If τ0 = τ1 = τ3 = τ6 = 0, the following solution combinations are obtained:

A0 =
−α−Cω2−µ K2−Kρ+σ ω−4τ2−γ V

2η , A1 = 0, A2 = −
6τ4
η
, A−1 = A−2 = 0.

According to the above solution set, we can find explicit solutions of Eq (1.1) in different forms that
can be formulated as follows:

(1.1) Bright soliton solution as follows:

F1.1(x, y, z, t) = −
α + Cω2 +K2µ +Kρ − σω + γV

2η
+

+
2τ2

η

1 − 3 sech2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β √τ2

 , (3.3)

where η , 0, τ2 > 0 and τ4 < 0.

Case-(2): If τ1 = τ3 = τ6 = 0 and τ0 =
τ22

4 τ4
, the following solution combinations are obtained:

(2.1) A0 =
−α−Cω2−µK2−Kρ+σω−4τ2−γV

2η , A1 = A−1 = 0, A2 = −
6τ4
η
, A−2 = −

3τ22
2ητ4

.

(2.2) A0 =
−α−Cω2−µK2−Kρ+σω−4τ2−γV

2η , A1 = A−1 = A−2 = 0, A2 = −
6τ4
η

.
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According to the solution set (2.1), we can find explicit solutions of Eq (1.1) in different forms that
can be formulated as follows:

(2.1, 1) Hyperbolic solution as follows:

F2.1,1(x, y, z, t) = −
α + Cω2 +K2µ +Kρ − σω + γV

2η
+
τ2

η
(4 − 6 csch2 [

h(x, y, z, t)
]

+3 sech2 [
h(x, y, z, t)

]
), (3.4)

where h(x, y, z, t) =
[
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β] √
−2τ2, while η , 0, τ2 < 0 and τ4 > 0.

According to the solution set (2.2), we can find explicit solutions of Eq (1.1) in different forms that
can be formulated as follows:

(2.2, 1) Dark soliton solution as follows:

F2.2,1(x, y, z, t) = −
α + Cω2 +K(Kµ + ρ) − σω + γV

2η
+

+
τ2

η

−2 + 3 tanh2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β √

−
τ2

2

 , (3.5)

where η , 0, τ2 < 0 and τ4 > 0.

Case-(3): If τ3 = τ4 = τ6 = 0, the following solution combinations are obtained:

A0 = −
α+Cω2+K2µ+Kρ−σω+τ2+γV

2η ,A1 = A2 = 0,A−1 = ±
6
η

√
τ0τ2,A−2 = −

6τ0
η
, τ1 = ±2

√
τ0τ2.

According to this solution set, we can find explicit solutions of Eq (1.1) in different forms that can
be formulated as follows:

(3.1) Exponential solution as follows:

F3.1(x, y, z, t) = −
α + Cω2 +K2µ +Kρ − σω + γV

2η
−

τ2

2η

1 +
24τ1

[
τ1 − τ2 exp

([
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β] √
τ2

)]
[
τ1 − 2τ2 exp

([
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β] √
τ2

)]2

 , (3.6)

where η , 0 and τ2 > 0.

Case-(4): If τ0 = τ1 = τ6 = 0, the following solution combinations are obtained:

(4.1) A0 = −
α+Cω2+K2µ+Kρ−σω+τ2+γV

2η ,A−1 = A−2 = 0,A1 = ±
6
η

√
τ2τ4,A2 = −

6τ4
η
, τ3 = ∓2

√
τ2τ4.

According to the solution set (4.1), we can find explicit solutions of Eq (1.1) in different forms that
can be formulated as follows:
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(4.1,1) Hyperbolic solution as follows:

F4.1,1(x, y, z, t) = −
α + Cω2 +K2µ +Kρ − σω + τ2 + γV

2η
+

3τ2

η

 1

1 + cosh
([

x +Ky +Vz − ω
β

(
1
Γ(β) + t

)β] √
τ2

)
 , (3.7)

where η , 0, τ2
3 = 4τ2τ4 and τ2 > 0.

(4.1,2) Hyperbolic solution as follows:

F4.1,2(x, y, z, t) = −
α + Cω2 +K2µ +Kρ − σω + τ2 + γV

2η
−

3τ2

η

 1

−1 + cosh
([

x +Ky +Vz − ω
β

(
1
Γ(β) + t

)β] √
τ2

)
 , (3.8)

where η , 0, τ2
3 = 4τ2τ4 and τ2 > 0.

Case-(5): If τ2 = τ4 = τ6 = 0, the following solution combinations are obtained:

A0 =
−4ατ0−4Cτ0ω2−4K2µτ0−4Kρτ0+4στ0ω+3τ21−4γτ0V

8ητ0
, A1 = A2 = 0, A−1 = −

3τ1
η
, A−2 = −

6τ0
η
, τ3 = −

τ31
8τ20

.

According to the above solution set, we can find explicit solutions of Eq (1.1) in different forms that
can be formulated as follows:

Weierstrass elliptic doubly periodic solution as follows:

F (x, y, z, t) =
3
8η

τ
2
1

τ0
−

8
(
τ1℘

[
1
2

(
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β) √
τ3;−4τ1

τ3
,−4τ0
τ3

]
+ 2τ0

)
℘

[
1
2

(
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β) √
τ3;−4τ1

τ3
,−4τ0
τ3

]2

 ,
(3.9)

where η , 0, τ2 > 0 and τ3 > 0.

Case-(6): If τ0 = τ1 = τ3 = 0, the solution combinations obtained are listed below:

A0 =
−α−Cω2+K2(−µ)−Kρ+σω−4τ2−γV

2η , A−1 = A−2 = A1 = 0, A2 = −
6τ4
η
, τ6 = 0.

According to the above solution set, we can find explicit solutions of Eq (1.1) in different forms that
can be formulated as follows:

(6.1) Hyperbolic solution as follows:

F6.1(x, y, z, t) = −
α + Cω2 +K2µ +Kρ − σω + γV

2η
+
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τ2

2η

4 − 24τ4

τ4 −

√
τ2

4 − 4τ2 τ6 cosh
(
2
[
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β] √
τ2

)
 , (3.10)

where η , 0, τ2
4 , 4τ2τ6 and τ2 > 0.

(6.2) Periodic wave solution as follows:

F6.2(x, y, z, t) = −
α + Cω2 +K2µ +Kρ − σω + γV

2η
−

τ2

2η

4 − 24τ4

τ4 −

√
τ2

4 − 4τ2 τ6 cos
(
2
[
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β] √
−τ2

)
 , (3.11)

where η , 0, τ2
4 , 4τ2τ6 and τ2 < 0.

Case-(7): If τ1 = τ3 = τ6 = 0, the solution combinations obtained are listed below:

(7.1) A0 =
−α−Cω2+K2(−µ)−Kρ+σω−4τ2−γV

2η , A1 = A2 = A−1 = 0, A−2 = −
6τ0
η

.

(7.2) A0 =
−α−Cω2+K2(−µ)−Kρ+σω−4τ2−γV

2η , A−1 = A1 = 0, A2 = −
6τ4
η
, A−2 = −

6τ0
η

.

(7.3) A0 =
−α−Cω2+K2(−µ)−Kρ+σω−4τ2−γV

2η , A−1 = A1 = A−2 = 0, A2 = −
6τ4
η

.

According to the solution set (7.1), we can find explicit solutions of Eq (1.1) in different forms that
can be formulated as follows:

(7.1, 1) The Jacobian elliptic solutions (JESs) under constraints τ0 = 1, τ2 = −m2 − 1, τ4 = m2, 0 ≤
m ≤ 1, and η , 0 are derived as follows:

F7.1,1(x, y, z, t) = −
1
2η

[
−4 − 4m2 + α + γV +K2µ +Kρ − σω + Cω2 + 12 ns2 [Q(x, t)]

]
,(3.12)

or

F7.1,2(x, y, z, t) = −
1
2η

[
−4 − 4m2 + α + γV +K2µ +Kρ − σω + Cω2 + 12 dc2 [Q(x, t)]

]
,(3.13)

where Q(x, t) = x +Ky +Vz − ω
β

(
1
Γ(β) + t

)β
.

(7.1, 2) The Jacobian elliptic solution (JES) under constraints τ0 = m2 − 1, τ2 = 2−m2, τ4 = −1, 0 ≤
m < 1, and η , 0 is derived as follows:

F7.1,3(x, y, z, t) =
1
2η

[
α + Cω2 +K2µ +Kρ − 4m2 − σω + γV + 8 + 12(m2 − 1) nd2 [Q(x, t)]

]
, (3.14)

where Q(x, t) = x +Ky +Vz − ω
β

(
1
Γ(β) + t

)β
.
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(7.1, 3) The JES under constraints τ0 = −m2, τ2 = 2m2 − 1, τ4 = 1 − m2, 0 < m ≤ 1, and η , 0 is
derived as follows:

F7.1,4(x, y, z, t) = −
1
2η

[
−4 + α + Cω2 +K2µ +Kρ + 8m2 − σω + γV + 12 m2 cn2 [Q(x, t)]

]
, (3.15)

where Q(x, t) = x +Ky +Vz − ω
β

(
1
Γ(β) + t

)β
.

The bright soliton solution is derived by substituting m = 1 into Eq (3.15) as follows:

F7.1,5(x, y, z, t) = −
8 + α + Cω2 +K2µ +Kρ − σω + γV

2η

+
6
η

sech2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β . (3.16)

(7.1, 4) The JES under constraints τ0 = −1, τ2 = 2−m2, τ4 = m2 − 1, 0 ≤ m ≤ 1, and η , 0 is derived
as follows:

F7.1,6(x, y, z, t) = −
1
2η

[
8 + α + Cω2 +K2µ +Kρ − 4m2 − σω + γV + 12 dn2 [Q(x, t)]

]
, (3.17)

where Q(x, t) = x +Ky +Vz − ω
β

(
1
Γ(β) + t

)β
.

The bright soliton solution is derived by substituting m = 1 into Eq (3.17) as follows:

F7.1,7(x, y, z, t) = −
4 + α + Cω2 +K2µ +Kρ − σω + γV

2η

+
6
η

sech2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β . (3.18)

(7.1, 5) The JES under constraints τ0 = 1, τ2 = 2 − 4m2, τ4 = 1, 0 ≤ m ≤ 1, and η , 0 is derived as
follows:

F7.1,8(x, y, z, t) = −
8 + α + Cω2 +K2µ +Kρ − 16m2 − σω + γV

2η
−

6
η

dn2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β cn2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β

× ns2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β . (3.19)

(7.1, 6) The JES under constraints τ0 = m4 − 2m3 +m2, τ2 = −
4
m , τ4 = −m2 + 6m− 1, 0 < m ≤ 1, and

η , 0 is derived as follows:

F7.1,9(x, y, z, t) = −
8 + α + Cω2 +K2µ +Kρ − 16m2 − σω + γV

2η
−

6
(
1 + m sn2

[
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β])2

η m2 cn2
[
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β]
dn2

[
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β] . (3.20)
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The hyperbolic solution is obtained by substituting m = 1 into Eq (3.20) as follows:

F7.1,10(x, y, z, t) = −
−2 + α + Cω2 +K(Kµ + ρ) − σω + γV

2η
−

3
η

cosh
4(x +Ky +Vz −

ω

β

(
1
Γ(β)

+ t
)β

)
 . (3.21)

(7.1, 7) The JESs under constraints τ0 =
1
4 , τ2 =

m2−2
2 , τ4 =

m4

4 , 0 ≤ m ≤ 1, and η , 0 are derived as
follows:

F7.1,11(x, y, z, t) = −
−4 + α + Cω2 +K2µ +Kρ + 2m2 − σω + γV

2η
−

3
(√

1 − m2 + dn
[
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β])2

2η cn2
[
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β] , (3.22)

or

F7.1,12(x, y, z, t) = −
−4 + α + Cω2 +K2µ +Kρ + 2m2 − σω + γV

2η
−

3
(
1 + dn

[
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β])2

2η sn2
[
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β] , (3.23)

According to the solution set (7.2), we can find explicit solutions of Eq (1.1) in different forms that
can be formulated as follows:

(7.2, 1) The JESs under constraints τ0 = 1, τ2 = −m2 − 1, τ4 = m2, 0 ≤ m ≤ 1, and η , 0 are derived
as follows:

F7.2,1(x, y, z, t) =
−4 − 4m2 + α + Cω2 +K2µ +Kρ − σω + γV

2η
+

6
η

ns2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β + sn2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β ,

(3.24)

or

F7.2,2(x, y, z, t) =
−4 − 4m2 + α + Cω2 +K2µ +Kρ − σω + γV

2η
+

6
η

dc2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β + cd2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β .

(3.25)
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The hyperbolic solution is obtained by substituting m = 1 into Eq (3.24) as follows:

F7.2,3(x, y, z, t) =
−8 + α + Cω2 +K(Kµ + ρ) − σω + γV

2η
+

6
η

3 + cosh
4 x +Ky +Vz −

ω

β

(
1
Γ(β)

+ t
)β csch2

2 x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β ,

(3.26)

(7.2, 2) The Jacobian elliptic solution (JES) under constraints τ0 = m2 − 1, τ2 = 2−m2, τ4 = −1, 0 ≤
m ≤ 1, and η , 0 is derived as follows:

F7.2,4(x, y, z, t) =
α + Cω2 +K2µ +Kρ − 4m2 − σω + γV + 8

2η
−

6
η

(m2 − 1) nd2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β − dn2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β .
(3.27)

The bright soliton solution is derived by substituting m = 1 into Eq (3.27) as follows:

F7.2,5(x, y, z, t) = −
4 + α + Cω2 +K2µ +Kρ − σω + γV

2η

+
6
η

sech2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β . (3.28)

(7.2, 3) The JES under constraints τ0 = −m2, τ2 = 2m2 − 1, τ4 = 1 − m2, 0 < m ≤ 1, and η , 0 is
derived as follows:

F7.2,6(x, y, z, t) = −
−4 + α + Cω2 +K2µ +Kρ + 8m2 − σω + γV

2η
+

6
η

(m2 − 1) nc2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β + m2 cn2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β .

(3.29)

The bright soliton solution is derived by substituting m = 1 into Eq (3.29) as follows:

F7.2,7(x, y, z, t) = −
α + Cω2 +K2µ +Kρ − σω + γV + 4

2η
+

6
η

sech2
x +Ky +Vz −

ω

β

(
1
Γ(β)

+ t
)β .

(3.30)

(7.2, 4) The JES under constraints τ0 = −1, τ2 = 2−m2, τ4 = m2 − 1, 0 ≤ m ≤ 1, and η , 0 is derived
as follows:

F7.2,8(x, y, z, t) = −
α + Cω2 +K2µ +Kρ − 4m2 − σω + γV + 8

2η
+
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6
η

(1 − m2) nd2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β + m2 dn2

x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β .

(3.31)

The bright soliton solution is derived by substituting m = 1 into Eq (3.31) as follows:

F7.2,9(x, y, z, t) = −
4 + α + Cω2 +K2µ +Kρ − σω + γV

2η
+

6
η

sech2
x +Ky +Vz −

ω

β

(
1
Γ(β)

+ t
)β .

(3.32)

(7.2, 5) The JES under constraints τ0 = m4 − 2m3 +m2, τ2 = −
4
m , τ4 = −m2 + 6m− 1, 0 < m ≤ 1, and

η , 0 is derived as follows:

F7.2,10(x, y, z, t) = −
α + Cω2 +K2µ +Kρ − 16m2 − σω + γV + 8

2η
−

1
2η


12m2 cn2

[
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β]
dn2

[
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β]
(
dn2

[
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β]
− 2

)2

 −
1
2η


12

(
dn2

[
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β]
− 2

)2

m2 cn2
[
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β]
dn2

[
x +Ky +Vz − ω

β

(
1
Γ(β) + t

)β]
 . (3.33)

The hyperbolic solution is obtained by substituting m = 1 into Eq (3.33) as follows:

F7.2,11(x, y, z, t) = −
α + Cω2 +K2µ +Kρ − σω + γV + 4

2η
−

3
4η

7 + cosh
8(x +Ky +Vz −

ω

β

(
1
Γ(β)

+ t
)β

)
 sech2

2(x +Ky +Vz −
ω

β

(
1
Γ(β)

+ t
)β

)
 .

(3.34)

According to the solution set (7.3), we can find explicit solutions of Eq (1.1) in different forms that
can be formulated as follows:

(7.3, 1) The Jacobian elliptic solutions (JESs) under constraints τ0 = 1, τ2 = −m2 − 1, τ4 = m2, 0 ≤
m ≤ 1, and η , 0 are derived as follows:

F7.3,1(x, y, z, t) = −
1
2η

[
−4 + α + Cω2 +K2µ +Kρ − 4m2 − σω + γV + 12m2 sn2 [Q(x, t)]

]
,(3.35)

or

F7.3,2(x, y, z, t) = −
1
2η

[
α + Cω2 +K2µ +Kρ − 4m2 − σω + γV − 4 + 12m2 cd2 [Q(x, t)]

]
,(3.36)

where Q(x, t) = x +Ky +Vz − ω
β

(
1
Γ(β) + t

)β
.

The bright soliton solution is derived by substituting m = 1 into Eq (3.35) as follows:

F7.3,3(x, y, z, t) = −
α + Cω2 +K2µ +Kρ − σω + γV − 8

2η
−

6
η

tanh2
x +Ky +Vz −

ω

β

(
1
Γ(β)

+ t
)β .

(3.37)

AIMS Mathematics Volume 9, Issue 11, 31882–31897.



31893

4. Discussion and physical analysis of the obtained solutions

By adjusting the model parameters, numerous previously unrecorded value sets for Eq (1.1) were
discovered. Adjusting the model parameters revealed many previously unrecorded value sets for
Eq (1.1). This section illustrates the mathematical and physical properties of these solutions with
various graph formats, including 3-D and 2-D plots, while explaining the effects of the fractional
derivative. The visual representation of these soliton solutions typically involves 3D and 2D surface
plots to illustrate the spatial and temporal evolution of the waves. Such graphical representations help
in understanding the interaction patterns between solitons and their stability characteristics under
various conditions. The bright soliton solution for Eq (3.3) is shown in Figure 1, with parameters
α = 0.7, V = 0.57, γ = 1.2, K = 0.6, µ = 0.72, ρ = 0.62, σ = 0.7, C = 0.5, ω = 1.98, τ2 = 0.39,
and η = −1.8. The bright soliton structures are characterized by localized peaks in the wave profile.
The dark soliton solution for Eq (3.5) is shown in Figure 2, with parameters α = 0.87, V = 0.75, γ =
1.24, K = 0.8, µ = 0.78, ρ = 0.76, σ = 0.95, C = 0.75, ω = 3.8, τ2 = −0.69, and η = −0.68. Dark
solitons represent localized waveforms characterized by a decrease in amplitude compared to the
surrounding baseline. They are often seen as step-like or trough-like features in the wave profile.

(a)

β=0.35

5 10 15 x
0.4

0.6

0.8

1.0

1.2

1.4

1.6

ℱ1.1(x, 0, 0, 1.5)

(b)

(c)

β=1

5 10 15 x
0.4

0.6

0.8

1.0

1.2

1.4

1.6

ℱ1.1(x, 0, 0, 1.5)

(d)

(e)

β=0.35 β=1

5 10 15 x
0.4

0.6

0.8

1.0

1.2

1.4

1.6

(f)

Figure 1. Graphical representations of the bright soliton solution in Eq (3.3).
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(a)
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Figure 2. Graphical representations of the dark soliton solution in Eq (3.5).

5. Conclusions

The conclusions drawn from this work highlight the importance of the analytical solutions
obtained for the nonlinear wave propagation governed by the new (3+1)-dimensional β-fractional
Boussinesq-KP equation. Using the MEDAM, the study successfully generated diverse wave
solutions, such as soliton (dark, bright, and singular), hyperbolic, rational, exponential, singular
periodic, Jacobi elliptic function, and Weierstrass elliptic doubly periodic solutions. It was observed
that the fractional derivatives play a crucial role in influencing the amplitude, shape, and propagation
patterns of the soliton solutions. The findings demonstrated that varying the fractional parameters
significantly alters the characteristics and dynamics of these wave solutions. The graphical
representations in this study have effectively shown how the fractional derivative affects the size and
behavior of soliton waves. Changing the value of β leads to noticeable variations in the amplitude,
shape, and propagation dynamics of the soliton solutions. This highlights the significance of using
fractional calculus in modeling these dispersive and nonlocal systems, as it provides a more precise
depiction of the fundamental physical processes at play. Furthermore, a comparison with solutions
obtained using traditional integer-order derivatives revealed significant differences [21]. The
fractional-order solutions showed a higher degree of localization, faster propagation, and more
intricate wave interactions. These observations underscore the value of fractional calculus in
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capturing more complex and realistic wave behaviors in nonlinear systems.
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