Research article

$ V $-Moreau envelope of nonconvex functions on smooth Banach spaces

  • Received: 24 August 2024 Revised: 15 September 2024 Accepted: 19 September 2024 Published: 09 October 2024
  • MSC : 34A60, 49J53

  • We continue the study of the properties of the $ V $-Moreau envelope and generalized $ (f, \lambda) $-projection that we started in [5]. In this paper, we study the differentiability and the regularity of the $ V $-Moreau envelope and the Hölder continuity of the generalized $ (f, \lambda) $-projection. Our results extend many existing results from the convex case to the nonconvex case and from Hilbert spaces to Banach spaces. Even on Hilbert spaces and for convex functions and sets, we derived new results.

    Citation: Messaoud Bounkhel. $ V $-Moreau envelope of nonconvex functions on smooth Banach spaces[J]. AIMS Mathematics, 2024, 9(10): 28589-28610. doi: 10.3934/math.20241387

    Related Papers:

  • We continue the study of the properties of the $ V $-Moreau envelope and generalized $ (f, \lambda) $-projection that we started in [5]. In this paper, we study the differentiability and the regularity of the $ V $-Moreau envelope and the Hölder continuity of the generalized $ (f, \lambda) $-projection. Our results extend many existing results from the convex case to the nonconvex case and from Hilbert spaces to Banach spaces. Even on Hilbert spaces and for convex functions and sets, we derived new results.



    加载中


    [1] Y. Alber, I. Ryazantseva, Nonlinear Ill-posed problems of monotone type, Dordrecht: Springer, 2006. http://doi.org/10.1007/1-4020-4396-1
    [2] Y. Alber, Generalized projection operators in Banach spaces: properties and applications, Functional Differential Equations, 1 (1993), 1–21.
    [3] M. Bounkhel, Regularity concepts in nonsmooth analysis: theory and applications, New York: Springer, 2012. http://doi.org/10.1007/978-1-4614-1019-5
    [4] M. Bounkhel, Generalized projections on closed nonconvex sets in uniformly convex and uniformly smooth Banach spaces, J. Funct. Space., 2015 (2015), 478437. http://doi.org/10.1155/2015/478437 doi: 10.1155/2015/478437
    [5] M. Bounkhel, Generalized $(f, \lambda)$-projection operator on closed nonconvex sets and its applications in reflexive smooth Banach spaces, AIMS Mathematics, 8 (2023), 29555–29568. http://doi.org/10.3934/math.20231513 doi: 10.3934/math.20231513
    [6] M. Bounkhel, M. Bachar, Generalized prox-regularity in reflexive Banach spaces, J. Math. Anal. Appl., 475 (2019), 699–729. http://doi.org/10.1016/j.jmaa.2019.02.064 doi: 10.1016/j.jmaa.2019.02.064
    [7] M. Bounkhel, M. Bachar, Primal lower nice functions in smooth Bnach spaces, Mathematics, 8 (2020), 2066. https://doi.org/10.3390/math8112066 doi: 10.3390/math8112066
    [8] M. Bounkhel, R. Al-Yusof, Proximal Analysis in reflexive smooth Banach spaces, Nonlinear Anal. Theor., 73 (2010), 1921–1939. https://doi.org/10.1016/j.na.2010.04.077 doi: 10.1016/j.na.2010.04.077
    [9] M. Bounkhel, L. Tadj, A. Hamdi, Iterative schemes to solve nonconvex variational problems, Journal of Inequalities in Pure and Applied Mathematics, 4 (2003), 14.
    [10] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, R. R. Wolenski, Nonsmooth analysis and control theory, New York: Springer, 1998. http://doi.org/10.1007/b97650
    [11] J. L. Li, The generalized projection operator on reflexive Banach spaces and its applications, J. Math. Anal. Appl., 306 (2005), 55–71. http://doi.org/10.1016/j.jmaa.2004.11.007 doi: 10.1016/j.jmaa.2004.11.007
    [12] J. L. Li, On the existence of solutions of variational inequalities in Banach spaces, J. Math. Anal. Appl., 295 (2004), 115–126. http://doi.org/10.1016/j.jmaa.2004.03.010 doi: 10.1016/j.jmaa.2004.03.010
    [13] R. A. Poliquin, R. T. Rockafellar, Prox-regular functions in variational analysis, T. Am. Math. Soc., 348 (1996), 1805–1838.
    [14] R. T. Rockafellar, R. J. B. Wets, Variational analysis, Berlin: Springer, 1998. http://doi.org/10.1007/978-3-642-02431-3
    [15] W. Takahashi, Nonlinear functional analysis, Yokohama: Yokohama Publishers, 2000.
    [16] K. Q. Wu, N. J. Huang, The generalized $f$-projection operator with an application, B. Aust. Math. Soc., 73 (2006), 307–317. http://doi.org/10.1017/S0004972700038892 doi: 10.1017/S0004972700038892
    [17] K. Q. Wu, N. J. Huang, Properties of the generalized $f$-projection operator and its application in Banach spaces, Comput. Math. Appl., 54 (2007), 399–406. http://doi.org/10.1016/j.camwa.2007.01.029 doi: 10.1016/j.camwa.2007.01.029
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(309) PDF downloads(26) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog