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1. Introduction and preliminaries

Let X be a Banach space with dual space X∗. The duality pairing between X and X∗ will be denoted
by ⟨·, ·⟩. We denote by B and B∗ the closed unit ball in X and X∗, respectively. The normalized duality
mapping J : X⇒X∗ is defined by

J(x) = { j(x) ∈ X∗ : ⟨ j(x), x⟩ = ∥x∥2 = ∥ j(x)∥2},

where ∥ · ∥ stands for both norms on X and X∗. Similarly, we define J∗ on X∗. Many properties of J and
J∗ are well known and we refer the reader, for instance, to [15].

Definition 1.1. For a fixed closed subset S of X, a fixed function f : S → R ∪ {∞}, and a fixed λ > 0,
we define the following functional: GV

λ, f : X∗ × S → R ∪ {∞}

GV
λ, f (x∗, x) = f (x) +

1
2λ

V(x∗, x), ∀x∗ ∈ X∗, x ∈ S ,
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where V(x∗, x) = ∥x∗∥2 − 2⟨x∗, x⟩+ ∥x∥2. Clearly, the functional V has the form V(x∗; x) = ∥x∗ − x∥2,
whenever X is a Hilbert space (i.e., X∗ = X). This remark highlights the significance of using the
functional V rather than the square of the norm, as the latter cannot generally be expressed in the form
of V in Banach spaces.
Using the functional GV

λ, f , we define the V-Moreau envelope of f associated with S as follows:

eV
λ,S f (x∗) := inf

s∈S
GV
λ, f (x∗, s)}, for any x∗ ∈ X∗.

We also define the generalized ( f , λ)-projection on S as follows:

π
f ,λ
S (x∗) := {x ∈ S : GV

λ, f (x∗, x) = eV
λ,S f (x∗)}, for any x∗ ∈ X∗.

(•) When f = 0, λ = 1
2 , the generalized ( f , λ)-projection π

f ,λ
S on S coincides with the generalized

projection πS over S .
(•) When λ = 1

2 , the generalized ( f , λ)-projection π f ,λ
S on S coincides with the f -generalized projection

π
f
S introduced and studied in [16, 17].

We need some important results that we gather in the following proposition (see for instance [1, 5,
6]).

Proposition 1.1. Let X be a Banach space.

1) If X is q-uniformly convex, then for any α > 0, there exists some constant Kα > 0 such that

⟨Jx − Jy; x − y⟩ ≥ Kα∥x − y∥q, ∀x, y ∈ αB.

2) If X is p-uniformly smooth, then the dual space X∗ is p′-uniformly convex with p′ = p
p−1 .

3) Assume that X is q-uniformly convex and let α > 0. Then, for any x∗ ∈ αB∗ and any y ∈ αB,

V(x∗; y) ≥
2c

4q−1αq−2 ∥J
∗(x∗) − y∥q,

where c > 0 is the constant given in the definition of q-uniform convexity of X.

We also recall many concepts and definitions as follows:

Definition 1.2.

1) Let f : X → R∪ {+∞} be a lower semi-continuous function (l.s.c. in short) and x ∈ X, where f is
finite. The V-proximal subdifferential (see [8]) ∂π f of f at x is defined by x∗ ∈ ∂π f (x) if and only
if there exist σ > 0, δ > 0 such that

⟨x∗, x′ − x⟩ ≤ f (x′) − f (x) + σV(J(x), x′)),∀x′ ∈ x + δB. (1.1)

We notice that ∂π f (x̄) ⊂ LB∗, whenever f is locally Lipschitz at x̄ (see [4]).
2) The V-proximal normal cone of a nonempty closed subset S in X at x ∈ S is defined as the V-

proximal subdifferential of the indicator function of S , that is, Nπ(S ; x) = ∂πψS (x). Note that Nπ

is also characterized (see [4]) via πS as follows:

x∗ ∈ Nπ(S ; x̄)⇔ ∃α > 0, such that x̄ ∈ πS (Jx̄ + αx∗).
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3) The Fréchet subdifferential and Fréchet normal cone (see for instance [3, 14]) are defined as
follows: x∗ ∈ ∂F f (x̄) if and only if for all ϵ > 0, there exists δ > 0 such that

⟨x∗; x − x̄⟩ ≤ f (x) − f (x̄) + ϵ∥x − x̄∥, ∀x ∈ x̄ + δB. (1.2)

The Fréchet normal cone NF(S ; x) of a nonempty closed subset S in X at x̄ ∈ S is defined as
NF(S ; x̄) = ∂FψS (x̄).

4) The limiting V-proximal normal cone is defined as follows (see [7]):

NLπ(S ; x̄) = {w − lim
n

x∗n : x∗n ∈ Nπ(S ; xn) with xn →
S x̄}.

Before starting our study, we state some special cases showing the importance of the study of eV
λ,S f

and π f ,λ
S .

Case 1. If X is a Hilbert space and S = X, the functional eV
λ,S f coincides with the Moreau envelope

of f with index λ > 0 and the generalized ( f , λ)-projection π f ,λ
S coincides with the proximal mapping

Pλ( f ) (see for instance [13]).
Case 2. If X is a Hilbert space and f ≡ 0, the generalized ( f , λ)-projection π

f ,λ
S coincides with the

metric projection on S (see for instance [9, 10]).
Case 3. If X is a reflexive Banach space, the generalized ( f , λ)-projection π

f ,λ
S coincides with the

generalized projection πS on S introduced for closed convex sets in [2,11,12] and for closed nonconvex
sets in [4, 6].

Motivated by the special cases presented above and their relevance (as seen in [1–4,11,12,16,17] and
their references), we initially introduced and started investigating the generalized ( f , λ)-projection π f ,λ

S
in [5]. There, we laid the groundwork for understanding its basic properties and potential applications.
In this paper, we aim to expand upon that foundation by delving into more advanced properties of π f ,λ

S ,
particularly in relation to the differentiability of the functional eV

λ,S f . This deeper analysis offers new
perspectives on its theoretical framework and behavior. The application of these results to nonconvex
variational inequalities will be addressed in a series of forthcoming papers.

2. Main results on the V-Moreau envelope eV
λ,S f

In the following proposition, we prove the local Lipschitz behavior of the V-Moreau envelope eV
λ,S f .

Proposition 2.1. Let X be a reflexive Banach space. Assume that f is bounded below on S by β ∈ R.
Then, for any x∗ ∈ X∗, the function eV

λ,S f is Lipschitz on every neighborhood of x∗, that is, for any
x∗ ∈ X∗ and for any δ > 0, there exists Kx∗,δ > 0 such that

|eV
λ,S f (y∗) − eV

λ,S f (z∗)| ≤ Kx∗,δ∥y∗ − z∗∥, ∀y∗, z∗ ∈ x∗ + δB∗.

Proof. Let x∗ ∈ X∗ and fix some δ > 0. Let ϵ ∈ (0, δ) and r := eV
λ,S f (x∗) ≥ β. Fix now any y∗, z∗ ∈

x∗ + δB∗. By definition of the infimum in the expression of eV
λ,S f , there exists sϵ ∈ S such that

eV
λ,S f (y∗) ≤ f (sϵ) +

1
2λ

V(y∗, sϵ) < eV
λ,S f (y∗) + ϵ.
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Then,

eV
λ,S f (z∗) − eV

λ,S f (y∗) ≤ eV
λ,S f (z∗) − f (sϵ) −

1
2λ

V(y∗, sϵ) + ϵ

≤ f (sϵ) +
1

2λ
V(z∗, sϵ) − f (sϵ) −

1
2λ

V(y∗, sϵ) + ϵ

≤
1

2λ
[
V(z∗, sϵ) − V(y∗, sϵ)

]
+ ϵ

≤
1

2λ

[
∥z∗∥2 − ∥y∗∥2 − 2⟨z∗ − y∗, sϵ⟩

]
+ ϵ

≤
1

2λ
(∥z∗∥ + ∥y∗∥ + 2∥sϵ∥)∥z∗ − y∗∥ + ϵ.

We need to find an upper bound of ∥sϵ∥. To do that, we use once again the definition of the infimum in
eV
λ,S f (x∗) to get an element xϵ ∈ S such that

f (xϵ) +
1

2λ
V(x∗, xϵ) < eV

λ,S f (x∗) + ϵ = r + ϵ.

From the definition of V , we have V(y∗, sϵ) = ∥y∗∥2 − 2⟨y∗, sϵ⟩ + ∥sϵ∥2. This gives

V(y∗, sϵ) ≥ ∥y∗∥2 − 2∥y∗∥∥sϵ∥ + ∥sϵ∥2

≥
[
∥sϵ∥ − ∥y∗∥

]2 .

Hence,

∥sϵ∥ − ∥y∗∥ ≤ |∥sϵ∥ − ∥y∗∥| ≤
√

V(y∗, sϵ).

Then, we obtain:

∥sϵ∥ ≤
√

V(y∗, sϵ) + ∥y∗∥

≤

√
2λeV

λ,S f (y∗) − 2λ f (yϵ) + 2λϵ + ∥x∗∥ + δ

≤

√
2λ

[
f (xϵ) +

1
2λ

V(x∗, xϵ)
]
− 2λ f (yϵ) + 2λϵ + ∥x∗∥ + δ

≤
√

V(y∗, xϵ) + 2λ f (xϵ) − 2λ f (yϵ) + 2λϵ + ∥x∗∥ + δ

≤

√
(∥y∗∥ + ∥xϵ∥)2 + 2λ f (xϵ) − 2λ f (yϵ) + 2λϵ + ∥x∗∥ + δ.

Observe that f (xϵ) < eV
λ,S f (x∗) + ϵ < r + ϵ and f (yϵ) ≥ β, and so we get

f (xϵ) − f (yϵ) < r + ϵ − β.
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Therefore,

∥sϵ∥ ≤
√

(∥x∗∥ + ∥xϵ∥ + δ)2 + 2λ(r + ϵ − β) + 2λϵ + ∥x∗∥ + δ

≤

√(
2∥x∗∥ +

√
V(x∗, xϵ) + δ

)2
+ 2λ(r + 2ϵ − β) + ∥x∗∥ + δ

≤

√(
2∥x∗∥ +

√
2λ(r + ϵ) + δ

)2
+ ϵ + ∥x∗∥ + δ

≤

√(
2∥x∗∥ +

√
2λ(r + δ) + δ

)2
+ δ + ∥x∗∥ + δ.

By taking Mδ,x∗ :=
√(

2∥x∗∥ +
√

2λ(r + δ) + δ
)2
+ δ + ∥x∗∥ + δ, we get an upper bound of ∥sϵ∥ in terms

of r, δ, and x∗. Thus, we can write

eV
λ,S f (z∗) − eV

λ,S f (y∗) ≤
1

2λ
(
∥z∗∥ + ∥y∗∥ + 2Mδ,x∗

)
∥z∗ − y∗∥ + ϵ

≤
1
λ

(
∥x∗∥ + Mδ,x∗ + δ

)
∥z∗ − y∗∥ + ϵ ≤ Kδ,x∗∥z∗ − y∗∥ + ϵ,

where Kδ,x∗ := 1
λ

(
∥x∗∥ + Mδ,x∗ + δ

)
. Taking ϵ → 0 and interchanging the roles of z∗ and y∗, we get

|eV
λ,S f (z∗) − eV

λ,S f (y∗)| ≤ Kδ,x∗∥z∗ − y∗∥, for any y∗, z∗ ∈ x∗ + δB∗.

This completes the proof. □

We recall from [5] the following result needed in the proof of the next theorem.

Proposition 2.2. Assume that X is a reflexive Banach space with smooth dual norm, and let S be any
closed nonempty set of X and f : S → R ∪ {∞} be any l.s.c. function. Then for any x∗ ∈ dom π

f ,λ
S , any

x̄ ∈ π f ,λ
S (x∗), and any t ∈ [0, 1), we have π f ,λ

S (J(x̄) + t(x∗ − J(x̄))) = {x̄}.

We prove the following result ensuring the existence and uniqueness of the generalized ( f , λ)-
projection on closed nonempty sets under natural assumptions on the Fréchet subdifferentiability of
the V-Moreau envelope.

Theorem 2.1. Assume that X is a reflexive Banach space with smooth dual norm, and let S be any
closed nonempty set of X and f : S → R ∪ {∞} be any l.s.c. function. Then the following assertions
hold.

1) If ∂FeV
λ,S f (x∗) , ∅, then the generalized ( f , λ)-projection of x∗ on S exists and is unique and

moreover ∂FeV
λ,S f (x∗) = { 1

λ

[
J∗x∗ − π f ,λ

S (x∗)
]
};

2) If π f ,λ
S (x∗) , ∅, then ∂FeV

λ,S f (x∗) ⊂ { 1
λ

[
J∗x∗ − π f ,λ

S (x∗)
]
};

3) ∂FeV
λ,S f (x∗) , ∅ if and only if eV

λ,S f is Fréchet differentiable at x∗.
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Proof. (1) Assume that ∂FeV
λ,S f (x∗) , ∅ and let y ∈ ∂FeV

λ,S f (x∗) and let ϵ > 0. By the definition of
∂FeV

λ,S f (x∗), there exists δ > 0 such that for any t ∈ (0, δ) and any v∗ ∈ B, we have

⟨y; tv∗⟩ ≤ eV
λ,S f (x∗ + tv∗) − eV

λ,S f (x∗) + ϵt.

By the definition of eV
λ,S f (x∗), for any n ≥ 1, the exists some yn ∈ S such that

eV
λ,S f (x∗) ≤ f (yn) +

1
2λ

V(x∗; yn) < eV
λ,S f (x∗) +

t
n
. (2.1)

Therefore,

⟨y; tv∗⟩ ≤ f (yn) +
1

2λ
V(x∗ + tv∗; yn) − f (yn) −

1
2λ

V(x∗; yn) +
t
n
+ ϵt

≤
1

2λ
[
V(x∗ + tv∗; yn) − V(x∗; yn)

]
+

t
n
+ ϵt

≤
1

2λ

[
∥x∗ + tv∗∥2 − ∥x∗∥2 − 2⟨tv∗; ; yn⟩

]
+

t
n
+ ϵt.

Thus,

⟨y +
1
λ

yn; v∗⟩ ≤
1

2λ

[
∥x∗ + tv∗∥2 − ∥x∗∥2

t

]
+

1
n
+ ϵ.

Since the norm of the dual space is smooth, we can take the limit t → 0+ to get

⟨y +
1
λ

yn; v∗⟩ ≤
1
λ
⟨J∗x∗; v∗⟩ +

1
n
+ ϵ,

and hence,

⟨y +
1
λ

[yn − J∗x∗]; v∗⟩ ≤
1
n
+ ϵ, ∀v∗ ∈ B∗,∀ϵ > 0,∀n ≥ 1.

This ensures that lim
n→∞
∥y+

1
λ

[yn − J∗x∗]∥ = 0, that is, yn → J∗x∗ − λy as n→ ∞. Set x̃ := J∗x∗ − λy, and
take the limit as n→ ∞ in the inequality (2.1), we obtain:

eV
λ,S f (x∗) = f (ỹ) +

1
2λ

V(x∗; ỹ),

which means that ỹ ∈ π f ,λ
S (x∗). The uniqueness can be shown easily and so the first assertion is proved.

(2) This assertion follows directly from (1). Indeed, if ∂FeV
λ,S f (x∗) = ∅, then we are done.

Otherwise, we assume that ∂FeV
λ,S f (x∗) , ∅, and so the assertion (1) ensures that ∂FeV

λ,S f (x∗) =
{ 1
λ

[
J∗x∗ − π f ,λ

S (x∗)
]
}. Consequently, for both cases, we have ∂FeV

λ,S f (x∗) ⊂ { 1
λ

[
J∗x∗ − π f ,λ

S (x∗)
]
}, and

so the proof of (2) is complete.
(3) Obviously, the Fréchet differentiability of eV

λ,S f ensures that ∂FeV
λ,S f (x∗) , ∅. So, we have to

prove the reverse implication. We assume that ∂FeV
λ,S f (x∗) , ∅, and we are going to prove that eV

λ,S f is
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Fréchet differentiable at x∗. Using the assertion (1), we get a generalized ( f , λ)-projection ȳ ∈ S , such
that

∂FeV
λ,S f (x∗) = {

1
λ

[
J∗x∗ − ȳ

]
}.

Thus, we have eV
λ,S f (x∗) = f (ȳ) + 1

2λV(x∗; ȳ). By the definition of the Fréchet subdifferential, there
exists δ > 0 such that for any t ∈ (0, δ) and any v∗ ∈ B∗, we have

⟨
1
λ

[
J∗x∗ − ȳ

]
; tv∗⟩ ≤ eV

λ,S f (x∗ + tv∗) − eV
λ,S f (x∗) + ϵt.

Hence,

t−1
[
eV
λ,S f (x∗ + tv∗) − eV

λ,S f (x∗)
]
− ⟨

1
λ

[
J∗x∗ − ȳ

]
; v∗⟩ ≥ −ϵ,

and hence, for any v∗ ∈ B∗ and any ϵ > 0,

lim inf
t→0+

t−1
[
eV
λ,S f (x∗ + tv∗) − eV

λ,S f (x∗)
]
≥ ⟨

1
λ

[
J∗x∗ − ȳ

]
; v∗⟩ − ϵ. (2.2)

On the other hand, we have, by the definition of eV
λ,S f ,

t−1
[
eV
λ,S f (x∗ + tv∗) − eV

λ,S f (x∗)
]
≤ t−1

[
1

2λ
V(x∗ + tv∗; ȳ) −

1
2λ

V(x∗; ȳ)
]

≤
1

2λ
t−1 [

V(x∗ + tv∗; ȳ) − V(x∗; ȳ)
]
,

and so,

lim sup
t→0+

t−1
[
eV
λ,S f (x∗ + tv∗) − eV

λ,S f (x∗)
]
≤

1
2λ

[
2⟨J∗x∗ − ȳ; v∗⟩

]
. (2.3)

Combining this inequality (2.3) with (2.2), and taking ϵ → 0+, we obtain the existence of the Fréchet
derivative of eV

λ,S f at x∗ and ∇FeV
λ,S f (x∗) = 1

λ

[
J∗x∗ − ȳ

]
. □

We prove in the next two theorems various characterizations of the continuous Fréchet
differentiability of the V-Moreau envelope eV

λ,S f over open sets. We need to recall the Kadec property
of the Banach space X, that is, for any sequence (xn)n in X, we have that (xn) is strongly convergent to
some limit x̄ if and only if (xn) is weakly convergent to x̄ and ∥xn∥ → ∥x̄∥.

Theorem 2.2. Assume that X is a reflexive Banach space with Kadec property and with smooth dual
norm. Let U be an open subset in X∗. Consider the following assertions:

1) eV
λ,S f is C1 on U;

2) eV
λ,S f is Fréchet differentiable on U;

3) eV
λ,S f is Fréchet subdifferentiable on U, that is, ∂FeV

λ,S f (x∗) , ∅,∀x∗ ∈ U;
4) π f ,λ

S is single-valued and norm-to-weak continuous on U;
5) π f ,λ

S is single-valued and norm-to-norm continuous on U.
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Then, the following implications and equivalences are true.

(1) ⇒ (2) ⇒ (4)
⇕ ⇑

(3) (5)

Proof. The implications (1)⇒ (2) and (5)⇒ (4) follow directly from the definitions. The equivalence
(2) ⇔ (3) follows from part (3) in Theorem 2.1. We have to prove the implication (2) ⇒ (4). We
assume that eV

λ,S f is Fréchet differentiable on U, and let x∗n be a sequence in U converging to some
point x∗ ∈ X∗. First, we prove that ∇FeV

λ,S f (x∗n) weakly converges to ∇FeV
λ,S f (x∗). Observe that

eV
λ,S f (x∗) = inf

y∈X

{
−

1
λ
⟨x∗; y⟩ + f (y) +

1
2λ

[
∥x∗∥2 + ∥y∥2)

]
+ ψS (y)

}
=
∥x∗∥2

2λ
− h(x∗),

with h(x∗) := sup
y∈X

{
1
λ
⟨x∗; y⟩ − f (y) −

∥y∥2

2λ
− ψS (y)

}
. The function h is clearly convex Fréchet

differentiable on U and so its derivative ∇Fh is norm-to-weak continuous on U, and so ∇Fh(x∗n) weakly
converges to ∇Fh(x∗). Since the norm of the dual space X∗ is smooth, we have ∇F ∥x∗n∥

2

2λ → ∇
F ∥x∗∥2

2λ and

consequently, we get that ∇FeV
λ,S f (x∗n) = ∇F ∥x∗n∥

2

2λ − ∇
Fh(x∗n) weakly converges to ∇F ∥x∗∥2

2λ − ∇
Fh(x∗) =

∇FeV
λ,S f (x∗). We use Theorem 2.1 to write ∇FeV

λ,S f (x∗n) = 1
λ

[
J∗x∗n − π

f ,λ
S (x∗n)

]
and ∇FeV

λ,S f (x∗) =
1
λ

[
J∗x∗ − π f ,λ

S (x∗)
]
. Therefore, we obtain the weak convergence of π f ,λ

S (x∗n) to π f ,λ
S (x∗), thereby satisfying

the assertion (4). □

This result extends Theorem 2.10 in [6] from the case f ≡ 0 to f . 0.
In order to get the equivalence between all the assertions in Theorem 2.2, we need an additional

assumption on the function f , which is the weak lower semicontinuity of f .

Theorem 2.3. Assume that X is a reflexive Banach space with Kadec property and with smooth dual
norm. Assume further that f is weak lower semicontinuous on U. Then, all the assertions in Theorem
2.2 are equivalent, that is,

eV
λ,S f is C1 on U;

⇕

eV
λ,S f is Fréchet differentiable on U;

⇕

eV
λ,S f is Fréchet subdifferentiable on U;

⇕

eV
λ,S f is single-valued and norm-to-norm continuous on U;

⇕

eV
λ,S f is single-valued and norm-to-weak continuous on U.

Proof. We have to prove the implications (2) ⇒ (1) and (4) ⇒ (5). We start with (4) ⇒ (5). Assume
that π f ,λ

S is single-valued and norm-to-weak continuous on U. Let x∗n be a sequence in U converging to

AIMS Mathematics Volume 9, Issue 10, 28589–28610.



28597

some point x∗ ∈ X∗. We have to prove that xn := π f ,λ
S (x∗n) converges to x̄ := π f ,λ

S (x∗). By assumption (4),
we have (xn) weakly converges to x̄. Using the local Lipschitz continuity of eV

λ,S f proved in Proposition
2.1, we can write

GV
λ, f (x∗n, xn) = eV

λ,S f (x∗n) → eV
λ,S f (x∗) = GV

λ, f (x∗, x̄).

Observe that

1
2λ
∥xn∥

2 = GV
λ, f (x∗n, xn) − f (xn) −

1
2λ
∥x∗n∥

2 +
1

2λ
⟨x∗n; xn⟩.

Taking the limit superior as n→ +∞ in this equality and using the weak l.s.c. of f , we get

1
2λ

lim sup
n→+∞

∥xn∥
2 = lim sup

n→+∞

[
GV
λ, f (x∗n, xn) − f (xn) −

1
2λ
∥x∗n∥

2 +
1

2λ
⟨x∗n; xn⟩

]
≤ GV

λ, f (x∗, x̄) + lim sup
n→+∞

[− f (xn)] −
1

2λ
∥x∗∥2 +

1
2λ
⟨x∗; x̄⟩

≤ GV
λ, f (x∗, x̄) − f (x̄) −

1
2λ
∥x∗∥2 +

1
2λ
⟨x∗; x̄⟩ =

1
2λ
∥x̄∥2.

On the other hand, we always have ∥x̄∥ ≤ lim inf
n→+∞

∥xn∥. Thus, we obtain lim
n→+∞

∥xn∥ = ∥x̄∥. Finally,
we use the fact that xn weakly converges to x̄ and ∥xn∥ converges to ∥x̄∥, and the Kadec property of
the space to deduce the convergence of xn to x̄, and so the proof of (5) is complete. We turn to prove
the implication (2) ⇒ (1). We assume that eV

λ,S f is Fréchet differentiable on U. We have to prove that
∇FeV

λ,S f is continuous on U. Let x∗n be a sequence in U converging to some point x∗ ∈ X∗, and we have
to prove that ∇FeV

λ,S f (x∗n) → ∇FeV
λ,S f (x∗). Using Theorem 2.1, we have the existence and uniqueness

of π f ,λ
S (x∗n) and

∇FeV
λ,S f (x∗n) =

1
λ

[
J∗x∗n − π

f ,λ
S (x∗n)

]
.

Similarly, we have

∇FeV
λ,S f (x∗) =

1
λ

[
J∗x∗ − π f ,λ

S (x∗)
]
.

Using the implications (2) ⇒ (4) and (4) ⇒ (5), we get the convergence of π f ,λ
S (x∗n) to π

f ,λ
S (x∗).

Consequently, we use the continuity of J∗ to deduce the following:

∇FeV
λ,S f (x∗n) =

1
λ

[
J∗x∗n − π

f ,λ
S (x∗n)

]
→

1
λ

[
J∗x∗ − π f ,λ

S (x∗)
]
= ∇FeV

λ,S f (x∗),

and so the proof of the theorem is complete.

3. Main results on the generalized ( f , λ)-projection π f ,λ
S

In this section, we need more regularity assumptions on the function f and the set S to establish our
main results on the generalized ( f , λ)-projection. First, we start with the generalized uniform V-prox-
regularity concept introduced and studied in [6].
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Definition 3.1. A nonempty closed subset S , in a reflexive smooth Banach space X, is called V-
uniformly generalized prox-regular if and only if there exists r > 0 such that ∀x ∈ S ,∀x∗ ∈ Nπ(S ; x)
(with x∗ , 0), we have x ∈ πS

(
J(x) + r x∗

∥x∗∥

)
.

Example 3.1.

1) Any closed convex set is generalized uniformly V-prox-regular with any positive number r > 0.
2) We state from [6] the following nonconvex example of generalized uniformly V-prox-regular sets.

Let x0 ∈ X with ∥x0∥ > 3. The set S := B ∪ (x0 + B) is nonconvex but it is generalized uniformly
V-prox-regular for some r > 0 (for its proof, we refer to Example 4.1 in [6]).

Remark 3.1.

1) It has been proved in Theorem 3.2 in [7] that for generalized uniformly V-prox-regular sets S , we
have Nπ(S ; x) = NLπ(S ; x), ∀x ∈ S .

2) From Theorem 3.3 in [7], we deduce that for bounded generalized uniformly V-prox-regular sets
S , there exists some r > 0 such that for all x ∈ S and any x∗ ∈ Nπ(S ; x) with ∥x∗∥ < 1, we have

⟨x∗; y − x⟩ ≤
1
2r

V(Jx; y), ∀y ∈ S . (3.1)

Now, we state the concept of V-prox-regular functions uniformly over sets.

Definition 3.2. Let f : X → R ∪ {∞} be a l.s.c. function, and let S ⊂ dom f be a nonempty set. We
say that f is V-prox-regular uniformly over S provided that there exists some r > 0 such that for any
x ∈ S and any x∗ ∈ ∂Lπ f (x):

⟨x∗; x′ − x⟩ ≤ f (x′) − f (x) +
1
2r

V(J(x); x′), ∀x′ ∈ S . (3.2)

Example 3.2.

1) Any l.s.c. convex function f is V-prox-regular with any positive number r > 0 uniformly over
any closed subset S ⊂ dom f .

2) The distance function dS associated with generalized uniformly V-prox-regular set S (in the sense
of Definition 3.1) is V-prox-regular uniformly over S with the same positive number r > 0.
Indeed, for any x ∈ S and any x∗ ∈ ∂LπdS (x), we have x∗ ∈ NLπ(S ; x) = Nπ(S ; x) and ∥x∗∥ ≤ 1.
We set y∗ := x∗

∥x∗∥+ϵ for ϵ > 0. We have y∗ ∈ Nπ(S ; x) with ∥y∗∥ < 1. Then, by (3.1), we have

⟨
x∗

∥x∗∥ + ϵ
; y − x⟩ = ⟨y∗; y − x⟩ ≤

1
2r

V(Jx; y), ∀y ∈ S . (3.3)

Thus,

⟨x∗; y − x⟩ ≤
∥x∗∥ + ϵ

2r
V(Jx; y)

≤ dS (y) − dS (x) +
1 + ϵ

2r
V(Jx; y), ∀y ∈ S . (3.4)
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Taking ϵ → 0+ gives

⟨x∗; y − x⟩ ≤ dS (y) − dS (x) +
1
2r

V(Jx; y), ∀y ∈ S . (3.5)

This ensures by definition that dS is a V-prox-regular function uniformly over S with the same constant
r > 0.

We start by proving the following important result for this class of V-prox-regular functions
uniformly over sets. It proves the r-hypomonotony of ∂Lπ f uniformly over sets for V-prox-regular
functions f uniformly over closed sets.

Proposition 3.1. Assume that f is V-prox-regular uniformly over S ⊂ dom f with constant r > 0.
Then for any x1, x2 ∈ S and any y∗1 ∈ ∂

Lπ f (x1) and y∗2 ∈ ∂
Lπ f (x2), we have

⟨y∗2 − y∗1; x2 − x1⟩ ≥ −
1
r
⟨J(x2) − J(x1); x2 − x1⟩.

Proof. Let x1, x2 ∈ S ⊂ dom f and y∗1 ∈ ∂
Lπ f (x1) and y∗2 ∈ ∂

Lπ f (x2). Then, we have, by the V-prox-
regularity of f uniformly over S ,

⟨y∗1; x2 − x1⟩ ≤ f (x2) − f (x1) +
1
2r

V(J(x1); x2),

and
⟨y∗2; x1 − x2⟩ ≤ f (x1) − f (x2) +

1
2r

V(J(x2); x1).

Adding these two inequalities yields

⟨y∗1 − y∗2; x2 − x1⟩ ≤
1
2r

[V(J(x2); x1) + V(J(x1); x2)].

Notice that we always have

V(J(x2); x1) + V(J(x1); x2) = 2⟨J(x2) − J(x1); x2 − x1⟩.

Thus,

⟨y∗1 − y∗2; x2 − x1⟩ ≤
1
r
⟨J(x2) − J(x1); x2 − x1⟩.

This completes the proof. □

Lemma 3.1. Let S be any closed nonempty set in a reflexive Banach space X, and let f : S → R∪{∞}
be any l.s.c. function. Then for any (x∗, x) in the graph of π f ,λ

S , we have

x∗ ∈ J(x) + λ∂Lπ f (x) + NLπ(S ; x).

Proof. Let x∗ ∈ X∗ and x ∈ π f ,λ
S (x∗). Then, by the definition of π f ,λ

S , we have

f (x) +
1

2λ
V(x∗, x) ≤ f (y) +

1
2λ

V(x∗, y), ∀y ∈ S .
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Hence,
1

2λ

[
2⟨x∗; y − x⟩ + ∥x∥2 − ∥y∥2

]
≤ f (y) − f (x), ∀y ∈ S . (3.6)

Observe that

V(J(x), y) = ∥x∥2 − 2⟨J(x); y⟩ + ∥y∥2

= ∥y∥2 − ∥x∥2 + 2⟨J(x); x⟩ − 2⟨J(x); y⟩

= ∥y∥2 − ∥x∥2 + 2⟨J(x); x − y⟩.

Hence,
∥x∥2 − ∥y∥2 = −2⟨J(x); y − x⟩ − V(J(x), y),

and so the inequality (3.6) becomes

1
2λ

[
2⟨x∗ − J(x); y − x⟩ − V(J(x), y)

]
≤ f (y) − f (x), ∀y ∈ S .

Thus,
1
λ
⟨x∗ − J(x); y − x⟩ ≤ f (y) − f (x) +

1
2λ

V(J(x), y), ∀y ∈ S ,

and so,

⟨
1
λ

[x∗ − J(x)]; y − x⟩ ≤ [ f + ψS ](y) − [ f + ψS ](x) +
1

2λ
V(J(x), y), ∀y ∈ X.

This ensures, by the definition of ∂π, that

1
λ

[x∗ − J(x)] ∈ ∂π[ f + ψS ](x) ⊂ ∂Lπ[ f + ψS ](x)

⊂ ∂Lπ f (x) + ∂LπψS (x) ⊂ ∂Lπ f (x) + NLπ(S ; x),

and hence, x∗ ∈ J(x) + λ∂Lπ f (x) + NLπ(S ; x). This completes the proof. □

We recall from [4] the following density theorem for the generalized ( f , λ)-projection on closed
nonempty sets.

Theorem 3.2. Assume that X is a reflexive Banach space with smooth dual norm and let S be any
closed nonempty set of X, and let f : S → R ∪ {∞} be any l.s.c. function. Then, the set of points in X∗

admitting unique generalized ( f , λ)-projection on S is dense in X∗, that is, for any x∗ ∈ X∗, there exists
x∗n → x∗ with π f ,λ

S (x∗n) , ∅,∀n.

Now, we are ready to prove one of the main results in this paper. We define the argmin of a function
f over a given set S as the set of elements in S that achieve the global minimum of f in S , that is,

arg min
S

( f ) := {x ∈ S : f (x) = min
s∈S

f (s)}.

Also, we define the set:
UV,λ

S , f (r) := {x∗ ∈ X∗ : eV
λ,S f (x∗) ≤ r2}.
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Notice that for any x ∈ arg min
S

( f ), we have eV
λ,S f (J(x)) = f (x). Indeed, for any x ∈ arg min

S
( f ), we

have f (x) ≤ f (y),∀y ∈ S , and so ∀λ ≥ 0

f (x) = f (x) +
1

2λ
V(J(x); x) ≤ f (y) +

1
2λ

V(J(x); y), ∀y ∈ S .

This ensures that f (x) ≤ eV
λ,S f (J(x)). Since the reverse inequality is always valid, we obtain the desired

equality. We state and prove the Hölder continuity of the generalized ( f , λ)-projection π f ,λ
S .

Theorem 3.3. Let X be a q-uniformly convex and p-uniformly smooth Banach space. Assume that the
following assumptions hold:

1) S is generalized uniformly V-prox-regular with constant r2 > 0;
2) f is V-prox-regular uniformly over S with constant r1 > 0;
3) f is L-locally Lipschitz over S , that is, for any x̄ ∈ S , there exists δ > 0 such that

| f (x) − f (y)| ≤ L∥x − y∥, ∀x, y ∈ x̄ + δB;

4) f is bounded from below by some real number β ∈ R;
5) arg min

S
( f ) , ∅;

6) λ ∈
(
0,min

{
r2
8L ,

r1
2

})
.

Then, there exist α0 ≥ 0 and r0 ≥ 0 such that for any α > max{α0,
√

2λ(r2
2 − β)}, β ≤ 16cα2

λ

(
r2

64α

) p
p−1 ,

and any r′ ∈

r0,min

r2,

√
16cα2

λ

(
r2

64α

) p
p−1
+ β


, we have that the generalized ( f , λ)-projection π f ,λ

S is

single-valued and Hölder continuous with coefficient 1
q−1 on UV,λ

S , f (r
′) ∩ α int(B∗), i.e., for some γ > 0,

we have
∥π

f ,λ
S (x∗1) − π f ,λ

S (x∗2)∥ ≤ γ∥x∗1 − x∗2∥
1

q−1 , ∀x∗1, x
∗
2 ∈ UV,λ

S , f (r
′) ∩ α int(B∗). (3.7)

Proof. First, we choose some α0 ≥ 0 and some r0 ≥ 0 so that

UV,λ
S , f (r

′) ∩ α int(B∗) , ∅, ∀α > α0,∀r ≥ r0.

Indeed, by assumption, we have arg min
S

( f ) , ∅, that is, there exists z0 ∈ arg min
S

( f ). Set α0 := ∥z0∥

and r0 :=
√

f (z0), if f (z0) > 0, and r0 := 0, if f (z0) ≤ 0. Clearly, J(z0) ∈ UV,λ
S , f (r

′) ∩ α int(B∗), and so
UV,λ

S , f (r
′) ∩ α int(B∗) , ∅, ∀α > α0,∀r ≥ r0.

Fix now any α > max{α0,
√

2λ(r2
2 + β)}, β ≤ 16cα2

λ

(
r2

64α

) p
p−1 , and any r′ ∈r0,min

r2,

√
16cα2

λ

(
r2

64α

) p
p−1
− β


. Then, UV,λ

S , f (r
′) ∩ α int(B∗) , ∅. We divide our proof into

two steps.

Step 1. In the first step, we prove the conclusion of the theorem for any x∗1, x
∗
2 ∈ UV,λ

S , f (r
′) ∩ α int(B∗)

with π f ,λ
S (x∗i ) , ∅, i = 1, 2, that is, x∗1, x

∗
2 ∈ UV,λ

S , f (r
′) ∩ dom π

f ,λ
S ∩ α int(B∗). Fix any two points x∗1, x

∗
2 ∈
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UV,λ
S , f (r

′) ∩ dom π
f ,λ
S ∩ α int(B∗). Then, there exist xi ∈ π

f ,λ
S (x∗i ), i = 1, 2. Without loss of generality, we

assume that x1 , x2. We have to prove that for some γ > 0,

∥x1 − x2∥ ≤ γ∥x∗1 − x∗2∥
1

q−1 . (3.8)

By Lemma 3.1, there exist y∗i ∈ ∂
Lπ f (xi) (i = 1, 2) such that z∗i := x∗i − J(xi) − λy∗i ∈ NLπ(S ; xi) =

Nπ(S ; xi), i = 1, 2 (by Part (1) in Remark 3.1). So, by the generalized uniform V-prox-regularity of S
with ratio r2, we have

{xi} = πS

(
Jxi + r2

z∗i
∥z∗i ∥

)
, for i = 1, 2.

Then by the definition of πS , we have

V(Jxi + r2
z∗i
∥z∗i ∥

, xi) ≤ V(Jxi + r2
z∗i
∥z∗i ∥

, z), ∀z ∈ S ,

and so,
V(w∗i , xi) − V(w∗i , z) ≤ 0, ∀z ∈ S ,

with w∗i := Jxi + r2
z∗i
∥z∗i ∥

, i = 1, 2. Since the function V(w∗i ; ·) is convex differentiable on X and its

derivative is given by ∇FV(w∗i ; ·)(z) = 2
[
Jz − w∗i

]
, then, we can write

2⟨Jz − w∗i ; y − z⟩ ≤ V(w∗i ; y) − V(w∗i ; z), ∀y, z ∈ X, i = 1, 2.

Taking y = xi and z ∈ S in the previous inequality yields

2⟨Jz − w∗i ; xi − z⟩ ≤ V(w∗i ; xi) − V(w∗i ; z) ≤ 0.

Hence,

⟨Jz − Jxi − r2
z∗i
∥z∗i ∥

; xi − z⟩ ≤ 0, for i = 1, 2, ∀z ∈ S

and hence,

⟨Jz − Jxi; z − xi⟩ ≥ r2⟨
z∗i
∥z∗i ∥

; z − xi⟩ for i = 1, 2, ∀z ∈ S .

Thus, by taking z = x2 and z = x1, respectively, we obtain:

∥z∗1∥
r2
⟨Jx2 − Jx1; x2 − x1⟩ ≥ ⟨z∗1; x2 − x1⟩, (3.9)

and

∥z∗2∥
r2
⟨Jx1 − Jx2; x1 − x2⟩ ≥ ⟨z∗2; x1 − x2⟩. (3.10)

Now, we turn to the bound of z∗i , for i = 1, 2. First, observe that ∥x∗i ∥ < α. Since f is locally Lipschitz
over S with constant L, we have ∥y∗i ∥ ≤ L. Also, we have for i = 1, 2,

∥xi∥ ≤ ∥x∗i ∥ +
√

V(x∗i , xi)
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≤ α +
√

2λ[eV
λ,S f (x∗i ) − f (xi)]

≤ α +
√

2λ(r′2 + β)

≤ α +
√

2λ(r2
2 + β) < 2α.

Let M := 2α. Since X is p-uniformly smooth, the dual space X∗ is p′-uniformly convex with p′ = p
p−1 .

Thus, by Part (3) in Proposition 1.1, there exists some c > 0 depending on the dual space X∗ such that

V(x∗; J∗(y∗)) ≥ 8C2c
∥x∗ − y∗∥p

′

(4C)p′ , ∀x∗, y∗ ∈ MB∗,

where C :=
√
∥x∗∥2+∥y∗∥2

2 . Set c̄ := 4p′−1 Mp′−2

c . Since for i = 1, 2, ∥J(xi)∥ = ∥xi∥ ≤ M and ∥x∗i ∥ ≤ M, we

have C =
√
∥x∗i ∥

2+∥J(xi)∥2

2 ≤ M. Thus,

∥x∗i − J(xi)∥p
′

≤
4p′−1Cp′−2

2c
V(x∗i ; xi) ≤

c̄
2

V(x∗i ; xi)

≤ c̄λ[eV
λ,S f (x∗i ) − f (xi)]

≤ c̄λ[r′2 − β].

Thus, for i = 1, 2,

∥z∗i ∥ = ∥x
∗
i − J(xi) − λy∗i ∥

≤ ∥x∗i − J(xi)∥ + λ∥y∗i ∥

≤
[
c̄λ(r′2 − β)

] 1
p′
+ λL <

r2

4
,

where the last inequality follows from our assumptions on λ and r′. Thus, the two inequalities (3.9)–
(3.10) become

1
4
⟨Jx2 − Jx1; x2 − x1⟩ ≥

∥z∗1∥
r2
⟨Jx2 − Jx1; x2 − x1⟩ ≥ ⟨z∗1; x2 − x1⟩;

1
4
⟨Jx1 − Jx2; x1 − x2⟩ ≥

∥z∗2∥
r2
⟨Jx1 − Jx2; x1 − x2⟩ ≥ ⟨z∗2; x1 − x2⟩.

Adding these two inequalities gives

1
2
⟨Jx2 − Jx1; x2 − x1⟩ ≥ ⟨z∗1 − z∗2; x2 − x1⟩
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= ⟨(x∗1 − J(x1) − λy∗1) − (x∗2 − J(x2) − λy∗2); x2 − x1⟩

= ⟨x∗1 − x∗2; x2 − x1⟩ + ⟨J(x2) − J(x1); x2 − x1⟩

+ λ⟨y∗2 − y∗1; x2 − x1⟩.

Hence,

1
2
⟨Jx2 − Jx1; x2 − x1⟩ ≤ ⟨x∗2 − x∗1; x2 − x1⟩ − λ⟨y∗2 − y∗1; x2 − x1⟩.

On the other hand, we have by the r1-hypomonotony of f uniformly over S proved in Proposition 3.1,
we have

−⟨y∗2 − y∗1; x2 − x1⟩ ≤
1
r1
⟨J(x2) − J(x1); x2 − x1⟩.

Therefore,

1
2
⟨Jx2 − Jx1; x2 − x1⟩ ≤ ⟨x∗2 − x∗1; x2 − x1⟩ +

λ

r1
⟨J(x2) − J(x1); x2 − x1⟩,

which ensures that

(
1
2
−
λ

r1
)⟨Jx2 − Jx1; x2 − x1⟩ ≤ ⟨x∗2 − x∗1; x2 − x1⟩ ≤ ∥x2 − x1∥∥x∗1 − x∗2∥.

Using the assumption that X is q-uniformly convex, Part (1) in Proposition 1.1, and the fact that ∥xi∥ ≤

M, we have for some positive constant KM > 0

⟨Jx2 − Jx1; x2 − x1⟩ ≥ KM∥x2 − x1∥
q,

and so,

∥x2 − x1∥∥x∗1 − x∗2∥ ≥
KM(r1 − 2λ)

2r1
∥x2 − x1∥

q.

Thus,
∥x2 − x1∥ ≤ γ∥x∗2 − x∗1∥

1
q−1 ,

with γ :=
(

2r1
KM(r1−2λ)

) 1
q−1

> 0. This completes the proof of the first step.
Step 2. We are going to prove that UV,λ

S , f (r
′) ∩ α int(B∗) ⊂ dom π

f ,λ
S with α and r′ as in Step 1. Let

z∗ ∈ UV,λ
S , f (r

′) ∩ α int(B∗), and choose δ > 0 so that z∗ + δB∗ ⊂ UV,λ
S , f (r

′) ∩ α int(B∗). Let η ∈ (0, δ2 ) and
fix any x∗ ∈ z∗ + ηB∗ and any k ≥ 1. By the density theorem stated in Theorem 3.2, we can choose,
for any n ≥ k, some x∗n ∈ x∗ + 1

nB∗ and yn ∈ π
f ,λ
S (x∗n). For n sufficiently large, we have 1

n < δ
2 , and

hence, we obtain x∗n ∈ z∗ + (η + 1
n )B∗ ⊂ z∗ + δB∗ ⊂ UV,λ

S , f (r
′) ∩ α int(B∗). Clearly, (x∗n)n is a sequence in

UV,λ
S , f (r

′) ∩ α int(B∗) ∩ dom π
f ,λ
S . Then by Step 1, we can write for any n,m ≥ k

∥yn − ym∥ ≤ γ∥x∗n − x∗m∥
1

q−1 .
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Since the sequence (x∗n)n is convergent to x∗, then the sequence (yn)n is a Cauchy sequence in X, and
hence, it converges to some limit ȳ ∈ S . By construction, we have yn ∈ π

f ,λ
S (x∗n), that is,

f (yn) +
1

2λ
V(x∗, yn) ≤ f (s) +

1
2λ

V(x∗n, s), ∀s ∈ S .

Using the continuity of V and the Lipschitz continuity of f over S , and the convergence of x∗n to x∗ and
yn to ȳ, we obtain:

f (ȳ) +
1

2λ
V(x∗, ȳ) ≤ f (s) +

1
2λ

V(x∗, s), ∀s ∈ S ,

which means by definition that ȳ ∈ π f ,λ
S (x∗), that is, x∗ ∈ dom π

f ,λ
S , and hence, z∗ + ηB∗ ⊂ dom π

f ,λ
S . This

ensures that UV,λ
S , f (r

′)∩α int(B∗) ⊂ domπ f ,λ
S , that is, UV,λ

S , f (r
′)∩α int(B∗)∩dom π

f ,λ
S = UV,λ

S , f (r
′)∩α int(B∗).

This equality with Step 1 completes the proof of the Hölder continuity of π f ,λ
S over UV,λ

S , f (r
′)∩α int(B∗).

We end the proof of the theorem by proving the single-valuedness of π f ,λ
S on UV,λ

S , f (r
′)∩α int(B∗). Let x∗ ∈

UV,λ
S , f (r

′) ∩ α int(B∗) with two generalized ( f , λ)-projections x1, x2 ∈ π
f ,λ
S (x∗). Then the inequality (3.8)

gives ∥x1 − x2∥ ≤ γ∥x∗ − x∗∥
1

q−1 = 0, and hence x1 = x2. This completes the proof. □

First, we derive straight-forwardly the following particular case when f = 0 proved in Theorem 4.4
in [6]. In this case, we have β = 0, L = 0, r1 = +∞, arg min

S
( f ) = S , and we take λ = 1

2 .

Theorem 3.4. Let X be a q-uniformly convex and p-uniformly smooth Banach space. Assume that S is
generalized uniformly V-prox-regular with constant r2 > 0. Then, there exists α0 ≥ 0 such that for any

α > max{α0, r2} and any r′ ∈

0,min

r2, 4α

√
2c

(
r2

64α

) p
p−1


, we have that the generalized projection

πS is single-valued and Hölder continuous with coefficient 1
q−1 on UV

S (r′) ∩ α int(B∗), i.e., for some
γ > 0, we have

∥πS (x∗1) − πS (x∗2)∥ ≤ γ∥x∗1 − x∗2∥
1

q−1 , ∀x∗1, x
∗
2 ∈ UV

S (r′) ∩ α int(B∗). (3.11)

The convex case when f is a convex function and S is a closed convex set in dom f is deduced from
Theorem 3.3 as follows: First, we notice that any convex function is V-prox-regular with r1 = +∞

uniformly over any closed subset in its domain and any closed convex set is generalized uniformly
V-prox-regular with r2 = +∞.

Theorem 3.5. Let X be a q-uniformly convex and p-uniformly smooth Banach space and let λ > 0.
Assume that S is a closed convex set and that f is convex L-Lipschitz over S . Assume that f is bounded
from below by β ∈ R. Then for any α ≥ 0, the generalized ( f , λ)-projection π f ,λ

S is single-valued and
Hölder continuous with coefficient 1

q−1 on α int(B∗), i.e., for some γ > 0, we have

∥π
f ,λ
S (x∗1) − π f ,λ

S (x∗2)∥ ≤ γ∥x∗1 − x∗2∥
1

q−1 , ∀x∗1, x
∗
2 ∈ α int(B∗). (3.12)

We have to mention that even in the convex case, the best result obtained on the ( f , λ)-projection
has been proved in Theorem 3.4 in [17] in which the authors proved the continuity (not the Hölder
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continuity) under the positive homogenous assumption on the function f and the compactness
assumption on S . These two very strong assumptions are not needed in our proof.

Now, we are going to study the local property of the generalized ( f , λ)-projection, that is, for a given
ϵ > 0, a closed subset S , and a given point x̄ ∈ arg minS f , we are interested in the localization of
the generalized ( f , λ)-projection of the elements x∗ in the ϵ-neighborhood of J(x̄). First, we prove the
following technical result.

Proposition 3.2. Let M > 0 such that arg min
S

f ∩ MB , ∅. Then for any x∗ ∈ MB∗, we have

eV
λ,S f (x∗) = eV

λ,S∩3MB f (x∗) and π
f ,λ
S (x∗) = π f ,λ

S∩3MB(x∗).

Proof. Let x0 ∈ arg min
S

f ∩ MB , ∅. Then, x0 ∈ S ∩ MB with

f (x0) = inf
x∈S

f (x) ≤ inf
x∈A

f (x), for any A ⊂ S .

Hence,
f (x0) ≤ inf

x∈S \3MB
f (x). (3.13)

Fix now any y ∈ S with ∥y∥ > 3M. Then, we have

f (y) +
1

2λ
V(x∗; y) ≥ f (y) +

1
2λ

(∥y∥ − ∥x∗∥)2

≥ f (y) +
1

2λ
(3M − M)2 = f (y) +

2M2

λ
.

Taking the infimum over all y ∈ S \ 3MB and using the inequality (3.13), we obtain:

eV
λ,S \3MB f (x∗) = inf

y∈S \3MB

{
f (y) +

1
2λ

V(x∗; y)
}

≥ inf
y∈S \3MB

f (y) +
2M2

λ
≥ f (x0) +

2M2

λ
. (3.14)

On the other hand, we have

eV
λ,S∩MB f (x∗) = inf

y∈S∩MB

{
f (y) +

1
2λ

V(x∗; y)
}

≤ f (x0) +
1

2λ
V(x∗; x0)

≤ f (x0) +
1

2λ
(∥x∗∥ + ∥x0∥)

2

≤ f (x0) +
1

2λ
(M + M)2

= f (x0) +
2M2

λ
. (3.15)
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Combining this inequality with (3.14), we get

eV
λ,S∩MB f (x∗) ≤ f (x0) +

2M2

λ
≤ eV

λ,S \3MB f (x∗).

Therefore,

eV
λ,S f (x∗) = inf

{
eV
λ,S∩3MB f (x∗); eV

λ,S \3MB f (x∗)
}

≥ inf
{
eV
λ,S∩3MB f (x∗); eV

λ,S∩MB f (x∗)
}

≥ eV
λ,S∩3MB f (x∗)

≥ eV
λ,S f (x∗).

This completes the proof. □

We deduce the following proposition.

Proposition 3.3. Assume that X is a q-uniformly convex Banach space. Let S be a closed nonempty
set in X with x̄ ∈ arg min

S
f and let ϵ > 0. Let M := ∥x̄∥ + ϵ, ϵ1 := cϵq

8q−1 Mq−2 , and

Nϵ1,
ϵ
2
(Jx̄) := {x∗ ∈ X∗ : V(x∗, x̄) < ϵ1 and ∥J∗x∗ − x̄∥ <

ϵ

2
}.

Then, for any x∗ ∈ Nϵ1,
ϵ
2
(Jx̄), we have

eV
λ,S f (x∗) = eV

λ,S∩(x̄+ϵB) f (x∗) and π
f ,λ
S (x∗) = π f ,λ

S∩(x̄+ϵB)(x∗).

Proof. Fix ϵ > 0 and x̄ ∈ arg minS f and let M := ∥x̄∥+ϵ and ϵ1 := cϵq

8q−1 Mq−2 , where c > 0 is the constant
given in the definition of the q-uniform convexity of X.
Set

Nϵ1,
ϵ
2
(Jx̄) := {x∗ ∈ X∗ : V(x∗, x̄) < ϵ1 and ∥J∗x∗ − x̄∥ <

ϵ

2
}.

Then,
(x̄ + ϵB) ∩ S ⊂ MB and Nϵ1,

ϵ
2
(Jx̄) ⊂ MB∗.

Using Part (3) in Proposition 1.1, we have for any x∗ ∈ Nϵ1,
ϵ
2
(Jx̄) and any y ∈ S ∩ MB

V(x∗; y) ≥
2c

4q−1Mq−2 ∥J
∗(x∗) − y∥q. (3.16)

Observe that (x̄+ϵB)∩S∩3MB = (x̄+ϵB)∩S . Take any x∗ ∈ Nϵ1,
ϵ
2
(Jx̄) and any y ∈ [S∩3MB]\(x̄+ϵB).

Then, we have

f (y) +
1

2λ
V(x∗; y) ≥ f (y) +

1
2λ

c̄∥J∗(x∗) − y∥q

≥ f (y) +
c̄

2λ
(∥y − x̄∥ − ∥J∗(x∗) − x̄∥)q
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≥ f (y) +
c̄

2λ

(
ϵ −

ϵ

2

)q
= f (y) +

ϵ1

2λ

≥ f (y) +
1

2λ
V(x∗; x̄). (3.17)

Taking the infimum over all y ∈ [S ∩ 3MB] \ (x̄ + ϵB), we obtain:

eV
λ,[S∩3MB]\(x̄+ϵB) f (x∗) ≥ inf

y∈[S∩3MB]\(x̄+ϵB)
f (y) +

1
2λ

V(x∗; x̄)

≥ inf
y∈S

f (y) +
1

2λ
V(x∗; x̄)

≥ f (x̄) +
1

2λ
V(x∗; x̄). (3.18)

Hence,

eV
λ,S∩3MB f (x∗) = inf

{
eV
λ,[S∩3MB]∩(x̄+ϵB) f (x∗); eV

λ,[S∩3MB]\(x̄+ϵB) f (x∗)
}

≥ inf
{

eV
λ,S∩(x̄+ϵB) f (x∗); f (x̄) +

1
2λ

V(x∗; x̄)
}

≥ eV
λ,S∩(x̄+ϵB) f (x∗)

≥ eV
λ,S f (x∗).

On the other side, since x̄ ∈ arg min
S

f and x̄∥ ≤ M, we have arg min
S

f ∩ MB , ∅. Consequently, we

obtain by Proposition 3.2, eV
λ,S∩3MB f (x∗) = eV

λ,S f (x∗), which ensures the equality

eV
λ,S f (x∗) = eV

λ,S∩(x̄+ϵB) f (x∗), x∗ ∈ Nϵ1,
ϵ
2
(Jx̄).

Thus, the proof is achieved. □

Observe that Nϵ1,
ϵ
2
(Jx̄) is an open neighborhood of J(x̄) in X∗. So, for any ϵ > 0, we can find some

constant δ > 0 such that J(x̄) + δB ⊂ Nϵ1,
ϵ
2
(Jx̄). Therefore, we can state the following localization

theorem.

Theorem 3.6. Assume that X is a q-uniformly convex Banach space. Let S be a closed nonempty set
in X with x̄ ∈ arg min

S
f ∩ MB. Then for any ϵ > 0, we can find some constant δ > 0 such that for any

x∗ ∈ J(x̄) + δB, we have

eV
λ,S f (x∗) = eV

λ,S∩(x̄+ϵB) f (x∗) and π
f ,λ
S (x∗) = π f ,λ

S∩(x̄+ϵB)(x∗).

4. Conclusions

In this paper, we introduced and explored an appropriate extension of the well-known Moreau
envelope. Taking into account the nice and favorable properties of the functional V in uniformly
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smooth and uniformly convex Banach spaces, we defined the V-Moreau envelope based on V . Within
the framework of reflexive Banach spaces, we established several important properties of the V-Moreau
envelope. Furthermore, under the additional assumptions of uniform smoothness and convexity of
the space, we demonstrated the Hölder continuity of the generalized ( f , λ)-projection. Several key
properties of both the V-Moreau envelope and the generalized ( f , λ)-projection were also proven.

The convex case in Theorem 3.5 presents a novel result. It is noteworthy that, even in the convex
case, the best result regarding the ( f , λ)-projection was shown in Theorem 3.4 of [17], where the
authors established continuity under two strong conditions: the positive homogeneity of the function f
and the compactness of S . In contrast, our proof avoids these restrictive assumptions.

For future research, we are focusing on applying our results on the V-Moreau envelope and the
generalized ( f , λ)-projection to problems such as nonconvex variational inequalities and nonconvex
complementarity problems in Banach spaces. Another potential research direction is extending our
results to nonreflexive Banach spaces.
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