Research article

A construction of strongly regular Cayley graphs and their applications to codebooks

  • Received: 15 November 2023 Revised: 12 December 2023 Accepted: 21 December 2023 Published: 27 December 2023
  • MSC : 94B05, 11T23, 11T24, 12E20

  • In this paper, we give a kind of strongly regular Cayley graphs and a class of codebooks. Both constructions are based on choosing subsets of finite fields, and the main tools that we employed are Gauss sums. In particular, these obtained codebooks are asymptotically optimal with respect to the Welch bound and they have new parameters.

    Citation: Yang Yan, Xingguo Zhang, Rize Jin, Limin Zhou. A construction of strongly regular Cayley graphs and their applications to codebooks[J]. AIMS Mathematics, 2024, 9(2): 2672-2683. doi: 10.3934/math.2024132

    Related Papers:

  • In this paper, we give a kind of strongly regular Cayley graphs and a class of codebooks. Both constructions are based on choosing subsets of finite fields, and the main tools that we employed are Gauss sums. In particular, these obtained codebooks are asymptotically optimal with respect to the Welch bound and they have new parameters.



    加载中


    [1] R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs, Pac. J. Math., 13 (1963), 389–419. Available from: https://msp.org/pjm/1963/13-2/pjm-v13-n2-p04-s.pdf.
    [2] P. J. Cameron, Strongly regular graphs, Selected Topics in Graph Theory, New York: Academic Press, 1978,337–360. Available from: http://vlsicad.eecs.umich.edu/BK/SAUCY/papers/srg_cameron.pdf.
    [3] A. E. Brouwer, J. H. Van Lint, Strongly regular graphs and partial geometries, Enumeration and Designs, New York: Academic Press, 2022. Available from: https://pure.tue.nl/ws/files/2394798/595248.pdf.
    [4] A. E. Brouwer, R. M. Wilson, Q. Xiang, Cyclotomy and strongly regular graphs, J. Algebr. Comb., 10 (1999), 25–28. https://doi.org/10.1023/A:1018620002339 doi: 10.1023/A:1018620002339
    [5] T. Feng, Q. Xiang, Strongly regular graphs from unions of cyclotomic classes, J. Combin. Theory B, 102 (2012), 982–995. https://doi.org/10.1016/j.jctb.2011.10.006 doi: 10.1016/j.jctb.2011.10.006
    [6] T. Feng, K. Momihara, Q. Xiang, Constructions of strongly regular Cayley graphs and skew Hadamard difference sets from cyclotomic classes, Combinatorica, 35 (2015), 413–434. https://doi.org/10.1007/s00493-014-2895-8 doi: 10.1007/s00493-014-2895-8
    [7] P. J. Cameron, J. H. van Lint, Designs, graphs, codes and their links, Cambridge: Cambridge University Press, 1991.
    [8] J. M. Goethals, J. J. Seidel, Strongly regular graphs derived from combinatorial design, Geom. Combin., 1991, 44–61.
    [9] L. Welch, Lower bounds on the maximum cross correlation of signals, IEEE T. Inform. Theory, 20 (1974), 397–399. https://doi.org/10.1109/TIT.1974.1055219 doi: 10.1109/TIT.1974.1055219
    [10] Q. Wang, Y. Yan, Asymptotically optimal codebooks derived from generalised bent functions, IEEE Access, 8 (2020), 54905–54909. https://doi.org/10.1109/ACCESS.2020.2980330 doi: 10.1109/ACCESS.2020.2980330
    [11] W. Lu, X. Wu, X. Cao, Three constructions of asymptotically optimal codebooks via multiplicative characters of finite fields, Adv. Math. Commun., 2022, 1–9. https://doi.org/10.3934/amc.2022091
    [12] Y. Yan, Y. Yao, Z. Chen, Q. Wang, Two new families of asymptotically optimal codebooks from characters of cyclic groups, IEICE T. Fund. Electr., E104 (2021), 1027–1032. https://doi.org/10.1587/transfun.2020EAP1124 doi: 10.1587/transfun.2020EAP1124
    [13] R. Lidl, H. Niederreiter, Finite fields, Cambridge: Cambridge University Press, 1997. Available from: https://dl.acm.org/doi/10.5555/248301.
    [14] T. Helleseth, A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE T. Inform. Theory, 52 (2006), 2018–2032. Available from: http://www.ii.uib.no/publikasjoner/texrap/ps/2005-310.ps.
    [15] C. Ding, T. Feng, A generic construction of complex codebooks meeting the Welch bound, IEEE T. Inform. Theory, 53 (2007), 4245–4250. https://doi.org/10.1109/TIT.2007.907343 doi: 10.1109/TIT.2007.907343
    [16] C. Li, Q. Yue, Y. Huang, Two families of nearly optimal codebooks, Design. Code. Cryptogr., 75 (2015), 43–57. https://doi.org/10.1007/s10623-013-9891-7 doi: 10.1007/s10623-013-9891-7
    [17] G. Luo, X. Cao, Two constructions of asymptotically optimal codebooks, Cryptogr. Commun., 11 (2019), 825–838. https://doi.org/10.1007/s12095-018-0331-4 doi: 10.1007/s12095-018-0331-4
    [18] H. Hu, J. Wu, New constructions of codebooks nearly meeting the Welch bound with equality, IEEE T. Inform. Theory, 60 (2014), 1348–1355. https://doi.org/10.1109/TIT.2013.2292745 doi: 10.1109/TIT.2013.2292745
    [19] Z. Heng, C. Ding, Q. Yue, New constructions of asymptotically optimal codebooks with multiplicative characters, IEEE T. Inform. Theory, 63 (2017), 6179–6187. https://doi.org/10.1109/TIT.2017.2693204 doi: 10.1109/TIT.2017.2693204
    [20] L. Tian, Y. Li, T. Liu, C. Xu, Constructions of codebooks asymptotically achieving the welch bound with additive characters, IEEE Signal Proc. Let., 26 (2019), 622–626. https://doi.org/10.1109/LSP.2019.2891896 doi: 10.1109/LSP.2019.2891896
    [21] G. Luo, X. Cao, Two constructions of asymptotically optimal codebooks via the hyper eisenstein sum, IEEE T. Inform. Theory, 64 (2018), 6498–6505. https://doi.org/10.1109/TIT.2017.2777492 doi: 10.1109/TIT.2017.2777492
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(851) PDF downloads(83) Cited by(0)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog