Research article

Local superderivations of Lie superalgebra $ \mathrm{osp}(1, 2) $ to all simple modules

  • Received: 28 April 2024 Revised: 07 July 2024 Accepted: 16 July 2024 Published: 22 July 2024
  • MSC : 17B05, 17B40

  • In this paper, we consider the orthogonal symplectic Lie superalgebra $ \mathrm{osp}(1, 2) $ over an algebraically closed field of prime characteristic $ p > 2 $. Using the classification of the simple modules of the Lie superalgebra $ \mathrm{osp}(1, 2) $, we prove that every local superderivation of $ \mathrm{osp}(1, 2) $ to any simple module is a superderivation.

    Citation: Shiqi Zhao, Wende Liu, Shujuan Wang. Local superderivations of Lie superalgebra $ \mathrm{osp}(1, 2) $ to all simple modules[J]. AIMS Mathematics, 2024, 9(8): 22655-22664. doi: 10.3934/math.20241103

    Related Papers:

  • In this paper, we consider the orthogonal symplectic Lie superalgebra $ \mathrm{osp}(1, 2) $ over an algebraically closed field of prime characteristic $ p > 2 $. Using the classification of the simple modules of the Lie superalgebra $ \mathrm{osp}(1, 2) $, we prove that every local superderivation of $ \mathrm{osp}(1, 2) $ to any simple module is a superderivation.



    加载中


    [1] S. Ayupov, K. Kudaybergenov, Local derivations on finite-dimensional Lie algebras, Linear Algebra Appl., 493 (2016), 381–398. https://doi.org/10.1016/j.laa.2015.11.034 doi: 10.1016/j.laa.2015.11.034
    [2] S. A. Ayupov, A. K. Kudaybergenov, Local derivations on solvable Lie algebras, Linear Multilinear Algebra, 69 (2021), 1286–1301. https://doi.org/10.1080/03081087.2019.1626336 doi: 10.1080/03081087.2019.1626336
    [3] L. M. Camacho, R. M. Navarro, B. Omirov, Local superderivations on solvable Lie and Leibniz superalgebras, Mediterr. J. Math., 20 (2023), 76. https://doi.org/10.1007/s00009-023-02284-7 doi: 10.1007/s00009-023-02284-7
    [4] H. X. Chen, Y. Wang, Local superderivations on Lie superalgebras q(n), Czechoslov. Math. J., 68 (2018), 661–675. https://doi.org/10.21136/CMJ.2018.0597-16 doi: 10.21136/CMJ.2018.0597-16
    [5] H. X. Chen, Y. Wang, J. Z. Nan, Local superderivations on basic classical Lie superalgebras, Algebra Colloq., 24 (2017), 673–684. https://doi.org/10.1142/S100538671700044X doi: 10.1142/S100538671700044X
    [6] R. V. Kadison, Local derivations, J. Algebra, 130 (1990), 494–509. https://doi.org/10.1016/0021-8693(90)90095-6
    [7] D. R. Larson, A. R. Sourour, Local derivations and local automorphisms of B(X), Proc. Symp. Pure Math., 51 (1990), 187–194.
    [8] S. J. Wang, Z. X. Li, The first cohomology of sl(2) and its applications in prime characteristic, Front. Math., 19 (2024), 271–282. https://doi.org/10.1007/s11464-022-0059-5 doi: 10.1007/s11464-022-0059-5
    [9] S. J. Wang, W. D. Liu, The first cohomology of osp(1, 2) with coefficients in baby verma modules and simple modules, Algebra Colloq., 30 (2023), 599–614. https://doi.org/10.1142/S1005386723000469 doi: 10.1142/S1005386723000469
    [10] W. Q. Wang, L. Zhao, Representations of Lie superalgebras in prime characteristic I, Proc. London Math. Soc., 99 (2009), 145–167. https://doi.org/10.1112/plms/pdn057 doi: 10.1112/plms/pdn057
    [11] Q. Y. Wu, S. L. Gao, D. Liu, C. Ye, Local derivations and local automorphisms on the super Virasoro algebras, Commun. Algebra, 52 (2024), 2616–2625. https://doi.org/10.1080/00927872.2024.2302401 doi: 10.1080/00927872.2024.2302401
    [12] Y. F. Yao, Local derivations on the Witt algebra in prime characteristic, Linear Multilinear Algebra, 70 (2022), 2919–2933. https://doi.org/10.1080/03081087.2020.1819189 doi: 10.1080/03081087.2020.1819189
    [13] J. X. Yuan, L. Y. Chen, Y. Cao, Local superderivations on Cartan type Lie superalgebras, Rev. Union Mat. Argent., 62 (2021), 433–442. https://doi.org/10.33044/revuma.1965 doi: 10.33044/revuma.1965
    [14] Y. L. Yu, Z. X. Chen, Local derivations on Borel subalgebras of finite-dimensional simple Lie algebras, Commun. Algebra, 48 (2020), 1–10. https://doi.org/10.1080/00927872.2018.1541465 doi: 10.1080/00927872.2018.1541465
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(479) PDF downloads(45) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog