In this paper, we consider the orthogonal symplectic Lie superalgebra $ \mathrm{osp}(1, 2) $ over an algebraically closed field of prime characteristic $ p > 2 $. Using the classification of the simple modules of the Lie superalgebra $ \mathrm{osp}(1, 2) $, we prove that every local superderivation of $ \mathrm{osp}(1, 2) $ to any simple module is a superderivation.
Citation: Shiqi Zhao, Wende Liu, Shujuan Wang. Local superderivations of Lie superalgebra $ \mathrm{osp}(1, 2) $ to all simple modules[J]. AIMS Mathematics, 2024, 9(8): 22655-22664. doi: 10.3934/math.20241103
In this paper, we consider the orthogonal symplectic Lie superalgebra $ \mathrm{osp}(1, 2) $ over an algebraically closed field of prime characteristic $ p > 2 $. Using the classification of the simple modules of the Lie superalgebra $ \mathrm{osp}(1, 2) $, we prove that every local superderivation of $ \mathrm{osp}(1, 2) $ to any simple module is a superderivation.
[1] | S. Ayupov, K. Kudaybergenov, Local derivations on finite-dimensional Lie algebras, Linear Algebra Appl., 493 (2016), 381–398. https://doi.org/10.1016/j.laa.2015.11.034 doi: 10.1016/j.laa.2015.11.034 |
[2] | S. A. Ayupov, A. K. Kudaybergenov, Local derivations on solvable Lie algebras, Linear Multilinear Algebra, 69 (2021), 1286–1301. https://doi.org/10.1080/03081087.2019.1626336 doi: 10.1080/03081087.2019.1626336 |
[3] | L. M. Camacho, R. M. Navarro, B. Omirov, Local superderivations on solvable Lie and Leibniz superalgebras, Mediterr. J. Math., 20 (2023), 76. https://doi.org/10.1007/s00009-023-02284-7 doi: 10.1007/s00009-023-02284-7 |
[4] | H. X. Chen, Y. Wang, Local superderivations on Lie superalgebras q(n), Czechoslov. Math. J., 68 (2018), 661–675. https://doi.org/10.21136/CMJ.2018.0597-16 doi: 10.21136/CMJ.2018.0597-16 |
[5] | H. X. Chen, Y. Wang, J. Z. Nan, Local superderivations on basic classical Lie superalgebras, Algebra Colloq., 24 (2017), 673–684. https://doi.org/10.1142/S100538671700044X doi: 10.1142/S100538671700044X |
[6] | R. V. Kadison, Local derivations, J. Algebra, 130 (1990), 494–509. https://doi.org/10.1016/0021-8693(90)90095-6 |
[7] | D. R. Larson, A. R. Sourour, Local derivations and local automorphisms of B(X), Proc. Symp. Pure Math., 51 (1990), 187–194. |
[8] | S. J. Wang, Z. X. Li, The first cohomology of sl(2) and its applications in prime characteristic, Front. Math., 19 (2024), 271–282. https://doi.org/10.1007/s11464-022-0059-5 doi: 10.1007/s11464-022-0059-5 |
[9] | S. J. Wang, W. D. Liu, The first cohomology of osp(1, 2) with coefficients in baby verma modules and simple modules, Algebra Colloq., 30 (2023), 599–614. https://doi.org/10.1142/S1005386723000469 doi: 10.1142/S1005386723000469 |
[10] | W. Q. Wang, L. Zhao, Representations of Lie superalgebras in prime characteristic I, Proc. London Math. Soc., 99 (2009), 145–167. https://doi.org/10.1112/plms/pdn057 doi: 10.1112/plms/pdn057 |
[11] | Q. Y. Wu, S. L. Gao, D. Liu, C. Ye, Local derivations and local automorphisms on the super Virasoro algebras, Commun. Algebra, 52 (2024), 2616–2625. https://doi.org/10.1080/00927872.2024.2302401 doi: 10.1080/00927872.2024.2302401 |
[12] | Y. F. Yao, Local derivations on the Witt algebra in prime characteristic, Linear Multilinear Algebra, 70 (2022), 2919–2933. https://doi.org/10.1080/03081087.2020.1819189 doi: 10.1080/03081087.2020.1819189 |
[13] | J. X. Yuan, L. Y. Chen, Y. Cao, Local superderivations on Cartan type Lie superalgebras, Rev. Union Mat. Argent., 62 (2021), 433–442. https://doi.org/10.33044/revuma.1965 doi: 10.33044/revuma.1965 |
[14] | Y. L. Yu, Z. X. Chen, Local derivations on Borel subalgebras of finite-dimensional simple Lie algebras, Commun. Algebra, 48 (2020), 1–10. https://doi.org/10.1080/00927872.2018.1541465 doi: 10.1080/00927872.2018.1541465 |