Research article Special Issues

Real-time detection of small objects in transverse electric polarization: Evaluations on synthetic and experimental datasets

  • Received: 07 May 2024 Revised: 08 July 2024 Accepted: 10 July 2024 Published: 22 July 2024
  • MSC : 78A46

  • It is well-known that if one applies Kirchhoff migration (KM) to identify small objects when their values of magnetic permeabilities differ from those of the background (or transverse electric polarization), their location and outline shape cannot be satisfactorily retrieved because rings of large magnitudes centered at the location of objects appear in the imaging results. Fortunately, it is possible to recognize the existence and approximated location of objects in the 2D Fresnel dataset through the traditional KM, but no theoretical explanation for this phenomenon has been verified. Here we show that the imaging function of KM when tested on the Fresnel dataset can be expressed as squared zero-order and first-order Bessel functions and as an infinite series of Bessel functions of integer order greater than two. We also explain why the existence and approximate location of objects can be identified. This theoretical result is supported by numerical simulations on synthetic and experimental data.

    Citation: Junyong Eom, Won-Kwang Park. Real-time detection of small objects in transverse electric polarization: Evaluations on synthetic and experimental datasets[J]. AIMS Mathematics, 2024, 9(8): 22665-22679. doi: 10.3934/math.20241104

    Related Papers:

  • It is well-known that if one applies Kirchhoff migration (KM) to identify small objects when their values of magnetic permeabilities differ from those of the background (or transverse electric polarization), their location and outline shape cannot be satisfactorily retrieved because rings of large magnitudes centered at the location of objects appear in the imaging results. Fortunately, it is possible to recognize the existence and approximated location of objects in the 2D Fresnel dataset through the traditional KM, but no theoretical explanation for this phenomenon has been verified. Here we show that the imaging function of KM when tested on the Fresnel dataset can be expressed as squared zero-order and first-order Bessel functions and as an infinite series of Bessel functions of integer order greater than two. We also explain why the existence and approximate location of objects can be identified. This theoretical result is supported by numerical simulations on synthetic and experimental data.



    加载中


    [1] S. Kang, W.-K. Park, A novel study on the bifocusing method in two-dimensional inverse scattering problem, AIMS Mathematics, 8 (2023), 27080–27112. https://doi.org/10.3934/math.20231386 doi: 10.3934/math.20231386
    [2] S. Kang, W.-K. Park, S.-H. Son, A qualitative analysis of the bifocusing method for a real-time anomaly detection in microwave imaging, Comput. Math. Appl., 137 (2023), 93–101. https://doi.org/10.1016/j.camwa.2023.02.017 doi: 10.1016/j.camwa.2023.02.017
    [3] Y. J. Kim, L. Jofre, F. D. Flaviis, M. Q. Feng, Microwave reflection tomographic array for damage detection of civil structures, IEEE Trans. Antennas Propag., 51 (2003), 3022–3032. https://doi.org/10.1109/TAP.2003.818786 doi: 10.1109/TAP.2003.818786
    [4] K. Ito, B. Jin, J. Zou, A direct sampling method to an inverse medium scattering problem, Inverse Probl., 28 (2012), 025003. https://doi.org/10.1088/0266-5611/28/2/025003 doi: 10.1088/0266-5611/28/2/025003
    [5] S. Kang, M. Lambert, W.-K. Park, Analysis and improvement of direct sampling method in the mono-static configuration, IEEE Geosci. Remote Sens. Lett., 16 (2019), 1721–1725. https://doi.org/10.1109/LGRS.2019.2906366 doi: 10.1109/LGRS.2019.2906366
    [6] W.-K. Park, Direct sampling method for retrieving small perfectly conducting cracks, J. Comput. Phys., 373 (2018), 648–661. https://doi.org/10.1016/j.jcp.2018.07.014 doi: 10.1016/j.jcp.2018.07.014
    [7] H. Ammari, E. Iakovleva, D. Lesselier, A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency, Multiscale Model. Simul., 3 (2005), 597–628. https://doi.org/10.1137/040610854 doi: 10.1137/040610854
    [8] W.-K. Park, Application of MUSIC algorithm in real-world microwave imaging of unknown anomalies from scattering matrix, Mech. Syst. Signal Proc., 153 (2021), 107501. https://doi.org/10.1016/j.ymssp.2020.107501 doi: 10.1016/j.ymssp.2020.107501
    [9] W.-K. Park, A novel study on the MUSIC-type imaging of small electromagnetic inhomogeneities in the limited-aperture inverse scattering problem, J. Comput. Phys., 460 (2022), 111191. https://doi.org/10.1016/j.jcp.2022.111191 doi: 10.1016/j.jcp.2022.111191
    [10] H. Ammari, J. Garnier, H. Kang, W.-K. Park and K. Sølna, Imaging schemes for perfectly conducting cracks, SIAM J. Appl. Math., 71 (2011), 68–91. https://doi.org/10.1137/100800130 doi: 10.1137/100800130
    [11] W.-K. Park, Multi-frequency subspace migration for imaging of perfectly conducting, arc-like cracks in full- and limited-view inverse scattering problems, J. Comput. Phys., 283 (2015), 52–80. https://doi.org/10.1016/j.jcp.2014.11.036 doi: 10.1016/j.jcp.2014.11.036
    [12] W.-K. Park, On the identification of small anomaly in microwave imaging without homogeneous background information, AIMS Mathematics, 8 (2023), 27210–27226. https://doi.org/10.3934/math.20231392 doi: 10.3934/math.20231392
    [13] A. Carpio, M. Pena, M.-L. Rapún, Processing the 2D and 3D Fresnel experimental databases via topological derivative methods, Inverse Probl., 37 (2021), 105012. https://doi.org/10.1088/1361-6420/ac21c8 doi: 10.1088/1361-6420/ac21c8
    [14] J. F. Funes, J. M. Perales, M.-L. Rapún, J. M. Vega, Defect detection from multi-frequency limited data via topological sensitivity, J. Math. Imaging Vis., 55 (2016), 19–35. https://doi.org/10.1007/s10851-015-0611-y doi: 10.1007/s10851-015-0611-y
    [15] W.-K. Park, Topological derivative strategy for one-step iteration imaging of arbitrary shaped thin, curve-like electromagnetic inclusions, J. Comput. Phys., 231 (2012), 1426–1439. https://doi.org/10.1016/j.jcp.2011.10.014 doi: 10.1016/j.jcp.2011.10.014
    [16] L. Audibert, H. Haddar, The generalized linear sampling method for limited aperture measurements, SIAM J. Imaging Sci., 10 (2017), 845–870. https://doi.org/10.1137/16M110112X doi: 10.1137/16M110112X
    [17] P. Monk, M. Pena, V. Selgas, Multifrequency linear sampling method on experimental datasets, IEEE Trans. Antennas Propag., 71 (2023), 8788–8798. https://doi.org/10.1109/TAP.2023.3298974 doi: 10.1109/TAP.2023.3298974
    [18] G. Bozza, M. Brignone, M. Pastorino, Application of the no-sampling linear sampling method to breast cancer detection, IEEE Trans. Biomed. Eng., 57 (2010), 2525–2534. https://doi.org/10.1109/tbme.2010.2055059 doi: 10.1109/tbme.2010.2055059
    [19] M. T. Bevacqua, T. Isernia, R. Palmeri, M. N. Akinci, L. Crocco, Physical insight unveils new imaging capabilities of orthogonality sampling method, IEEE Trans. Antennas Propag., 68 (2020), 4014–4021. https://doi.org/10.1109/TAP.2019.2963229 doi: 10.1109/TAP.2019.2963229
    [20] I. Harris, D.-L. Nguyen, Orthogonality sampling method for the electromagnetic inverse scattering problem, SIAM J. Sci. Comput., 42 (2020), B722–B737. https://doi.org/10.1137/19M129783X doi: 10.1137/19M129783X
    [21] W.-K. Park, On the application of orthogonality sampling method for object detection in microwave imaging, IEEE Trans. Antennas Propag., 71 (2023), 934–946. https://doi.org/10.1109/TAP.2022.3220033 doi: 10.1109/TAP.2022.3220033
    [22] A. Alzaalig, G. Hu, X. Liu, J. Sun, Fast acoustic source imaging using multi-frequency sparse data, Inverse Probl., 36 (2020), 025009. https://doi.org/10.1088/1361-6420/ab4aec doi: 10.1088/1361-6420/ab4aec
    [23] H. Ammari, S. Moskow, M. Vogelius, Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume, ESAIM: COCV, 9 (2003), 49–66. https://doi.org/10.1051/cocv:2002071 doi: 10.1051/cocv:2002071
    [24] M. Brühl, M. Hanke, M. Pidcock, Crack detection using electrostatic measurements, ESAIM: Math. Model. Numer. Anal., 35 (2001), 595–605. https://doi.org/10.1051/m2an:2001128 doi: 10.1051/m2an:2001128
    [25] N. Simonov, B.-R. Kim, K.-J. Lee, S.-I. Jeon, S.-H. Son, Advanced fast 3-D electromagnetic solver for microwave tomography imaging, IEEE Trans. Med. Imag., 36 (2017), 2160–2170. https://doi.org/10.1109/TMI.2017.2712800 doi: 10.1109/TMI.2017.2712800
    [26] S.-H. Son, K.-J. Lee, W.-K. Park, Application and analysis of direct sampling method in real-world microwave imaging, Appl. Math. Lett., 96 (2019), 47–53. https://doi.org/10.1016/j.aml.2019.04.016 doi: 10.1016/j.aml.2019.04.016
    [27] S.-H. Son, K.-J. Lee, W.-K. Park, Real-time tracking of moving objects from scattering matrix in real-world microwave imaging, AIMS Math., 9 (2024), 13570–13588. https://doi.org/10.3934/math.2024662 doi: 10.3934/math.2024662
    [28] S. Hou, K. Sølna, H. Zhao, A direct imaging algorithm for extended targets, Inverse Probl., 22 (2006), 1151–1178. https://doi.org/10.1088/0266-5611/22/4/003 doi: 10.1088/0266-5611/22/4/003
    [29] W.-K. Park, Asymptotic properties of MUSIC-type imaging in two-dimensional inverse scattering from thin electromagnetic inclusions, SIAM J. Appl. Math., 75 (2015), 209–228. https://doi.org/10.1137/140975176 doi: 10.1137/140975176
    [30] W.-K. Park, Detection of small inhomogeneities via direct sampling method in transverse electric polarization, Appl. Math. Lett., 79 (2018), 169–175. https://doi.org/10.1016/j.aml.2017.12.016 doi: 10.1016/j.aml.2017.12.016
    [31] W.-K. Park, Shape identification of open sound-hard arcs without priori information in limited-view inverse scattering problem, Comput. Math. Appl., 128 (2022), 55–68. https://doi.org/10.1016/j.camwa.2022.10.010 doi: 10.1016/j.camwa.2022.10.010
    [32] M.-L. Rapún, On the solution of direct and inverse multiple scattering problems for mixed sound-soft, sound-hard and penetrable objects, Inverse Probl., 36 (2020), 095014. https://doi.org/10.1088/1361-6420/ab98a2 doi: 10.1088/1361-6420/ab98a2
    [33] K. Belkebir, M. Saillard, Special section: Testing inversion algorithms against experimental data, Inverse Probl., 17 (2001), 1565–1571. https://doi.org/10.1088/0266-5611/21/6/S01 doi: 10.1088/0266-5611/21/6/S01
    [34] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Problems, 2 Eds., Berlin, Heidelberg: Springer, 1998.
    [35] H. Ammari, H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Berlin, Heidelberg: Springer, 2004. https://doi.org/10.1007/b98245
    [36] L. Crocco, I. Catapano, L. D. Donato, T. Isernia, The linear sampling method as a way to quantitative inverse scattering, IEEE Trans. Antennas Propag., 60 (2012), 1844–1853. https://doi.org/10.1109/TAP.2012.2186250 doi: 10.1109/TAP.2012.2186250
    [37] W.-K. Park, On the application of subspace migration from scattering matrix with constant-valued diagonal elements in microwave imaging, AIMS Mathematics, 9 (2024), 21356–21382. https://doi.org/10.3934/math.20241037 doi: 10.3934/math.20241037
    [38] J.-M. Geffrin, P. Sabouroux, C. Eyraud, Free space experimental scattering database continuation: Experimental set-up and measurement precision, Inverse Probl., 21 (2005), S117–S130. https://doi.org/10.1088/0266-5611/21/6/S09 doi: 10.1088/0266-5611/21/6/S09
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(81) PDF downloads(29) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog