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Abstract: It is well-known that if one applies Kirchhoff migration (KM) to identify small objects
when their values of magnetic permeabilities differ from those of the background (or transverse electric
polarization), their location and outline shape cannot be satisfactorily retrieved because rings of large
magnitudes centered at the location of objects appear in the imaging results. Fortunately, it is possible
to recognize the existence and approximated location of objects in the 2D Fresnel dataset through the
traditional KM, but no theoretical explanation for this phenomenon has been verified. Here we show
that the imaging function of KM when tested on the Fresnel dataset can be expressed as squared zero-
order and first-order Bessel functions and as an infinite series of Bessel functions of integer order
greater than two. We also explain why the existence and approximate location of objects can be
identified. This theoretical result is supported by numerical simulations on synthetic and experimental
data.
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1. Introduction

We consider the limited-aperture inverse scattering problem for fast identification of the existence
and location of a set of two-dimensional (2D) small objects from measured scattered field data.
Previous researchers have developed various imaging techniques, including the bifocusing method for
identifying small objects in inverse scattering problem [1], in microwave imaging [2], and damage
detection of concrete void [3], the direct sampling method to localize 2D small inhomogeneities with
multi- [4] and mono- [5] measurement environments, and perfectly conducting cracks [6], the
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MUltiple SIgnal Classification (MUSIC) algorithm for localizing small objects buried in a
half-space [7], microwave imaging [8], and limited-aperture inverse scattering problem [9], Kirchhoff

and subspace migration techniques to retrieve small cracks with measurements placed on a line [10],
curve-like perfectly conducting cracks [11], and small anomalies from limited-aperture measurements
in real-world microwave imaging [12], topological derivatives for inversion of Fresnel databases [13],
multi-frequency limited data [14], and shape reconstruction of thin, curve-like inhomogeneities [15],
the linear sampling method for identifying unknown scatterers from limited-aperture measurement
data [16] and experimental dataset [17], and breast cancer detection [18], and the orthogonality
sampling method for localizing unknown objects from experimental dataset [19], 3D far-field pattern
data [20], and scattering parameter data [21]. We also refer to several references [22–27] about fast
imaging techniques.

Although these techniques are fast, effective, and robust, they are typically designed for the
detection of objects with dielectric permittivities that differ from the background value; the detection
of objects with different magnetic permeabilities from the background permeability has been
comparatively neglected. We refer to [28–32] for related studies. These studies report that rings with
large magnitudes centered at the location of small objects appear in the imaging results. However,
unlike the previous studies, peaks of large magnitude appear at the location of small objects with the
Fresnel dataset. Thus, it is possible to recognize the existence and approximate locations of small
objects. However, the theoretical reason for this phenomenon has not been explored.

Motivated by the above problem, we apply KM with a limited-aperture experimental measurement
configuration [33] for a fast identification of small objects with different magnetic permeabilities from
the background value. To validate object detection, we show that the imaging function of the KM can
be expressed in terms of the size and permeability of the objects, squared zero-order and first-order
Bessel functions, and an infinite series of Bessel functions of integer order greater than two. This is
based on the fact that measured scattered field can be modeled as a 2D scalar Helmholtz equation and
represented by an asymptotic expansion formula. The identified structure reveals some properties of
the KM and explains some phenomena, such as object detectability.

The remainder of this study is structured as follows: Section 2 briefly introduces the 2D forward
problem in the presence of small objects and the asymptotic expansion formula of the scattered field.
Section 3 introduces and analyzes the imaging function, and explains some properties of the imaging
results. Section 4 exhibits numerical simulation results with synthetic and Fresnel experimental data
to support the theoretical results. Section 5 briefly concludes the paper and proposes future research.

2. Forward problem and the asymptotic expansion formula

Here, we briefly introduce the forward problem and the asymptotic expansion formula of the
scattered field when a set of small circular objects is completely embedded in a homogeneous region
Ω ⊂ R2. These objects with radii of αs at locations rs are denoted as Ds, s = 1, 2, · · · , S , and all Ds

are assumed to be well separated. Let D be the collection of Ds and based on the simulation
configuration in [33], the values of the background conductivity, magnetic permeability, and dielectric
permittivity are σb ≈ 0, µb = 4π × 10−7 H/m, and εb = 8.854 × 10−12 F/m, respectively, at a given
angular frequency ω. Additionally, we denote kb = ω

√
εbµb as the background wavenumber.

In this paper, we assume that every material is characterized by its value of permeability at ω.
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Denoting µs as the permeability of Ds, we introduce the piecewise constant of magnetic permeability

µ(r) =

{
µs if r ∈ Ds

µb if r ∈ Ω\D.

Let Am, m = 1, 2, . . . ,M, and Bn, n = 1, 2, . . . ,N, be the mth transmitter and nth receiver located
at am and bn, respectively. Based on [33], antennas Am and Bn are placed on the circles with radii
of 0.72 m and 0.76 m, respectively. The transmitters Am are uniformly distributed with step sizes of
4ϑ = π/18 from 0 to 35π/18, and at each location of Am, the receivers Bn are uniformly distributed
with step sizes of 4θ = π/36 from π/3 to 5π/3. For an illustration of the simulation configuration, we
refer to Figure 1. Then, the locations of am and bn are given by

am = |am|ϑm = 0.72 m(cosϑm, sinϑm), ϑm = (m − 1)4ϑ

and
bn = |bn|θn = 0.76 m(cos θn, sin θn), θn = (n − 1)4θ,

respectively.

transmitter
receivers

π

3
ϑm

Am

Figure 1. Transmitter and receiver arrangements.

With this setting, the incident field generated atAm is given by

uinc(r, am) = −
i
4

H(1)
0 (kb|r − am|) = G(r, am),

where H(1)
0 denotes the zero-order Hankel function of the first kind. Assuming a time dependence of

e−iωt, the time-harmonic total field u(bn, r) measured at Bn satisfies
∇ ·

(
1
µ(r)
∇u(bn, r)

)
+ ω2εbu(bn, r) = 0 in Ω

1
µs

∂u(bn, r)
∂ν(r)

∣∣∣∣∣
−

−
1
µb

∂u(bn, r)
∂ν(r)

∣∣∣∣∣
+

= 0 on ∂Ds, s = 1, 2, . . . , S .
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Let uscat(r, am) = u(r, am) − uinc(r, am) be the measured scattered field data at r in the presence of D
that satisfies the outgoing wave condition (or Sommerfeld radiation condition)∣∣∣∣∣duscat(r, am)

dr
− ikbuscat(r, am)

∣∣∣∣∣ = o
(

1
√

r

)
uniformly in all directions r

|r| as r −→ ∞. Based on [34], uscat(bn, am) can be expressed as the double-
layer potential

uscat(bn, am) =

∫
D

∂G(bn, r)
∂ν(r)

ψ(r, am)dr =

S∑
s=1

∫
Ds

∂G(bn, r)
∂ν(r)

ψ(r, am)dr,

where ψ is an unknown density function. We emphasize that, as the complete form of ψ is unknown, it
must be replaced with an alternative expression to design an imaging function. Due to this reason, we
consider the following asymptotic expansion formula (see [35]) to introduce and analyze the imaging
function.

Lemma 2.1 (Asymptotic formula). If αs, s = 1, 2, . . . , S is small, the scattered field uscat(bn, am) can
be represented as

uscat(bn, am) =

S∑
s=1

α2
sπ

(
µb

µs + µb

)
∇G(bn, rs) · ∇G(am, rs) + o(α2

s). (2.1)

3. Introduction and analysis of the imaging function

This section introduces the imaging function for Ds identification and analyzes its structure to
elucidate its various properties. To this end, assume that we can handle the following multi-static
response (MSR) matrix:

K =


uscat(b1, a1) uscat(b1, a2) · · · uscat(b1, aM)
uscat(b2, a1) uscat(b2, a2) · · · uscat(b2, aM)

...
...

. . .
...

uscat(bN , a1) uscat(bN , a2) · · · uscat(bN , aM)

 . (3.1)

Using (2.1), K can be represented as

K ≈
S∑

s=1

α2
sµbπ

µs + µb


∇G(b1, rs) · ∇G(a1, rs) ∇G(b1, rs) · ∇G(a2, rs) · · · ∇G(b1, rs) · ∇G(aM, rs)
∇G(b2, rs) · ∇G(a1, rs) ∇G(b2, rs) · ∇G(a2, rs) · · · ∇G(b2, rs) · ∇G(aM, rs)

...
...

. . .
...

∇G(bN , rs) · ∇G(a1, rs) ∇G(bN , rs) · ∇G(a2, rs) · · · ∇G(bN , rs) · ∇G(aM, rs)

 .
(3.2)

Following previous work [11, 28, 29], we extract rs ∈ Ds using two test vectors for each r ∈ Ω:

A(r) =
(
G(a1, r) G(a2, r) · · · G(aM, r)

)
B(r) =

(
G(b1, r) G(b2, r) · · · G(bN , r)

)
AIMS Mathematics Volume 9, Issue 8, 22665–22679.
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and introduce the corresponding normalized imaging function:

F(r) =
|B(r)KA(r)T |

max
r∈Ω
|B(r)KA(r)T |

.

Then, on the basis of [28], rings with large magnitudes centered at rs will be included in the map of
F(r).

It is worth emphasizing that complete entries of K cannot be collected in a limited-aperture
measurement configuration; specifically, for a fixed transmitter number m, only N′ = 49 elements of
scattered field data uscat(bn, am), n ∈ Im = {2m + p (mod 72) : p = 11, 12, . . . , 59} are measurable. In
order to treat unmeasurable scattered field data, motivated by several studies [17, 21, 36, 37], we
convert the N − #(Im) = N − N′ = 23 unknown data to zero and use the corresponding MSR matrixM
with entries ϕnm, where

ϕnm =

 uscat(bn, am), n ∈ Im

0 otherwise.

Fortunately, contrary to the previous research, it is possible to recognize the existence and location
of Ds by using the following normalized imaging function.

F(r) =
|B(r)MA(r)T |

max
r∈Ω
|B(r)MA(r)T |

for each r ∈ Ω.

In order to explain the applicability of detection, we derive the following result:

Theorem 3.1. For each r ∈ Ω, let r − rs = |r − rs|(cos φs, sin φs) and assume that kb|r − am| � 0.25
and kb|r − bn| � 0.25 for all m = 1, 2, . . . ,M and n = 1, 2, . . . ,N. Then, F(r) can be represented as

F(r) ≈
|Φ(r)|

max
r∈Ω
|Φ(r)|

, (3.3)

where

Φ(r) ≈
441

16|am||bn|π

S∑
s=1

α2
s

(
µb

µs + µb

) 3
√

3
2π

J0(kb|r − rs|)2 +

1 +
3
√

3
4π

 J1(kb|r − rs|)2 +
3

2π
E(kb|r − rs|)


and

E(kb|r − rs|) =

∞∑
p=2

( 1
1 − p

sin
(1 − p)π

3
+

1
1 + p

sin
(1 + p)π

3

)
Jp(kb|r − rs|)2.

Here, Jp denotes the Bessel function of the first kind of order p.

Proof. Since kb|r−am| � 0.25 and 4kb|r−bn| � 1 for n = 1, 2, · · · ,N, the following asymptotic forms
hold (see [1, 34] for instance)

G(am, r) ≈ −
i(1 − i)eikb |am |

4
√

kbπ|am|
e−ikbϑm·r and ∇G(am, rs) ≈ −

ikb(1 − i)eikb |am |

4
√

kbπ|am|
ϑme−ikbϑm·rs . (3.4)
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Thus, we can write

A(r) ≈
(−1 + i)e−ikb |am |

4
√

kbπ|am|

(
eikbϑ1·r eikbϑ2·r · · · eikbϑM ·r

)
,

B(r) ≈
(−1 + i)e−ikb |bn |

4
√

kbπ|bn|

(
eikbθ1·r eikbθ2·r · · · eikbθN ·r

)
,

uscat(bn, am) ≈
ikbeikb(|am |+|bn |)

8
√
|am||bn|

S∑
s=1

α2
s

(
µb

µs + µb

)
(θn · ϑm)e−ikb(θn+ϑm)·rs ,

and correspondingly, we can evaluate

B(r)M =
(1 + i)kbeikb |am |

32|bn|
√

kbπ|am|



S∑
s=1

α2
s

(
µb

µs + µb

)
e−ikbϑ1·rs

∑
n∈I(1)

(θn · ϑ1)eikθn·(r−rs)

S∑
s=1

α2
s

(
µb

µs + µb

)
e−ikbϑ2·rs

∑
n∈I(2)

(θn · ϑ2)eikθn·(r−rs)

...
S∑

s=1

α2
s

(
µb

µs + µb

)
e−ikbϑM ·rs

∑
n∈I(m)

(θn · ϑM)eikθn·(r−rs)



T

.

Since the following relations hold uniformly (e.g., see [11]):

eix cos φs = J0(x) +

∞∑
p=−∞,p,0

ipJp(x)eipφs (3.5)

and

1
N

N∑
n=1

(θn · ξ)eikbθn·(r−rs) ≈
1

θN − θ1

∫ θN

θ1

cos(θ − ξ)eikb |r−rs | cos(θ−φs)dθ

=
2J0(kb|r − rs|)

θN − θ1
sin

θN − θ1

2
cos

θN + θ1 − 2ξ
2

+ i
(

r
|r|
· ξ

)
J1(kb|r − rs|)

+ i
J1(kb|r − rs|)
θN − θ1

sin(θN − θ1) cos(θN + θ1 − ξ − φs)

+

∞∑
p=2

2ipJp(kb|r − rs|)
θN − θ1

{ 1
1 − p

sin
(1 − p)(θN − θ1)

2
cos

(1 − p)(θN + θ1) + 2pφs − 2ξ
2

+
1

1 + p
sin

(1 + p)(θN − θ1)
2

cos
(1 + p)(θN + θ1) − 2pφs − 2ξ

2

}
,

(3.6)

it is possible to derive that

1
N′

∑
n∈I(m)

(θn · ϑm)eikbθn·(r−rs) ≈
1

5π/3 − π/3

∫ ϑm+5π/3

ϑm+π/3
cos(θ − ϑm)eikb |r−rs | cos(θ−φs)dθ

AIMS Mathematics Volume 9, Issue 8, 22665–22679.
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= i
(

r − rs

|r − rs|
· ϑm

)
J1(kb|r − rs|) +

3
2π

J1(kb|r − rs|) sin
2π
3

cos(2π + 2ϑm − ϑm − φs) +
3
π

Ψ(r,ϑm)

= i
1 +

3
√

3
4π

 ( r − rs

|r − rs|
· ϑm

)
J1(kb|r − rs|) +

3
π

Ψ(r,ϑm) := iΛ(ϑm)J1(kb|r − rs|) +
3
π

Ψ(r,ϑm),

where

Ψ(r,ϑm) = −

√
3

2
J0(kb|r − rs|) +

∞∑
p=2

ipJp(kb|r − rs|)
[ 1
1 − p

sin
(1 − p)π

3
cos

(
(1 − p)π − p(ϑm − φs)

)
+

1
1 + p

sin
(1 + p)π

3
cos

(
(1 + p)π + p(ϑm − φs)

)]
.

Thus,

B(r)MA(r)T

= −
N′

64|am||bn|π



S∑
s=1

α2
s

(
µb

µs + µb

)
e−ikbϑ1·rs

[
iΛ(ϑ1)J1(kb|r − rs|) +

3
π

Ψ(r,ϑ1)
]

S∑
s=1

α2
s

(
µb

µs + µb

)
e−ikbϑ2·rs

[
iΛ(ϑ2)J1(kb|r − rs|) +

3
π

Ψ(r,ϑ2)
]

...
S∑

s=1

α2
s

(
µb

µs + µb

)
e−ikbϑM ·rs

[
iΛ(ϑM)J1(kb|r − rs|) +

3
π

Ψ(r,ϑM)
]



T


eikbϑ1·r

eikbϑ2·r

...

eikbϑM ·r



= −
49 · 9

16|am||bn|π

S∑
s=1

α2
s

(
µb

µs + µb

)  1
M

M∑
m=1

eikbϑm·(r−rs)
(
iΛ(ϑm)J1(kb|r − rs|) +

3
π

Ψ(r,ϑm)
) .

Reapplying (3.6), we have

1
M

M∑
m=1

(
r − rs

|r − rs|
· ϑm

)
eikbϑm·(r−rs)J1(kb|r − rs|) ≈

1
2π

∫
S1

(
r − rs

|r − rs|
· ϑ

)
eikbϑ·(r−rs)J1(kb|r − rs|)dϑ

= i
(

r − rs

|r − rs|
·

r − rs

|r − rs|

)
J1(kb|r − rs|)2 = iJ1(kb|r − rs|)2.

Furthermore, since

1
M

M∑
m=1

eikbϑm·(r−rs)J0(kb|r − rs|) ≈
1

2π

∫
S1

eikbϑ·(r−rs)J0(kb|r − rs|)dϑ = J0(kb|r − rs|)2,

1
M

M∑
m=1

eikbϑm·(r−rs) cos
(
(1 − p)π − p(ϑm − φs)

)
≈

1
2π

∫ 2π

0
eikb |r−rs | cos(ϑ−φs) cos

(
(1 − p)π − p(ϑ − φs)

)
dϑ

=
1

2π

∫ 2π

0

(
J0(kb|r − rs|) +

∞∑
q=−∞,q,0

iqJq(kb|r − rs|)eiq(ϑ−φs)
)

cos
(
p(ϑ − φs) + (1 − p)π

)
dϑ

AIMS Mathematics Volume 9, Issue 8, 22665–22679.



22672

=
ip

2
Jp(kb|r − rs|) cos

(
(1 − p)π

)
=

(−1)p−1ip

2
Jp(kb|r − rs|)

and

1
M

M∑
m=1

eikbϑm·(r−rs) cos
(
(1 + p)π+ p(ϑm − φs)

)
≈

ip

2
Jp(kb|r− rs|) cos

(
(1 + p)π

)
=

(−1)p+1ip

2
Jp(kb|r− rs|),

we can obtain

1
M

M∑
m=1

eikbϑm·(r−rs)
(
iΛ(ϑm)J1(kb|r − rs|) +

3
2π

Ψ(r,ϑm)
)
≈ −

1 +
3
√

3
4π

 J1(kb|r − rs|)2

−

√
3

2
J0(kb|r − rs|)2 −

1
2

∞∑
p=2

( 1
1 − p

sin
(1 − p)π

3
+

1
1 + p

sin
(1 + p)π

3

)
Jp(kb|r − rs|)2,

and correspondingly (3.3) can be derived. �

Based on the result of Theorem 3.1, we can explore some undiscovered properties of the imaging
function.
Remark 3.1 (Detectability of objects). Following the previous studies, the main component of the
imaging function in TE polarization is J1(kb|r − rs|)2. Therefore, rings of large magnitude appeared
in the imaging results. Contrary to the previous studies, the imaging function F(r) is composed of
J0(kb|r − rs|)2, J1(kb|r − rs|)2, and E(kb|r − rs|). Hence, the local maxima of F(r) will appear at the
location of the object because J0(0) = 1 and Jp(0) = 0 for nonzero p. This is the theoretical reason
that, unlike the previous studies, the existence and outline shape of objects can be identified through
the map F(r).
Remark 3.2 (Material properties). Since

F(rs) ∝ α2
s

(
µb

µs + µb

)
,

the value of F(r) should depend on the size and permeability of objects. For example, if the sizes of
the objects are the same and µs > µs′ , then F(rs) < F(rs′). Correspondingly, if the size or permeability
of an object Ds is extremely smaller or greater than the one of another object Ds′ , the existence of Ds

cannot be recognized through the map of F(r) because F(rs) � F(rs′).
Remark 3.3 (Applied frequencies and image resolution). The resolution of F(r) is highly dependent
on the value of kb. Based on the property of the J0, an image with high resolution can be obtained if
one applies a high frequency, but several artifacts are also included. If one applies a low frequency, an
image with low resolution will be obtained. We refer to Figure 2 for 1D plots of J0(kb|x|) with several
frequencies.

Notice that as J1(x) is maximized at x ≈ 3.8317, the two large-magnitude peaks appear at

r ≈ rs ±
3.8317

kb
.

That is, two peaks will converge to the location of D at sufficiently high frequency, and
correspondingly, it will be possible to recognize not only the existence but also the outline shape of
objects. We refer to Figure 3 and Example 4.2.
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Figure 2. Plots of J0(kb|x|)2 for −0.1 ≤ x ≤ 0.1 at f = 1, 5, 10 GHz.
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Figure 3. Plots of J1(kb|x|)2 for −0.1 ≤ x ≤ 0.1 at f = 1, 5, 10 GHz.

4. Numerical simulation results using synthetic and experimental data

In this section, we support Theorem 3.1 through numerical simulations on synthetic and
experimental data. For the synthetic data experiment, we set three small circles Ds, s = 1, 2, 3, with
radius αs, permittivity εb, permeability µs, and locations r1 = (0.07 m, 0.05 m),
r2 = (−0.07 m, 0.00 m), and r3 = (0.04 m,−0.06 m). Table 1 lists the parameter values of the four
experimental cases. The antenna arrangements and other simulation configurations are those specified
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in [33], and the search domain Ω was chosen as a square region [−0.1 m, 0.1 m] × [−0.1 m, 0.1 m].
Within this setting, maps of F(r) were obtained at frequencies of f = 4, 8, 12 GHz.

Table 1. Permeabilities and sizes of objects in synthetic data experiment.

µ1 µ2 µ3 α1 α2 α3

Case 1 5µb 5µb 5µb 0.1 m 0.1 m 0.1 m
Case 2 3µb 5µb 7µb 0.1 m 0.1 m 0.1 m
Case 3 5µb 5µb 5µb 0.15 m 0.1 m 0.05 m
Case 4 3µb 5µb 7µb 0.15 m 0.1 m 0.05 m

Example 4.1 (Results of the synthetic data). Figure 4 shows maps of F(r) in Case 1. Although the
existence and locations of Ds can be identified in the imaging results, the outline shapes are
indistinguishable. Similarly, the existence and locations of Ds in the imaging results of Case 2 with
different µs values are discernible, but the outline shapes are obscured (see Figure 5).

Figure 6 shows the imaging results of Case 3. Here, D3 cannot be recognized because it is much
smaller than D1 (i.e., α2

1 � α2
3). Therefore, F(r) in the neighborhood of D3 is very much smaller than

F(r) in the neighborhood of D1.

Figure 7 shows maps of F(r) in Case 4. Since

α2
1

(
µb

µ1 + µb

)
= 0.0056 > α2

2

(
µb

µ2 + µb

)
= 0.0017 � α2

3

(
µb

µ3 + µb

)
= 3.1250 × 10−4,

F(r) in the neighborhood of D1 is considerably larger than F(r) in the neighborhoods of D2 and D3.
Correspondingly, D3 cannot be recognized, and D2 is barely recognizable.

Figure 4. Maps of F(r) in Case 1.
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Figure 5. Maps of F(r) in Case 2.

Figure 6. Maps of F(r) in Case 3.

Figure 7. Maps of F(r) in Case 4.

Example 4.2 (Results of the experimental data). Figure 8 shows the F(r) maps of a metallic rectangle
D from the dataset ‘rectTE 8f.exp’ from [33]. At f = 4 GHz and f = 8 GHz, the imaging results
display a large-magnitude peak at the location of D and two large-magnitude peaks in the normal
direction of D. Notice that, as we discussed in Remark 3.3, we can recognize not only the existence
but also the outline shape of object D through the map of F(r) with high frequency f = 12 GHz.
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Figure 8. Maps of F(r) on Fresnel experimental data.

5. Conclusions

We applied KM for fast identification of the existence and locations of small objects in transverse
electric polarization. By considering the relationship between the imaging function and the squared
zero-order and first-order Bessel functions and an infinite series of Bessel functions of order greater
than two, we also explored various properties (including the possibility of object detection) of the KM.
From the simulation results of synthetic and Fresnel experimental data, we concluded that the KM
algorithm effectively detects small objects in transverse electric polarization scenarios.

Although the existence and approximate locations of objects can be retrieved, the locations and
outline shapes of objects are not satisfactorily resolved. An improved imaging technique will be
developed in forthcoming work. The current study focused on the retrieval of small 2D objects.
Extension to the three-dimensional problem on a dataset [38] will be an interesting research topic.
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