This paper introduces the Poisson-Lindley minification integer-valued autoregressive (PL-MINAR) process, a novel statistical model for analyzing count time series data. The modified negative binomial thinning and the Poisson-Lindley (PL) marginal distribution served as the foundation for the model. The proposed model was examined in terms of its basic stochastic properties, especially related to conditional stochastic measures (e.g., transition probabilities, conditional mean and variance, autocorrelation function). Through comprehensive simulations, the effectiveness of various parameter estimation techniques was validated. The PL-MINAR model's practical utility was demonstrated in analyzing the number of Bitcoin transactions and stock trades, showing its superior or comparable performance to the established INAR model. By offering a robust tool for financial time series analysis, this research holds potential for significant improvements in forecasting and understanding market dynamics.
Citation: Vladica S. Stojanović, Hassan S. Bakouch, Radica Bojičić, Gadir Alomair, Shuhrah A. Alghamdi. Poisson-Lindley minification INAR process with application to financial data[J]. AIMS Mathematics, 2024, 9(8): 22627-22654. doi: 10.3934/math.20241102
This paper introduces the Poisson-Lindley minification integer-valued autoregressive (PL-MINAR) process, a novel statistical model for analyzing count time series data. The modified negative binomial thinning and the Poisson-Lindley (PL) marginal distribution served as the foundation for the model. The proposed model was examined in terms of its basic stochastic properties, especially related to conditional stochastic measures (e.g., transition probabilities, conditional mean and variance, autocorrelation function). Through comprehensive simulations, the effectiveness of various parameter estimation techniques was validated. The PL-MINAR model's practical utility was demonstrated in analyzing the number of Bitcoin transactions and stock trades, showing its superior or comparable performance to the established INAR model. By offering a robust tool for financial time series analysis, this research holds potential for significant improvements in forecasting and understanding market dynamics.
[1] | L. Guan, X. Wang, A discrete-time dual risk model with dependence based on a poisson INAR(1) process, AIMS Math., 7 (2022), 20823–20837. http://dx.doi.org/10.3934/math.20221141 doi: 10.3934/math.20221141 |
[2] | R. Maya, C. Chesneau, A. Krishna, M. R. Irshad, Poisson extended exponential distribution with associated INAR(1) process and applications, Stats, 5 (2022), 755–772. |
[3] | W. C. Khoo, S. H. Ong, B. Atanu, Coherent forecasting for a mixed integer-valued time series model, Mathematics, 10 (2022), Article No. 2961. |
[4] | K. Yu, T. Tao, An Observation-Driven random parameter INAR(1) model based on the poisson thinning operator, Entropy, 25 (2023), Article No. 859. https://doi.org/10.3390/e25060859 doi: 10.3390/e25060859 |
[5] | V. S. Stojanović, H. S. Bakouch, E. Ljajko, N. Qarmalah, Zero-and-One integer-valued AR(1) time series with power series innovations and probability generating function estimation approach, Mathematics, 11 (2023), Article No. 1772. https://doi.org/10.3390/math11081772 doi: 10.3390/math11081772 |
[6] | J. Huang, F. Zhu, D. Deng, A mixed generalized poisson INAR model with applications, J. Stat. Comput. Sim., 93 (2023), 1851–1878. |
[7] | V. S. Stojanović, H. S. Bakouch, Z. Gajtanović, F. E. Almuhayfith, K. Kuk, Integer-valued Split-BREAK process with a general family of innovations and application to accident count data modeling, Axioms, 13 (2024), Article No. 40. https://doi.org/10.3390/axioms13010040 doi: 10.3390/axioms13010040 |
[8] | Y. Kang, F. Zhu, D. Wang, S. Wang, A zero-modified geometric INAR(1) model for analyzing count time series with multiple features, Can. J. Stat., (2024). https://doi.org/10.1002/cjs.11774 |
[9] | L. V. Tavares, An exponential Markovian stationary process, J. Appl. Probab., 17 (1980), 1117–1120. https://doi.org/10.2307/3213224 doi: 10.2307/3213224 |
[10] | L. V. Tavares, A Non-Gaussian Markovian model to simulate hydrologic processes, J. Hydrol., 46 (1980), 281–287. https://doi.org/10.1016/0022-1694(80)90081-5 doi: 10.1016/0022-1694(80)90081-5 |
[11] | C. H. Sim, Simulation of Weibull and Gamma autoregressive stationary process, Commun. Stat. Simul. Comput., 15 (1986), 1141–1146. https://www.tandfonline.com/doi/abs/10.1080/03610918608812565 doi: 10.1080/03610918608812565 |
[12] | P. A. Lewis, E. D. McKenzie, Minification processes and their transformations, J. Appl. Probab., 28 (1991), 45–57. https://doi.org/10.2307/3214739 doi: 10.2307/3214739 |
[13] | V. A. Kalamkar, Minification processes with discrete marginals, J. Appl. Probab., 32 (1995), 692–706. https://doi.org/10.2307/3215123 doi: 10.2307/3215123 |
[14] | M. Aleksić, M. Ristić, A geometric minification integer-valued autoregressive model, Appl. Math. Model., 90 (2021), 265–280. https://doi.org/10.1016/j.apm.2020.08.047 doi: 10.1016/j.apm.2020.08.047 |
[15] | M. Stojanović, An EM algorithm for estimation of the parameters of the geometric minification INAR model, J. Stat. Comput. Simul., 92 (2022). https://doi.org/10.1080/00949655.2022.2053125 |
[16] | L. Qian, F. Zhu, A new minification integer-valued autoregressive process driven by explanatory variables, Aust. N. Z. J. Stat., 64 (2022), 478–494. |
[17] | Q. Zhang, D. Wang, X. Fan, A negative binomial thinning-based bivariate INAR(1) process, Stat. Neerl., 74 (2020), 517–537. |
[18] | M. S. Ristić, H. S. Bakouch, A. S. Nastić, A new geometric first-order integer-valued autoregressive (NGINAR(1)) process, J. Stat. Plann. Infer., 139 (2009), 2218–2226. https://doi.org/10.1016/j.jspi.2008.10.007. doi: 10.1016/j.jspi.2008.10.007 |
[19] | J. Pitman, Probability, New York, NY: Springer New York. p. 372, 1993. https://doi.org/10.1007/978-1-4612-4374-8. ISBN 978-0-387-94594-1 |
[20] | M. Sankaran, The discrete Poisson-Lindley distribution, Biometrics, 26 (1970), 145–149. |
[21] | M. Mohammadpour, H. S. Bakouch, M. Shirozhan, Poisson–Lindley INAR(1) Model with Applications, Braz. J. Probab. Stat., 32 (2018), 262–280. https://doi.org/10.1214/16-BJPS341. doi: 10.1214/16-BJPS341 |
[22] | Z. Mohammadi, Z. Sajjadnia, H. S. Bakouch, M. Sharafi, Zero-and-One inflated Poisson–Lindley INAR(1) process for modelling count time series with extra zeros and ones, J. Stat. Comput. Sim., 92 (2022), 2018–2040. |
[23] | W. A. H. Al-Nuaami, A. A. Heydari, H. J. Khamnei, The Poisson–Lindley distribution: Some characteristics, with its application to SPC, Mathematics, 11 (2023), Article No. 2428. https://doi.org/10.3390/math11112428 doi: 10.3390/math11112428 |
[24] | H. S. Bakouch, F. Gharari, K. Karakaya, Y. Akdoğan, Fractional Lindley distribution generated by time scale theory, with application to discrete-time lifetime data, Math. Popul. Stud., 31 (2024), 116–146. https://doi.org/10.1080/08898480.2024.2301865 doi: 10.1080/08898480.2024.2301865 |
[25] | M. Ghitany, D. Al-Mutairi, Estimation methods for the discrete Poisson–Lindley distribution, J. Stat. Comput. Simul., 79 (2009), 1–-9. |
[26] | M. G. Scotto, C. H. Weiß, T. A. Möller, S. Gouveia, The Max-INAR(1) model for count processes, Test, 27 (2018), 850–870. https://doi.org/10.1007/s11749-017-0573-z doi: 10.1007/s11749-017-0573-z |
[27] | L. Qian, G. Li, A Class of Max-INAR (1) processes with explanatory variables, J. Stat. Comput. Simul., 92 (2022), 1898–1919. |
[28] | M. G. Scotto, S. Gouveia, On the extremes of the Max-INAR (1) process for time series of counts, Commun. Stat. Theory M., 52 (2023), 1136–1154. |
[29] | V. L. Martin, A. R. Tremayne, R. C. Jung, Efficient method of moments estimators for integer time series models, J. Time Series Anal., 35 (2014), 491–516. |
[30] | Y. Cui, Q. Zheng, Conditional maximum likelihood estimation for a class of observation-driven time series models for count data, Stat. Probab. Lett., 123 (2017), 193–201. https://doi.org/10.1016/j.spl.2016.11.002. doi: 10.1016/j.spl.2016.11.002 |
[31] | R. Azrak, G. Mélard, Asymptotic properties of conditional Least-Squares estimators for array time series, Stat. Inference Stoch. Process, 24 (2021), 525–547. https://doi.org/10.1007/s11203-021-09242-8 doi: 10.1007/s11203-021-09242-8 |
[32] | A. Buja, E. Hare, H. Hofmann, Create and manipulate discrete random variables, R package version 1.2.2, (2015). https://CRAN.R-project.org/package = discreteRV (accessed on 20 February 2024). |
[33] | D. M. Gay, Usage Summary for Selected Optimization Routines, Computing Science, Technical Report 153, AT & T Bell Laboratories, Murray Hill, 1990. (accessed on 25 February 2024). |
[34] | L. Gross, Tests for Normality, R package Version: 1.0.4, (2013). http://CRAN.R-project.org/package = nortest (accessed on 25 February 2024) |
[35] | COINMETRICS, https://coinmetrics.io/ |
[36] | A. Aknouche, B. S. Almohaimeed, S. Dimitrakopoulos, Forecasting transaction counts with integer-valued GARCH models, Stud. Nonlinear Dyn. E., 26 (2021), 529–539. https://doi.org/10.1515/snde-2020-0095 doi: 10.1515/snde-2020-0095 |
[37] | C. H. Weiß, F. Zhu, Conditional-Mean multiplicative operator models for count time series, Comput. Stat. Data Anal., 191 (2024), Article No. 107885. |
[38] | D. Qiu, Alternative Time Series Analysis, R package Version: 3.1.2.1. (2015). Available from: https://rdocumentation.org/packages/aTSA/versions/3.1.2.1. (accessed on 29 February 2024) |
[39] | O. Kella, A. Löpker, On Binomial Thinning and Mixing, Indag. Math., 5 (2023), 1121–1145. |
[40] | F. Diebold, R. Mariano, Comparing Predictive Accuracy, J. Bus. Econ. Stat. 13 (1995), 253–263. |
[41] | R. Hyndman, Forecasting Functions for Time Series and Linear Models, R Package Version 7.1. (2016). Available from: http://CRAN.R-project.org/package = forecast (accessed on 3 March 2024). |
[42] | T. M. Apostol, Mathematical Analysis (2nd ed.), Addison-Wesley, 1974. ISBN 978-0-201-00288-1 |