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A. Alghamdi6

1 Department of Informatics & Computer Sciences, University of Criminal Investigation and Police
Studies, Belgrade 11060, Serbia

2 Department of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia
3 Department of Mathematics, Faculty of Science, Tanta University, Tanta 31111, Egypt
4 Department of Mathematics & Informatics, Faculty of Economics, University of Kosovska

Mitrovica, Kosovska Mitrovica 38220, Serbia
5 Department of Quantitative Methods, School of Business, King Faisal University, Al-Ahsa 31982,

Saudi Arabia
6 Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman

University, Riyadh 11671, Saudi Arabia

* Correspondence: Email: vladica.stojanovic@kpu.edu.rs; galomair@kfu.edu.sa.

Abstract: This paper introduces the Poisson-Lindley minification integer-valued autoregressive (PL-
MINAR) process, a novel statistical model for analyzing count time series data. The modified negative
binomial thinning and the Poisson-Lindley (PL) marginal distribution served as the foundation for
the model. The proposed model was examined in terms of its basic stochastic properties, especially
related to conditional stochastic measures (e.g., transition probabilities, conditional mean and variance,
autocorrelation function). Through comprehensive simulations, the effectiveness of various parameter
estimation techniques was validated. The PL-MINAR model’s practical utility was demonstrated in
analyzing the number of Bitcoin transactions and stock trades, showing its superior or comparable
performance to the established INAR model. By offering a robust tool for financial time series analysis,
this research holds potential for significant improvements in forecasting and understanding market
dynamics.

Keywords: count time series; minification processes; forecasting; parameters estimation; simulation;
stock and bitcoin data
Mathematics Subject Classification: 62M10, 60G10, 62M20, 62P05

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241102


22628

1. Introduction

Integer-valued time series models have been widely used to model count time series. The most
represented models of this type are the so-called integer-valued autoregressive (INAR) time series
models, for which there is extensive literature (see, as the most recent, e.g., [1–8]). On the other hand,
there are real-world datasets that cannot be modeled by ordinary INAR models, and for this reason
various modifications are introduced. One of them is represented by the so-called minification time
series models, which first appeared in [9,10], where a continuous, exponential marginal distribution is
considered. Thereafter, the identical structure’s minification model with Weibull marginal distribution
was shown in [11]. The first discrete minification models were presented in [12], while different types
of minification models with discrete marginal distributions were discussed in [13]. The situation of
geometric marginal distributions was the main focus of [14–16], where some new results about discrete
minification processes have recently appeared. Specifically, the findings in Aleksić & Ristić [14],
where the minification INAR method with geometric marginal distribution was developed, should be
highlighted. Motivated by this issue, a new minification integer-valued autoregressive process with
Poisson-Lindley marginal distribution (abbr. PL-MINAR process) is proposed here. Some preliminary
assumptions necessary to introduce this stochastic process, as well as its definition and some key
stochastic features, are described in Section 2. Then, Section 3 presents some estimation techniques of
the PL-MINAR process parameters and Monte Carlo simulations of the obtained estimators. Practical
applications of the PL-MINAR process in modeling the dynamics and empirical distribution of real-
world time series, related to the count-based financial data, are given in Section 4. Here, the PL-
MINAR process has also been compared with ordinary INAR(1) processes and shown to have the
same or even better prediction efficiency and accuracy. Section 5 contains some closing thoughts,
while proofs for the stated proposition and theorems are given in the Appendix.

2. PL-MINAR process and its properties

2.1. Preliminaries

In this part, the definition of modified negative binomial thinning is given first. After that, some key
properties of this operator are presented, as well as its specificities in the case of the Poisson-Lindley
(PL) distribution.

Definition 1. Let α > 0 and G j ∼ Geom(α/(1+α)), j = 1, 2, . . . be independent identically distributed
(IID) random variables (RVs) with a geometric distribution, whose probability mass function (PMF)
is as follows:

pG(x;α) := P{G j = x} =
αx

(1 + α)x+1 , x = 0, 1, 2, . . . (1)

The modified negative binomial thinning operator “ ◦ ” is given by the equality:

α ◦ X :=
X+1∑
j=1

G j, (2)

where X is the integer-valued RV, also independent of the RVs (G j), called counting series related to
the mentioned operator.
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It is worth noting that this form of thinning operator was proposed for the first time by Zhang et
al. [17]. It differs from the usual negative binomial thinning operator, introduced in Ristić et al. [18],
where the term “X” is used instead of “X + 1”. The main reason is that the upper bound X + 1 prevents
the RV α ◦ X from “vanishing” in the case where X = 0, because then Eq (2) yields α ◦ 0 = G1 , 0.
Consequently, in line with Aleksić & Ristić [14], using this kind of modified operator can avoid the
problem of constant behaviour of zero, which may appear when considering a minification model with
an ordinary binomial or negative binomial thinning operator. Furthermore, for a given X = y, the RV
α◦X represents a sum of y+1 geometrically distributed RVs. Thus, as is well known (e.g., Pitman [19]),
the RV α ◦ X has the negative binomial (NB) distribution with “the number of successes” y + 1 and
parameter p = α/(1 + α). In this way, the conditional PMF of the RV α ◦ X is as follows:

P{α ◦ X = x | X = y} =
(
x + y

y

) (
α

1 + α

)x
(

1
1 + α

)y+1

, (3)

where x = 0, 1, 2, . . . In addition, using Equations (1) and (2) for the conditional probability generating
function (PGF) of the RV α ◦ X, one obtains:

Ψα◦X|X(u;α) = E
[
uα◦X | X

]
=

(
E
[
uG j

])X+1
=

 1
1 + α

∞∑
x=0

(
αu

1 + α

)x
X+1

= (1 + α − αu)−X−1 ,

(4)

where |u| < (1 + α)/α.
According to this and the well-known properties of PGFs and negative binomial thinning operator

(e.g., Ristić et al. [18]), the conditional measures of α ◦X can be easily obtained. Thus, the conditional
mean is

E [α ◦ X | X] =
∂Ψα◦X|X(u;α)

∂u

∣∣∣∣∣∣
u=1

= α(X + 1) (1 + α − αu)−X−2

∣∣∣∣∣∣
u=1

= α(X + 1), (5)

as well as

E
[
α ◦ X(X − 1) | X

]
=
∂2Ψα◦X|X(u;α)

∂u2

∣∣∣∣∣∣
u=1

= α2(X + 1)(X + 2).

Based on this, the conditional second moment of α ◦ X is

E
[
(α ◦ X)2

| X
]
= α2(X + 1)2 + α(1 + α)(X + 1),

and thus the conditional variance is obtained as:

Var
[
α ◦ X | X

]
= E

[
(α ◦ X)2

| X
]
−

(
E
[
α ◦ X | X

])2
= α(1 + α)(X + 1). (6)

Now, let us suppose that X is a RV with Poisson-Lindley (PL) distribution, whose PMF is given by:

pX(x; θ) := P {X = x} =
θ2(θ + x + 2)

(θ + 1)x+3 , x = 0, 1, 2, . . . , (7)

where θ > 0 is the (unknown) parameter. It should be noted that the PL distribution, firstly proposed
by Sankaran [20], is obtained from the Poisson distribution, whose parameter is adapted to the Lindley
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distribution (some more results about this distribution and its generalizations can be found, e.g., in
[21–24]). Based on this, the PGF of the PL distribution is easily obtained:

ΨX(u; θ) := E
[
uX] = θ2(θ − u + 2)

(θ + 1)(θ − u + 1)2 , |u| < θ + 1, (8)

and using a procedure similar to the previous one, its mean and variance are, respectively:

µX : = E [X] =
θ + 2
θ(θ + 1)

,

σ2
X := Var [X] =

θ3 + 4θ2 + 6θ + 2
θ2(θ + 1)2 = µX +

θ2 + 4θ + 2
θ2(θ + 1)2 .

(9)

Thus, the PL-distributed RV X is obviously over-dispersed. Finally, the survival function of X, which
plays an important role in the further presentation, is obtained as follows:

SX(x) := P {X ≥ x} =
∞∑

k=x

pX(k; θ) =
θx + (θ + 1)2

(θ + 1)x+2 . (10)

Under the given assumptions, the following preliminary result can be proved.

Proposition 1. Let X be the PL-distributed RV, with the PMF given by Eq (7), which is independent
of RVs G j(α/(1 + α)), given in Definition 1. Then, the RV α ◦ X represents the mixture of the negative
binomial distribution NB(β/(1+ β), 2) and the geometric distribution Geom(β/(1+ β)), with the PMF:

pα◦X(x;α, θ) := P {X = x} =
(
x + 1

)
βx

(θ + 1)2(1 + β)x+2 +
θ(θ + 2)βx

(θ + 1)2(1 + β)x+1 , (11)

and the survival function:

Sα◦X(x;α, θ) := P {α ◦ X ≥ x} =
αx(θ + 1)x−2

(αθ + α + θ)x+1

[
θ
(
x + (θ + 1)2

)
+ α(θ + 1)3

]
, (12)

where x = 0, 1, 2, . . . and β = α(θ + 1)/θ > 0.

Proof. The proof of this proposition, as well as the following theorems, is given in the Appendix. □

Remark 1. Using Proposition 1, as well as the facts previously stated, some more stochastic properties
for the RV α ◦ X, when X has the PL(θ) distribution, can be highlighted. For instance, according to
Equations (5), (6), and (9), as well as by applying the laws of total expectation and total variance, the
mean and the variance of the RV α ◦ X are, respectively:

µα◦X := E [α ◦ X] = E [E [α ◦ X | X]] = αE [X + 1] = α
(θ + 1)2 + 1
θ(θ + 1)

σ2
α◦X := Var [α ◦ X] = E [Var [α ◦ X | X]] + Var [E [α ◦ X | X]]

= α(α + 1)E [X + 1] + α2Var [X] = α(α + 1)
(θ + 1)2 + 1
θ(θ + 1)

+ α2 θ
3 + 4θ2 + 6θ + 2
θ2(θ + 1)2

= µα◦X + α
2 θ

4 + 4θ3 + 8θ2 + 8θ + 2
θ2(θ + 1)2 .

AIMS Mathematics Volume 9, Issue 8, 22627–22654.



22631

Note that the RV α ◦ X, as well as the PL-distributed RV X, are over-dispersed. Also, the same results
can be obtained by applying Proposition 1, i.e., the PMF of the RV α ◦ X, given by Eq (11). Finally,
observations of the RV α ◦ X can be generated by applying the following simple algorithm:

Step 1. Generate a RV U from the uniform distribution over the interval (0, 1).
Step 2. If U < (θ + 1)−2, generate the RV from the negative binomial distribution NB(β/(1 + β), 2).
Step 3. Else, generate the RV from the geometric distribution Geom(β/(1 + β)).

2.2. Definition and key properties of the model

Similarly as in Aleksić & Ristić [14], a formal definition of the integer-valued minification process
(of the first order) is given here. Thereafter, some stochastic properties of this process are considered
in the case when it has a PL marginal distribution.

Definition 2. A time series (Xt), t ∈ Z, given by the equality:

Xt := min(α ◦ Xt−1, εt). (13)

is a minification INAR model of the first order (abbr. MINAR(1) model) if it meets the following
conditions:

(i) (εt), t ∈ Z is an innovation series, that is, the IID integer-valued RVs, independent from (Xt),
(ii) the counting series incorporated in α◦Xt−1, t ∈ Z are mutually independent and also independent

of RVs Xt−1 and εt,
(iii) the counting series incorporated in α ◦ Xt−1 and α ◦ Xk−1 are independent for all t , k,
(iv) the RVs Xt− j and εt are independent for all j ∈ Z.

Based on this definition, it may seem at first glance that the minification process leads to relatively
small values. However, due to the definition of the modified thinning operator, higher values are also
possible. This behavior is similar to max-INAR models, discussed in [26–28], but there is a difference
in how both models reach the extreme value (see for more details Aleksić & Ristić [14]). In the
following, we assume that for all t ∈ Z, the RVs Xt have a Poisson-Lindley distribution PL(θ), whose
PMF is given by Eq (7). Thus, we say that the series (Xt) represents a PL-minification integer-valued
autoregressive (abbr. PL-MINAR) process (of the first order). According to the definition of the PL-
MINAR process and the results described in the previous section, we first determine the distribution of
its innovation series (εt).

Theorem 1. When the innovations (εt) have the survival function of the form:

Sε(x;α, θ) := P {εt ≥ x} =
(αθ + α + θ)x+1(θ(θ + x + 2) + 1)

αx(θ + 1)2x (α(θ + 1)3 + θ
(
(θ + 1)2 + x

)) (14)

then, the discrete time series (Xt), given by Eq (13), has a stationary Poisson-Lindley distribution
PL(θ), whose PMF is given by Eq (7), if and only if the following inequality is valid:

α ≥
1
2

1 − θ
1 + θ

+

√
θ2 + 3θ + 6

(θ + 1)(θ + 2)

 . (15)
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The reverse statement is also true, and the PGF of RVs (εt) is given as follows:

Ψε(u;α, θ) := E
[
uεt

]
= 1 + γ (u − 1)

(
λ

1 − γu
− (λ − 1) δ Lδ+1(γu)

)
, (16)

wherein λ = αθ + α + θ, γ = λ/
(
α (θ + 1)2), δ = λ (θ + 1)2/θ, |u| < 1/γ and

Lδ(u) :=
∞∑

k=0

uk

k + δ

is the Lerch transcendent (of the first order).

Remark 2. Figure 1 shows distributions of the series (Xt), (α ◦ Xt), and (εt), when the parameters
α = 0.75 and θ = 1 are taken. It is easy to verify that both of the above conditions are fulfilled, and
based on them, it can bee seen that increasing the value of parameter θ also increases the set of allowed
values for α (see again Figure 6(b)). Also, it is worth noting that the series (α◦Xt) and (Xt) have a quite
similar distribution, which is expected, because according to the definition of the PL-MINAR process,
given by Eq (13), their values partially match. On the other hand, the distribution of the innovation
series (εt) is very specific and different compared to them, so its properties will be further investigated.

Figure 1. The PMFs of the RVs (Xt), (α ◦ Xt), and (εt).

Remark 3. By differentiating the PGF Ψε(u;α, θ) given by Eq (16) and then putting u = 1, the mean
value of the innovations (εt) can be easily calculated as follows:

µε := E[εt] =
∂Ψε(u;α, θ)
∂u

∣∣∣∣∣∣
u=1

=

[
λγ(1 − γ)
(1 − γu)2 − (λ − 1)γδ

(
Lδ+1(γu) + γ(u − 1)L′δ+1(γu)

)] ∣∣∣∣∣∣
u=1

= γ

[
λ

1 − γ
− (λ − 1) δ Lδ+1(γ)

]
.

At the same time, note that under the condition 0 < γ < 1 and the inequality:

Lδ+1(γ) =
∞∑

k=0

γk

k + δ + 1
<

1
δ

∞∑
k=0

γk =
1

δ(1 − γ)

it follows that:

µε >
λ γ

1 − γ
−

(λ − 1) γ
1 − γ

=
γ

1 − γ
> 0.
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Similarly, according to equality:

E
[
εt(εt − 1)

]
=
∂2Ψε(u;α, θ)
∂u2

∣∣∣∣∣∣
u=1

= 2γ2
[
λ

(1 − γ)2 − (λ − 1) δ L′δ+1(γ)
]

for the variance of the RVs (εt), after some computations, one obtains:

Var [εt] = E
[
εt(εt − 1)

]
+ E

[
εt
]
−

(
E
[
εt
])2
=

γ

(1 − γ)2

[
λ + (λ − 1)(1 − γ)2δLδ+1(γ) (γδLδ+1(γ) + 1)

− γλ(Lδ+1(γ)δ(1 − γ) + 1)2
]
− 2γ2δ(λ − 1)L′δ+1(γ).

Below are some important properties of the PL-MINAR series (Xt) related to its conditional
stochastic measures. First, the Markov properties and the conditional PGF of the PL-MINAR series
(Xt) are presented.

Theorem 2. Let (Xt), t ∈ Z, be a PL-MINAR process given by Eq (13). Then, (Xt) is a strictly stationary,
homogeneous Markov process with one-step transition probabilities:

P {Xt = x | Xt−1 = y} = Sε(x;α, θ)
(
x + y

x

)
αx

(1 + α)x+y+1 + pε(x;α, θ)
∞∑

k=x+1

(
k + y

k

)
αk

(1 + α)y+k+1 , (17)

where x, y = 0, 1, 2, . . . . In addition, the conditional PGF of the PL-MINAR RVs (Xt), for a given value
Xt−1 = y, has the following form:

E
[
uXt | Xt−1 = y

]
= 1 +

λ γ (u − 1)
1 − γu

(
1 −

1
(1 + α − αγu)y+1

)

− (λ − 1) γ δ(u − 1)

Lδ+1(γu) −
∞∑
j=0

(
y + j

j

)
(αγu) j Lδ+ j+1(γu)

(1 + α)y+ j+1

 ,
(18)

where |u| < 1/γ and the parameters λ, γ, δ are the same as in Theorem 1.

Remark 4. Based on the previous theorem, in a similar way as in [21], some additional Markovian
properties of the PL-MINAR process can be observed. Note that Eq (14), under the condition given by
Eq (15), ensures Sε(x;α, θ) > Sε(x + 1;α, θ) > 0, which implies pε(x;α, θ) > 0, for all x = 0, 1, 2, . . . .
Therefore, the transition probabilities given by Eq (17) are always positive, so the process (Xt) is an
irreducible, aperiodic and (positively or null) recurrent Markov chain.

Remark 5. Based on the previous theorem and using the well-known properties of PGFs, the
conditional mathematical expectation and the conditional variance of the PL-MINAR series (Xt) can
be derived. Thus, by differentiating Eq (18) and setting u = 1, for the conditional mean of the series
(Xt), after some computations, one obtains:

E
[
Xt | Xt−1

]
=
∂ E

[
uXt | Xt−1

]
∂ u

∣∣∣∣∣∣
u=1

=
λγ

1 − γ

1 − (
1

1 + α − αγ

)Xt−1+1
− δ(λ − 1)γ

Lδ+1(γ) −
∞∑
j=0

(
Xt−1 + j

j

)
(αγ) jLδ+ j+1(γ)
(1 + α)Xt−1+ j+1

 .
(19)
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Similarly, the conditional variance of (Xt) can be obtained as:

Var
[
Xt | Xt−1

]
= E [Xt(Xt − 1) | Xt−1] + E [Xt | Xt−1] − (E [Xt | Xt−1])2 ,

where

E [Xt(Xt − 1) | Xt−1] =
∂2 E

[
uXt | Xt−1

]
∂ u2

∣∣∣∣∣∣
u=1

.

However, due to the complexity of the calculation, a more detailed procedure will be omitted here.

Finally, the correlation structure of the PL-MINAR process is examined below, where it is presented
in the next statement.

Theorem 3. The first-order autocorrelation of the PL-MINAR series (Xt) is given by the following
expression:

ρX(1) := Corr(Xt, Xt−1) =
θ2(θ + 1)2

θ3 + 4θ2 + 6θ + 2

[
θ + 2
θ(θ + 1)

(
λγ

1 − γ − 1
+ (λ − 1)γδLδ+1(γ)

)

+
γδ(λ − 1)

(αθ + α + θ)3

(
θ

θ + 1

)2 ∞∑
j=0

( j + 1)
(

αγ(θ + 1)
(1 + α)(θ + 1) − 1

) j

× ((1 + α)(θ + 1)(θ + 3) − θ + j − 1)L j+δ+1(γ) −
(θ + 2)2

θ2(θ + 1)2

]
.

(20)

Remark 6. Let us examine in a nutshell the problem of finding the correlation dependence for RVs Xt

and Xt−k, where k = 1, 2, . . . Using similar considerations as in the general minification process [12],
we define a two-dimensional survival function:

S
(2)
k (x, y) := P {Xt ≥ x, Xt−k ≥ y} = P {min(α ◦ Xt−1, εt) ≥ x, Xt−k ≥ y} = Sε(x) P {α ◦ Xt−1 ≥ x, Xt−k ≥ y} .

From here, using the conditional probability and the conditional expectation, one obtains:

E [Xt Xt−k] =
∞∑

x=1

∞∑
y=1

S
(2)
k (x, y) =

∞∑
x=1

Sε(x)
∞∑

y=1

P {Xt−k ≥ y |α ◦ Xt−1 ≥ x} P {α ◦ Xt−1 ≥ x}

=

∞∑
x=1

Sε(x)P {α ◦ Xt−1 ≥ x} E [Xt−k |α ◦ Xt−1 ≥ x]

=

∞∑
x=1

P {min(α ◦ Xt−1, εt) ≥ x} E [Xt−k |α ◦ Xt−1 ≥ x]

:= Φ(Xt−1, Xt−k;α),

where the replacement of the order of the sums is ensured in a manner similar to the proof of Theorem 2
(see Appendix). Thus, the mixed moments E [XtXt−k], and therefore the autocorrelation function
ρX(k) = Corr(Xt, Xt−k), k = 1, 2, . . . , can be expressed recursively, in terms of bivariate distribution
of the RVs (Xt−1, Xt−k).
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3. Statistical analysis and simulation

3.1. Parameters estimation procedures

In this part, some procedures for estimating the unknown parameters α ∈ (0, 1) and θ > 0 of the
PL-MINAR model are discussed. For this purpose, based on previously obtained theoretical results,
three different estimation methods are examined here, and their more detailed description will be given
below. In doing so, as usual, it is assumed that the PL-MINAR series (Xt) is given by one of its observed
realizations X1, . . . , XT of length T > 0.

3.1.1. Method of moments (MM)

This estimation method is based on equating the theoretical and empirical moments of the PL-
MINAR series (Xt). According to the stationarity of the series (Xt) and the first of Eq (9), the MM-
estimator of the parameter θ is easily obtained from the equality:

θ̂MM =
1 − XT +

√(
1 − XT

)2
+ 8XT

2XT

, (21)

where XT := T−1 ∑T
t=1 Xt is the empirical mean of the realized series X1, . . . , XT . By using some

general results about the MM estimates of the PL distribution (e.g., [25]), the asymptotic normality
of the estimator θ̂MM can be proven. Thereafter, by replacing θ with θ̂MM, as well as the first-order
correlation ρX(1) with the empirical one

ρ̂T (1) :=
∑T−1

t=1 (Xt − XT )(Xt+1 − XT )∑T
t=1(Xt − XT )2

,

solving Eq (20) with respect to α gives the estimator α̂MM of this parameter. For this purpose, some
numerical procedure must be used, although a particular problem is the complexity of this equation.
Nevertheless, after substituting θ = θ̂MM and ρX(1) = ρ̂T (1) into Eq (20), it gains simplicity. Moreover,
since the mean and variance of the PL-MINAR series (Xt) do not depend on α ∈ (0, 1), to obtain this
parameter we can take Eq (A.8) (see Appendix), i.e., equality E [XtXt−1] = M̂(2)

T , where

M̂(2)
T =

1
T − 1

T∑
t=2

XtXt−1

is the empirical mixed moment of observed series X1, . . . , XT . Finally, a consistency and asymptotic
normality of this estimator can be shown by using some general results of the MM estimators (see, for
more detail, e.g., [29]).

3.1.2. Conditional maximum likelihood (CML) method

As is well-known, for the observed values x1, ..., xT related to the mentioned realization, the CML
method is based on maximizing the conditional log-likelihood function:

ℓ(α, θ) = log L(α, θ) = log
T∏

t=2

P {Xt = xt | Xt−1 = xt−1} =

T∑
t=2

log P {Xt = xt | Xt−1 = xt−1} . (22)
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Since the PL-MINAR process (Xt) has Markov properties, described in Theorem 2, its conditional
log-likelihood function can be easily derived. Namely, by using previously obtained transitional
probabilities, given by Eq (17), as well as their replacement in Eq (22), the following objective function
on α, θ is obtained:

ℓ(α, θ) =
T∑

t=2

log
[
Sε(xt;α, θ)

(
xt + xt−1

xt

)
αxt

(1 + α)xt+xt−1+1

+pε(xt;α, θ)

1 − xt∑
k=0

(
k + xt−1

k

)
αk

(1 + α)xt−1+k+1

 .
(23)

Note that CML estimates of the parameters α, θ can be computed by solving the coupled equations
∂ℓ(α, θ)/∂α = ∂ℓ(α, θ)/∂θ = 0. However, as is common for this estimation method, CML estimators
α̂CLM and θ̂CLM cannot be obtained in closed form in this way. Therefore, it is necessary to use some
numerical methods for their calculation, which will also be discussed below. It is worth noting that,
similar to the previous method, the asymptotic properties of these estimators can be shown using
general results related to CML estimators (see for more details, e.g., [30]).) Furthermore, using
a procedure like that of the Poisson-Lindley INAR(1) model, introduced in [21], the asymptotic
equivalence of the efficiency of the MM and CLM estimators can also be shown.

3.1.3. Conditional least squares (CLS) method

The third estimation method is the CLS method, where the estimates of the parameters α ∈ (0, 1)
and θ > 0 are obtained as values that minimize the following objective function:

QT (α, θ) =
T∑

t=2

[
Xt − E [Xt | Xt−1]

]2
.

By substituting here the conditional mean previously obtained by Equation (19), it follows:

QT (α, θ) =
T∑

t=2

[
Xt −

λγ

1 − γ

[
1 −

( 1
1 + α − αγ

)Xt−1+1]
− δ(λ − 1)γ

×

[
Lδ+1(γ) −

∞∑
j=0

(
Xt−1 + j

j

)
(αγ) jLδ+ j+1(γ)
(1 + α)Xt−1+ j+1

]
2

,

(24)

wherein λ = αθ + α + θ, γ = λ/
(
α (θ + 1)2) and δ = λ (θ + 1)2/θ. Therefore, by applying the

usual procedure, that is, by solving coupled equations ∂QT (α, θ)/∂α = ∂QT (α, θ)/∂θ = 0, the CLS
estimators can be computed. Note that, as in the previous case, the minimization of the function
QT (α, θ) can be performed using some numerical procedures, while the asymptotic properties of the
obtained CLS estimates can be proved by applying some basic results of the CLS theory (see, for more
detail, e.g., [31]). Finally, as before, the asymptotic efficiency equivalence of the CLS estimators with
previous ones can be easily shown.

AIMS Mathematics Volume 9, Issue 8, 22627–22654.



22637

3.2. Numerical study

In this part, numerical simulations of previously described procedures for estimating the unknown
parameters (α, θ) of the PL-MINAR process (Xt) were carried out, based on its observed realization
X1, . . . , XT . For this purpose, the innovations (εt) are first generated, so that their PMF, given by
Eq (A.4) (see Appendix), is implemented using the R-package “discreteRV”, authorized by Buja et
al. [32]. Thereafter, using Eqs (2) and (13), the simulated values of the series (α ◦ Xt) and (Xt),
respectively, are simply generated. The procedure of generating the PL-MINAR process (Xt) can be
presented by the following pseudo-code:

Step 1. For the innovation series (εt), by using Eq (14), define the appropriate survival function
Sε(x;α, θ) = P{εt ≥ x}, as well as its PMF pε(x;α, θ) = Sε(x;α, θ)−Sε(x+1;α, θ),when x = 0, 1, 2, . . .

Step 2. For t = 0, 1, . . . ,T generate the values of εt, whose PMF is pε(x;α, θ).

Step 3. Put the initial values X0 = α ◦ X0 = ε0.

Step 4. For t = 1, . . . ,T , by using Eq (2), generate the values of α ◦ Xt−1, and then the values of
Xt = min{α ◦ Xt−1, εt}.

Note that the values of α◦Xt can be alternatively generated according to the pseudo-code previously
stated in Remark 1. As an illustration, Figure 2 shows the empirical frequency distributions of
all three series, for different values of parameters (α, θ), obtained according to their realizations of
length T = 1500. It can be noted, as explained in the previous theoretical part, that the empirical
distributions of the series (α ◦ Xt) and (Xt) are similar to each other. In contrast, the empirical
distribution of innovations (εt) is significantly more flexible and more susceptible to changes in
parameters, which is fully consistent with the procedure for obtaining these distributions, as stated
in Theorem 1. Furthermore, by applying the described procedure, simulations of the PL-MINAR
series (Xt) of different lengths T ∈ {500, 1500, 3000} were conducted. Thereby, we point out that
some of these lengths are taken in accordance with the size of real-world data, which are observed and
analyzed in the next section. In addition, the previously presented estimation methods can be applied
to each of these obtained realizations {X1, . . . , XT }. To this end, for each of the mentioned lengths, we
independently generated 1000 independent simulations of the series (Xt), and the results of applying
the three previously described estimation procedures are shown in Table 1.

More precisely, Table 1 contains, for all considered estimation methods and different lengths of
simulated series, summary statistics of the computed estimates, i.e., their minimums (Min.), mean
values (Mean), maximums (Max.), and standard deviations (SD). In addition, the mean squared errors
of estimation (MSEE), as well as the Anderson-Darling normality test were performed. Note that in the
case of the MM estimator, the parameter θ is easily estimated according to Eq (21). Afterwards, using
the procedure specified in Subsection 3.1, the MM estimates of the parameter α are easily derived.
To that cause, the R-procedure “nmilnb” for box-constrained optimization was used (see Gay [33] for
more details), but the same results are obtained using the R-procedure “optimize” for unconstrained
optimization. From the other side, CML and CLS estimates were performed using minimization of
the objective functions ℓ(α, θ) and Q(α, θ), given by Eqs (23) and (24), respectively. Thereby, the
realizations from the uniform distribution were taken as the initial estimated values of the parameters,
taking care to satisfy the conditions of Theorem 1.
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Figure 2. Empirical frequency distributions of three PL-MINAR series of length T = 1500,
generated using Monte Carlo simulations for different values of parameters α, θ.

From the results given in Table 1, we can notice that the MM estimates of α have a large
range, which is a consequence of their calculation using the reciprocal estimated autocorrelation. In
contrast, the MM estimates of θ are significantly more efficient because they are obtained directly from
Eq (21). More efficient estimates are also obtained for the other two estimation methods, although the
estimates for θ obtained by the CML method have higher standard deviation values. By using similar
considerations as Aleksić & Ristić [14], it should be noted that CML estimates require significantly
more computing time, especially for large samples. Nevertheless, it is noticeable the decrease of SD
and MSEE values with increasing series lengths, that is, there is a pronounced convergence of all
estimation methods. The asymptotic normality (AN) test results are also shown in Table 1, where
the Anderson–Darling normality test was conducted. The test statistic, denoted AD, along with the
corresponding p-values, were calculated using the procedure from the R-package “nortest”, authored
by Gross [34]. According to the values obtained, it can be seen that the AN property is confirmed for
almost all calculated estimates, at the significance level of 0.01 < p < 0.05, which is also confirmed
in Figure 3. Moreover, the AN property is the most pronounced in the case of CLS estimates, so this,
along with the previously mentioned facts, indicates that these estimates may be the most adequate for
practical application, which will be done below.
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Table 1. Summary statistics, estimation errors, and AN testing of parameter estimates of the
PL-MINAR process. (True parameters are: α = 0.5, θ = 2).

MM CML CLS
Sample

α̂MM θ̂MM α̂CML θ̂CML α̂CLS θ̂CLS

Min. 0.1073 1.550 0.3600 1.360 0.3292 1.497
Mean 0.5078 2.068 0.5121 2.035 0.4719 2.032
Max. 0.8404 2.817 0.6713 2.620 0.6126 2.574
SD 0.1007 0.1747 0.0705 0.3111 0.0519 0.1956

T
=

50
0

MSEE 0.0102 0.0351 0.0712 0.0970 0.0588 0.0457
AD 1.015∗ 0.6818 0.5395 0.7330 0.4749 0.5116
(p-value) (0.0113) (0.0746) (0.1585) (0.0525) (0.2355) (0.1950)

Min. 0.1530 1.790 0.3810 1.436 0.3918 1.535
Mean 0.5065 2.069 0.4924 2.038 0.5030 2.013
Max. 0.8303 2.415 0.6397 2.597 0.5911 2.540
SD 0.0977 0.0991 0.0617 0.2915 0.0314 0.1917

T
=

15
00

MSEE 9.92E-3 0.0145 0.0615 0.0882 0.0315 0.0379
AD 0.5357 0.3575 0.5089 0.6041 0.3380 0.2794
(p-value) (0.1694) (0.4538) (0.1940) (0.1136) (0.5033) (0.6393)

Min. 0.2299 1.868 0.3747 1.778 0.4415 1.594
Mean 0.5036 2.070 0.4954 2.006 0.4998 2.050
Max. 0.8032 2.294 0.6200 2.549 0.5946 2.482
SD 0.0990 0.0689 0.0584 0.2753 0.0271 0.1880

T
=

30
00

MSEE 9.65E-3 0.0100 0.0586 0.0751 0.0269 0.0375
AD 0.5506 0.2974 0.2089 0.6328 0.3202 0.1844
(p-value) (0.1558) (0.5895) (0.8599) (0.0964) (0.5319) (0.9064)
∗ 0.01 < p < 0.05
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Figure 3. Histograms of the empirical distributions of the PL-MINAR process parameters
estimates. (The length is T = 1500 and parameters are the same as in Table 1.)

4. Application to real-world data

This section discusses some practical applications of the PL-MINAR process in real-world data
modeling. For this purpose, as well as to compare the efficiency of the proposed model with some
well-known existing models, we used two datasets. The first one, labeled as Series A, represents daily
bitcoin transaction volumes, calculated as the sum of all transaction outputs belonging to the blocks
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mined on a given day. The data refer to the first period of transactions with this cryptocurrency, from
January 9, 2009 to April 3, 2010, based on the Bitcoin dashboard “Coinmetrics” [35]. Thus, a time
series of length T = 450 was obtained, and similarly to [36, 37], the last 10%, that is, 45 observations,
are used to test the predictive accuracy of PL-MINAR process. The second (Series B), considered also
in [36], represents the number of transactions in shares of the Empire District Electric (EDE) company,
measured at 5-minute intervals between 9:45 a.m. and 4:00 p.m. for the period from January 3 to
February 18, 2005. The data was collected from the official website of the Wall Street Journal and in
that way, a count time series of length T = 2925 was obtained, where the last 225 observations were
left to check the validity of our model forecast. The dynamics of these two time series, along with their
autocorrelation functions (ACFs), are shown in Figure 4. It is noticeable the decrease of both ACFs
is a little bit slower than the standard INAR(1) models, especially for Series A. In accordance with
previous theoretical results, this suggests the possibility of modeling the dynamics of both time series
by the PL-MINAR model. Some confirmation of this can also be seen in Table 2, where the descriptive
statistics of both series are presented. For instance, both observed series have a wide range of data,
positive asymmetry, and significant overdispersion. It is somewhat more pronounced in the case of
series A, where significant zero inflation is also present. Furthermore, the Augmented Dickey-Fuller
(ADF) test was conducted using the R-package “aTSA” [38], and the alternative hypothesis that the
observed series are stationary was clearly verified in both cases.

Figure 4. The dynamics of the real-world data series (plots above) and their appropriate
ACFs (plots below).
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Table 2. Summary statistics and stationarity testing of the observed data.

Statistics Series A Series B
Minimum 0 0
Maximum 16 25
Mode 0 1
Median 0 3
Mean 1.416 3.314
Variance 7.183 9.209
St. deviation 2.680 3.035
Skewness 2.875 1.658
Kurtosis 9.250 4.799
ADF-test -13.46 -22.60
(p-value) (< 0.01) (< 0.01)

Further, by applying the previously described procedures, parameters were estimated for both series,
assuming that their dynamics can be described by the PL-MINAR model. Additionally, to verify its
effectiveness the proposed model is compared with the Poisson-Lindley INAR(1) model Xt = α∗Xt−1+

εt, t = 1, 2, . . . ,T, introduced by Mohammadpour et al. [21], where α ∈ (0, 1) and ∗ is the binomial
thinning operator (see, e.g., [39] for more details). Thus, both stochastic models, the PL-MINAR and
the PL-INAR(1) process, have a Poisson-Lindley marginal distribution. To estimate the parameters
of both models, according to the results obtained in the previous section, MM estimates were used as
initial ones, while CLS estimates were used to fit and compare them with empirical data. The estimated
values for both series, as well as the values of objective functions QT (α, θ), are presented in Table 3.
After that, using the estimated parameter values, 500 independent Monte Carlo simulations of both
models were performed, and the distributions agreement of the real-world and fitted data was checked
using MSEE statistics, Akaike’s information criterion (AIC), and Bayesian information criterion (BIC).

Based on this, close estimated values of the θ parameter, as well as fit statistics and estimation errors,
are noticeable for both estimation methods and both stochastic models. This is expected, because in
both cases it is assumed that series (Xt) have a PL distribution. However, it is obvious that the error
statistics are lower when the PL-MINAR model is applied. The forecast accuracy for both models is
also analyzed below, where, as already mentioned, forecast length horizons of h = 50 (Series A) and
h = 100 (Series B) are taken. The testing procedure was performed using a one-tailed Diebold–Marian
test [40], with the null hypothesis being that both models have the same predictive accuracy, while the
alternative is that the PL-MINAR model has better accuracy. The test statistic, labeled DM, as well
as the appropriate p-values, were calculated within the R-package “forecast” [41] and presented in the
lower part of Table 3. Based on this, it is clear that in both cases the PL-MINAR process has better
predictive accuracy, at a significant level of 0.01 < p < 0.05. Some confirmation of these facts can be
seen in Figure 5, where empirical and fitted frequencies of both time series and both models are shown,
as well as for observed and forecasted data.
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Figure 5. Frequency distributions (plots above) and prediction features (plots below) of the
observed and fitted data.

Table 3. Estimated parameter values of the Poisson-Lindley INAR(1) and MINAR processes,
along with the corresponding estimation errors and predictive test statistics.

Parameters/ Series A Series B

Statistics PL-INAR(1) PL-MINAR PL-INAR(1) PL-MINAR

α 0.3337 1.5885 0.3211 1.2517
θ 1.5587 1.5034 0.4988 0.4990

QT 3.2697 5.6894 8.2238 13.235

MSEE 0.0580 0.0523 0.0485 0.0484
AIC 173.06 171.99 136.80 136.55
BIC 174.26 173.29 136.98 136.73

DM 1.7142∗ 1.6899∗

(p-value) (0.0464) (0.0471)
∗0.01 < p < 0.05
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5. Conclusions

A novel count time series minification model, named the PL-MINAR process, is presented here.
The key properties of the proposed model, as well as different procedures for estimating its parameters,
are discussed in detail. Through Monte Carlo simulations, the consistency of these estimators was
examined, and at the end, a practical application of the PL-MINAR process in fitting real-world
data was given. To verify its effectiveness, the proposed model is applied to fit the distributions and
predictions of two real-world time series, representing the number of bitcoin and stock transactions.
Also, the PL-MINAR model was compared with the INAR(1) model, which is based on the same
Poisson-Lindley (PL) marginal distribution. According to the obtained results, i.e., fitting errors
and DM statistics, it can be seen that the PL-MINAR model has the same or even better fitting
and forecasting capabilities within the observed data. These results can be motivating for further
applications of the PL-MINAR process in some other fields, such as epidemiology, climate change,
or cell counts. On the other hand, investigations of the minification count process, where some other
and different count-based distributions are used as marginals, may also be a direction of some future
research.

Appendix: Proofs

Proof of Proposition 1. According to the previously obtained conditional PGF of the RV α ◦ X,
given by Eq (4), the PGF of this RV can be expressed as follows:

Ψα◦X(u;α, θ) = (1 + α − αu)−1ΨX

(
(1 + α − αu)−1

)
.

Now, for the PL-distributed RV X, i.e., using its PGF given by Eq (8), after some computation one
obtains:

Ψα◦X(u;α, θ) = (1 + α − αu)−1 θ2(θ − s + 2)
(θ + 1)(θ − s + 1)2

∣∣∣∣∣∣
s=(1+α−αu)−1

=
1

1 + α − αu
·

θ2
(θ + 2)(1 + α − αu) − 1

1 + α − αu

(θ + 1)
( (θ + 1)(1 + α − αu) − 1

1 + α − αu

)2

=
θ2(θ − α(θ + 2)(u − 1) + 1)

(θ + 1)(θ − α(θ + 1)(u − 1))2 , |u| ≤ 1.

(A.1)

Using the partial fraction decomposition method, Eq (A.1) can be expressed in an equivalent way as:

Ψα◦X(u;α, θ) =
θ2

(θ + 1)2(θ − α(θ + 1)(u − 1))2+
θ3 + 2θ2

(θ + 1)2(θ − α(θ + 1)(u − 1))

=
1

(θ + 1)2(1 + β − βu)2 +
θ(θ + 2)

(θ + 1)2(1 + β − βu)
,

(A.2)

where β = α(θ + 1)/θ and |u| < (1 + β)/β. It is obvious that functions

Ψ1(u; β) :=
1

(1 + β − βu)2 , Ψ2(u; β) :=
1

1 + β − βu
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are, respectively, the PGFs of the negative binomial distribution NB(β/(1 + β), 2) and the geometric
distribution Geom(β/(1+β)). Finally, using the PMF of the RV α◦X, given by Eq (11), and after some
computation, the survival function of α ◦ X is obtained as follows:

Sα◦X(x;α, θ) := P {α ◦ X ≥ x} =
1

(θ + 1)2

∞∑
k=x

(
k + 1

)
βk

(1 + β)k+2 +
θ(θ + 2)
(θ + 1)2

∞∑
k=x

βk

(1 + β)k+1

=
1

(θ + 1)2 ·

(
1 + β + x

)
βx

(1 + β)x+1 +
θ(θ + 2)
(θ + 1)2 ·

βx

(1 + β)x =
βx

(
(1 + β)(θ + 1)2 + x

)
(θ + 1)2(1 + β)x+1

=
αx(θ + 1)x−2

(αθ + α + θ)x+1

[
θ
(
x + (θ + 1)2

)
+ α(θ + 1)3

]
.

Therefore, this statement is fully proved. □

Proof of Theorem 1. Let us observe an arbitrary non-negative integer x = 0, 1, 2, . . . . Based on the
definition of the PL-MINAR process, as well as the independence of the RVs (Xt) and (εt), it follows
that:

P {Xt ≥ x} = P {min(α ◦ Xt−1, εt) ≥ x} = P {α ◦ Xt−1 ≥ x} P {εt ≥ x} .

From here, the survival function for RVs (εt) is directly obtained:

Sε(x) := P {εt ≥ x} =
P {Xt ≥ x}

P {α ◦ Xt−1 ≥ x}
,

and using the previously obtained survival functions, given by Eqs (10) and (12), as well as after some
computation, Eq (14) follows. At the same time, note that this expression is well defined if and only if
the following two conditions are met:

I condition: The exponential part of Eq (14) must converge to 0 and 1, when x → +∞ and x → 0,
respectively. According to α, θ > 0, this is obviously fulfilled if and only if:

αθ + α + θ

α(θ + 1)2 < 1 ⇐⇒ α(θ + 1)2 − α(θ + 1) − θ > 0

⇐⇒ αθ(θ + 1) > θ

⇐⇒ α >
1
θ + 1

.

(A.3)

II condition: The survival function Sε(x) = P {εt ≥ x} is monotonically non-increasing, i.e., for
arbitrary x = 0, 1, 2, . . . the PMF of the RVs (εt) must satisfy the condition:

pε(x;α, θ) := Sε(x) − Sε(x + 1) ≥ 0. (A.4)

Applying Eq (14) yields the following inequality:

(αθ + α + θ)x+1

αx(θ + 1)2x

(
θ(θ + x + 2) + 1

α(θ + 1)3 + θ
(
(θ + 1)2 + x

)
−

(αθ + α + θ)(θ(θ + x + 3) + 1)
α(θ + 1)2 (

α(θ + 1)3 + θ
(
(θ + 1)2 + x + 1

))) ≥ 0,
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and after some computation, it can be expressed in the following equivalent way:

a(α, θ)x2 + b(α, θ)x + c(α, θ) ≥ 0, (A.5)

where:

a(α, θ) := θ3
(
α(θ + 1) − 1

)
b(α, θ) := θ2

(
α(θ + 1) − 1

) (
α(θ + 1)3 + θ3 + 3θ2 + 4θ + 1

)
c(α, θ) := θ2(θ + 1)2

(
α2(θ + 2)(θ + 1)2 + α(θ + 2)(θ2 − 1) − θ(θ + 3) − 1

)
.

Note that from the first condition, that is, when Eq (A.3) holds, the inequalities a(α, θ) > 0 and
b(α, θ) > 0 obviously follow. Therefore, the second condition is fulfilled if and only if it holds:

c̃(α, θ) :=
c(α, θ)
θ2(θ + 1)2 = (θ + 2)(θ + 1)2 α2 + (θ + 2)(θ2 − 1)α − θ(θ + 3) − 1 ≥ 0. (A.6)

To that end, notice that c̃(α, θ) is a convex quadratic function with respect to α > 0, with coefficients:

a1(θ) := (θ + 2)(θ + 1)2 > 0, c1(θ) := −(θ2 + 3θ + 1) < 0,

and discriminant:

D(θ) = (θ + 1)3(θ + 2)(θ2 + 3θ + 6) > 0.

Therefore, equation c̃(α, θ) = 0 has two real solutions α1 = α1(θ) and α2 = α2(θ), with different signs
because, according to Vieta formulas, α1 · α2 = c1(θ)/a1(θ) < 0. Thus, this implies that the inequality
(A.6) holds if and only if α > 0 is greater than or equal to the larger solution of the equation c̃(α, θ) = 0
(see Figure 6(a)). In that way, the second condition is equivalent to the inequality:

α ≥
(1 − θ)(θ + 1)(θ + 2) +

√
(θ + 1)3(θ + 2)(θ2 + 3θ + 6)

2(θ + 2)(θ + 1)2 ,

which yields, after some rearrangement, Eq (15). Finally, let us notice that, for arbitrary θ > 0, the
following expressions hold:

1
2

1 − θ
1 + θ

+

√
θ2 + 3θ + 6
θ2 + 3θ + 2

 > 1
2

(
1 − θ
1 + θ

+ 1
)
=

1
θ + 1

.

This means that the second condition, given by Eq (15), implies the first condition, given by Eq (A.3),
as can also be seen in Figure 6(b).
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(a) (b)
Figure 6. (a) Dependence of parameters α and θ given by quadratic function c̃(α, θ). (b)
Conditions for a well-defined distribution of innovations (εt) depending on the parameters α
and θ.

Finally, using Eqs (14) and (A.4), for the PGF of the RVs (εt) one obtains:

Ψε(u;α, θ) =
∞∑

x=0

ux pε(x;α, θ) =
∞∑

x=0

ux [Sε(x;α, θ) − Sε(x + 1;α, θ)]

=

∞∑
x=0

uxSε(x;α, θ) −
∞∑

x=1

ux−1Sε(x;α, θ) = 1 +
∞∑

x=1

(
ux − ux−1

)
Sε(x;α, θ)

= 1 +
(
1 − u−1

) ∞∑
x=1

ux (αθ + α + θ)x+1

αx(θ + 1)2x ·
θx + (θ + 1)2

θx + (θ + 1)2(αθ + α + θ)

= 1 +
(
1 −

1
u

)
(αθ + α + θ)

∞∑
x=1

(
u (αθ + α + θ)
α(θ + 1)2

)x (
1 −

(θ + 1)2(αθ + α + θ − 1)
θx + (θ + 1)2(αθ + α + θ)

)
= 1 +

u − 1
u
λ

 ∞∑
x=1

(γu)x
− (θ + 1)2(λ − 1)

∞∑
x=1

(γu)x

θx + λ(θ + 1)2


= 1 +

u − 1
u
λ

∞∑
x=1

(γu)x
−

u − 1
u
λ(θ + 1)2

θ
(λ − 1)

∞∑
x=1

(γu)x

x + λ(θ + 1)2/θ

= 1 +
u − 1

u
·
λ γ u

1 − γu
−

u − 1
u
δ(λ − 1)

∞∑
x=1

(γu)x

x + δ

= 1 +
λ γ (u − 1)

1 − γu
− γ δ(λ − 1)(u − 1)

∞∑
x=0

(γu)x

x + δ + 1
.

The last expression is obviously the same as in Eq (16), whereby according to Eq (A.3) it follows:

0 < γ =
αθ + α + θ

α(θ + 1)2 < 1.

Thus, under the condition |u| < 1/γ, the PGF Ψε(u;α, θ) is properly defined, which completely proves
this theorem. □
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Proof of Theorem 2. For arbitrary non-negative integers x, y, the transition probabilities can be
expressed in terms of conditional survival functions as follows:

P {Xt = x | Xt−1 = y} = P {Xt ≥ x | Xt−1 = y} − P {Xt ≥ x + 1 | Xt−1 = y} .

Using the independence of the RVs α ◦ Xt−1 and εt, as well as the fact that RVs α ◦ Xt−1, when Xt−1 = y,
have a negative binomial distribution NB(α/(1 + α), y + 1), given by Eq (3), it follows that:

P {Xt ≥ x | Xt−1 = y} = P {min(α ◦ Xt−1, εt) ≥ x | Xt−1 = y} = P {α ◦ Xt−1 ≥ x | Xt−1 = y} P {εt ≥ x}

= Sε(x;α, θ)
∞∑

k=x

P {α ◦ Xt−1 = k | Xt−1 = y} = Sε(x;α, θ)
∞∑

k=x

(
k + y

k

)
αk

(1 + α)k+y+1 .

According to this, one obtains:

P {Xt = x | Xt−1 = y} = Sε(x;α, θ)
∞∑

k=x

(
k + y

k

)
αk

(1 + α)k+y+1 − Sε(x + 1;α, θ)
∞∑

k=x+1

(
k + y

k

)
αk

(1 + α)k+y+1

= Sε(x;α, θ)
(
x + y

x

)
αx

(1 + α)x+y+1 +
[
Sε(x;α, θ) − Sε(x + 1;α, θ)

] ∞∑
k=x+1

(
k + y

k

)
αk

(1 + α)k+y+1 ,

and the last expression is obviously the same as in Eq (17).
To prove the strict stationarity of our model, we use a similar procedure as Aleksić & Ristić [14],

that is, we show that for all h ∈ N0 and n ∈ N holds:

P{X1 = x1, . . . , Xn = xn} = P{X1+h = x1, . . . , Xn+h = xn}.

According to the proven Markov’s property, this equality is equivalent to the following:

P{X1 = x1}

n∏
j=2

P{X j = x j | X j−1 = x j−1} = P{X1+h = x1}

n∏
j=2

P{X j+h = x j | X j+h−1 = x j−1},

where (Xt) is marginally stationary, and proven Eq (17) ensures that the above conditional probabilities
do not depend on the time t ∈ Z. Thus, it follows that the left and right sides of the above equation are
really equal, i.e., (Xt) is indeed a strictly stationary stochastic process.

Now, by using Eq (17), the conditional PGF of the RVs (Xt) can be expressed as follows:

E
[
uXt | Xt−1 = y

]
=

∞∑
x=0

uxP {Xt = x | Xt−1 = y}

= ux
(
P {Xt ≥ x | Xt−1 = y} − P {Xt+1 ≥ x | Xt−1 = y}

)
=

∞∑
x=0

uxSε(x;α, θ)
∞∑
j=x

(
y + j

j

)
α j

(1 + α)y+ j+1

−

∞∑
x=0

uxSε(x + 1;α, θ)
∞∑

j=x+1

(
y + j

j

)
α j

(1 + α)y+ j+1

= 1 +
(
1 −

1
u

) ∞∑
x=1

uxSε(x;α, θ)S(x, y;α).

(A.7)
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In the last summation, we refer to:

S(x, y;α) :=
∞∑
j=x

(
y + j

j

)
α j

(1 + α)y+ j+1

as the survival function of the RV with negative binomial distribution NB(α/(1 + α), y + 1), which
implies that S(x, y;α) is monotonically decreasing on x and S(x, y;α) ≤ 1, for all x, y = 0, 1, 2, . . . . In
addition, similarly as in the proof of Theorem 1, we have:

Tε( j;α, θ) :=
j∑

k=1

ukSε(k;α, θ) =
j∑

k=1

uk (αθ + α + θ)k+1

αk(θ + 1)2k ·
θk + (θ + 1)2

θk + (θ + 1)2(αθ + α + θ)

= (αθ + α + θ)
j∑

k=1

(
u (αθ + α + θ)
α(θ + 1)2

)k (
1 −

(θ + 1)2(αθ + α + θ − 1)
θk + (θ + 1)2(αθ + α + θ)

)

= (αθ + α + θ)

 j∑
k=1

(γu)k
− (θ + 1)2(αθ + α + θ − 1)

j∑
k=1

(γu)k

θk + (θ + 1)2(αθ + α + θ)


= λ

j∑
k=1

(γu)k
− δ(λ − 1)

j∑
k=1

(γu)k

k + δ

= λγu
1 − (γu) j

1 − γu
− δ (λ − 1) γu

(
Lδ+1(uγ) − (γu) jLδ+ j+1(uγ)

)
,

by which, under the condition |γu| < 1, it follows:

lim
j→+∞

Tε( j;α, θ) =
λγu

1 − γu
− δ (λ − 1) γu Lδ+1(uγ) < +∞.

Therefore, according to Abel’s convergence criterion (see, e.g., [42]), the double sum in Eq (A.7) is
convergent, and the order of sums can be changed, which yields:

E
[
uXt | Xt−1 = y

]
= 1 +

(
1 −

1
u

) ∞∑
j=1

Tε( j;α, θ)
(
y + j

j

)
α j

(1 + α)y+ j+1

= 1 +
(
1 −

1
u

)  λγu1 − γu

∞∑
j=0

(
1 − (γu) j

) (y + j
j

)
α j

(1 + α)y+ j+1

−δ(λ − 1)γu
∞∑
j=0

(
Lδ+1(uγ) − (γu) jLδ+ j+1(uγ)

)(y + j
j

)
α j

(1 + α)y+ j+1


= 1 +

λγ(u − 1)
1 − γu

(
1 − (1 + α − αγu)−y−1

)
− δ(λ − 1)γ(u − 1)

Lδ+1(γu) −
∞∑
j=0

Lδ+ j+1(γu)
(
y + j

j

)
(αγu) j

(1 + α)y+ j+1

 .
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Thus, the obtained expression obviously represents Eq (18), which proves this theorem. □

Proof of Theorem 3. First, we have calculated the joint two-dimensional PGF of RVs Xt and Xt−1.
Using the law of total expectation, the previously obtained PGF of the PL-distributed RVs, given by
Eq (8), and the conditional PGF of the first order, given by Eq (18), one obtains:

Ψ
(2)
X (u, v) := E

[
uXtvXt−1

]
= E

[
vXt−1 E

[
uXt | Xt−1

]]
= E

[
vXt−1

[
1 +
λ γ (u − 1)

1 − γu

(
1 −

1
(1 + α − αγu)Xt−1+1

)

− (λ − 1) γ δ(u − 1)
(
Lδ+1(γu) −

∞∑
j=0

(
Xt−1 + j

j

)
(αγu) j Lδ+ j+1(γu)

(1 + α)Xt−1+ j+1

)]]

= A(u; λ, γ, δ)ΨX(v; θ) − B(u;α, λ, γ) K (u, v;α, γ) +C(u;α, λ, γ, δ)
∞∑
j=0

η j(u;α, γ, δ) M j (v;α, θ) ,

where:

A(u; λ, γ, δ) = 1 +
λ γ (u − 1)

1 − γu
− (λ − 1) γ δ (u − 1)Lδ+1(γu),

B(u;α, λ, γ) =
λ γ (u − 1)

(1 − γu)(1 + α − αγu)
,

C(u;α, γ, δ) =
(λ − 1) γ δ (u − 1)

1 + α
,

ΨX(v; θ) = E
[
vXt−1

]
=

θ2 (θ − v + 2)
(θ + 1)(θ − v + 1)2 ,

K (u, v;α, γ, θ) = E
( v

1 + α − αγu

)Xt−1
 = ΨX

(
v

1 + α − αγu

)
=

θ2 (θ − w + 2)
(θ + 1)(θ − w + 1)2

∣∣∣∣∣∣
w= v

1+α−αγu

=
θ2(1 + α − αγu)

[
(θ + 2)(1 + α − αγu) − v

]
(θ + 1)

[
(θ + 1)(1 + α − αγu) − v

]2 ,

η j(u;α, γ, δ) =
(
αγu

1 + α

) j
Lδ+ j+1(γu),

M j(v;α, θ) = E

(Xt−1 + j
j

) (
v

1 + α

)Xt−1
 = 1

j!
E

(Xt−1 + j) (Xt−1 + j − 1)(Xt−1 + 1)
(

v
1 + α

)Xt−1


=
1
j!
∂ jE

[
zXt−1+ j]
∂z j

∣∣∣∣∣∣
z= v

1+α

=
1
j!
∂ j

∂z j

(
z jΨX(z; θ)

) ∣∣∣∣∣∣
z= v

1+α

=
θ2 (θ + 1) j−2 [

(θ + 1)(θ + 2) − z(θ − j + 1)
]

(θ − z + 1) j+2

∣∣∣∣∣∣
z= v

1+α

= θ2(θ + 1) j−2(1 + α) j+1 (θ + 1)(θ + 2)(1 + α) − v(θ − j + 1)
[(θ + 1)(1 + α) − v] j+2 .
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By differentiating the function Ψ(2)
X (u, v) with respect to u, v, we get:

∂2Ψ
(2)
X (u, v)
∂u ∂v

=
∂ A(u; λ, γ, δ)

∂u
∂ΨX(v; θ)
∂v

−
∂ B(u;α, λ, γ)

∂u
∂K (u, v;α, γ, θ)

∂v

− B(u;α, λ, γ)
∂2 K (u, v;α, γ, θ)

∂u ∂v
+

∞∑
j=0

[
∂C(u;α, λ, γ, δ)

∂u
η j(u, α, γ) +C(u;α, λ, γ, δ)

∂ η j(u, α, γ)
∂u

]
×
∂M j (v;α, θ)
∂ v

.

Thereafter, putting u = v = 1 and after some computations, the mixed moment for RVs Xt and Xt−1 can
be obtained as follows:

E [XtXt−1] =
∂2Ψ

(2)
X (u, v)
∂u ∂v

∣∣∣∣∣∣
u=v=1

=
(θ + 2)γ (λ − (λ − 1)(1 − γ)δLδ+1(γ))

θ(θ + 1)(1 − γ)

−
λγθ2(α(1 − γ)(θ + 3) + θ + 2)

(1 − γ)(θ + 1)(α(1 − γ)(θ + 1) + θ)3 +
γδ(λ − 1)

(αθ + α + θ)3

(
θ

θ + 1

)2

×

∞∑
j=0

( j + 1)
(

αγ(θ + 1)
(1 + α)(θ + 1) − 1

) j

((1 + α)(θ + 1)(θ + 3) − θ + j − 1)L j+δ+1(γ).

(A.8)

According to this and by applying Eq (9), for the first-order correlation of the series (Xt) one obtains:

ρX(1) = Corr(Xt, Xt−1) =
E [XtXt−1] − E [Xt] E [Xt−1]

Var [Xt]
=

(
E [XtXt−1] −

(θ + 2)2

θ2(θ + 1)2

)
θ2(θ + 1)2

θ3 + 4θ2 + 6θ + 2
,

which after some rearrangement yields Eq (20). □
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