Research article

Hyperbolic Ricci soliton and gradient hyperbolic Ricci soliton on relativistic prefect fluid spacetime

  • Received: 21 April 2024 Revised: 11 June 2024 Accepted: 14 June 2024 Published: 05 July 2024
  • MSC : 53B30, 53C44, 53C50, 53C80

  • In this research note, we investigated the characteristics of perfect fluid spacetime when coupled with the hyperbolic Ricci soliton. We additionally interacted with the perfect fluid spacetime, with a $ \varphi(\mathcal{Q}) $-vector field and a bi-conformal vector field that admits the hyperbolic Ricci solitons. Furthermore, we analyze the gradient hyperbolic Ricci soliton in perfect fluid spacetime, employing a scalar concircular field, and discuss about the gradient hyperbolic Ricci soliton's rate of change. In the end, we determined the energy conditions for perfect fluid spacetime in terms of gradient hyperbolic Ricci soliton with a scalar concircular field.

    Citation: Mohd. Danish Siddiqi, Fatemah Mofarreh. Hyperbolic Ricci soliton and gradient hyperbolic Ricci soliton on relativistic prefect fluid spacetime[J]. AIMS Mathematics, 2024, 9(8): 21628-21640. doi: 10.3934/math.20241051

    Related Papers:

  • In this research note, we investigated the characteristics of perfect fluid spacetime when coupled with the hyperbolic Ricci soliton. We additionally interacted with the perfect fluid spacetime, with a $ \varphi(\mathcal{Q}) $-vector field and a bi-conformal vector field that admits the hyperbolic Ricci solitons. Furthermore, we analyze the gradient hyperbolic Ricci soliton in perfect fluid spacetime, employing a scalar concircular field, and discuss about the gradient hyperbolic Ricci soliton's rate of change. In the end, we determined the energy conditions for perfect fluid spacetime in terms of gradient hyperbolic Ricci soliton with a scalar concircular field.



    加载中


    [1] Z. Ahsan, Tensors: Mathematics of differential geometry and relativity, PHI Learning Pvt. Ltd., 2015.
    [2] H. Stephani, J. M. Stewart, General relativity: An introduction to the theory of gravitational field, Cambridge: Cambridge University Press, 1982.
    [3] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, 1983.
    [4] M. Sanchez, On the geometry of generalized Robertson-Walker spacetime: Geodesics, Gen. Relativity Gravitation, 30 (1998), 915–932. https://doi.org/10.1023/A:1026664209847 doi: 10.1023/A:1026664209847
    [5] C. A. Mantica, L. G. Molinari, U. C. De, A condition for a perfect-fluid space-time to be a generalized Robertson-Walker spacetimes, J. Math. Phys., 57 (2016), 022508. https://doi.org/10.1063/1.4941942 doi: 10.1063/1.4941942
    [6] C. A. Mantica, L. G. Molinari, Generalized Robertson-Walker spacetimes–A survey, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1730001. https://doi.org/10.1142/S021988781730001X doi: 10.1142/S021988781730001X
    [7] Z. Ahsan, S. A. Siddiqui, Concircular curvature tensor and fluid spacetimes, Int. J. Theor. Phys., 48 (2009), 3202–3212. https://doi.org/10.1007/s10773-009-0121-z doi: 10.1007/s10773-009-0121-z
    [8] M. Ali, Z. Ahsan, Ricci solitons and symmetries of space time manifold of general relativity, J. Adv. Res. Classical Modern Geom., 1 (2014), 75–84.
    [9] A. M. Blaga, Solitons and geometrical structures in a perfect fluid spacetime, Rocky Mountain J. Math., 50 (2020), 41–53. https://doi.org/10.1216/rmj.2020.50.41 doi: 10.1216/rmj.2020.50.41
    [10] Venkatesha, H. A. Kumara, Ricci solitons and geometrical structure in a perfect fluid spacetime with Torse-forming vector filed, Afr. Mat., 30 (2019), 725–736. https://doi.org/10.1007/s13370-019-00679-y doi: 10.1007/s13370-019-00679-y
    [11] M. D. Siddiqi, S. A. Siddqui, Conformal Ricci soliton and geometrical structure in a perfect fluid spacetime, Int. J. Geom. Methods Mod. Phys., 17 (2020), 2050083. https://doi.org/10.1142/S0219887820500838 doi: 10.1142/S0219887820500838
    [12] Y. Li, M. D. Siddiqi, M. A. Khan, I. Al-Dayel, M. Z. Youssef, Solitonic effect on relativistic string cloud spacetime attached with strange quark matter, AIMS Mathematics, 9 (2024), 14487–14503. https://doi.org/10.3934/math.2024704 doi: 10.3934/math.2024704
    [13] M. D. Siddiqi, M. A. Khan, I. Al-Dayel, K. Masood, Geometrization of string cloud spacetime in general relativity, AIMS Mathematics, 8 (2023), 29042–29057. https://doi.org/10.3934/math.20231487 doi: 10.3934/math.20231487
    [14] M. D. Siddiqi, U. C. De, S. Deshmukh, Estimation of almost Ricci-Yamabe solitons on Static spacetimes, Filomat, 36 (2022), 397–407. https://doi.org/10.2298/FIL2202397S doi: 10.2298/FIL2202397S
    [15] A. H. Alkhaldi, M. D. Siddiqi, M. A. Khan, L. S. Alqahtani, Imperfect fluid generalized Robertson walker spacetime admitting Ricci-Yamabe metric, Adv. Math. Phys., 2021 (2021), 2485804. https://doi.org/10.1155/2021/2485804 doi: 10.1155/2021/2485804
    [16] W. Dai, D. Kong, K. Liu, Hyperbolic geometric flow (Ⅰ): Short-time existence and nonlinear stability, arXiv: math/0610256, 2006. https://doi.org/10.48550/arXiv.math/0610256
    [17] H. Faraji, S. Azami, G. Fasihi-Ramandi, Three dimensional Homogeneous Hyperbolic Ricci solitons, J. Nonlinear Math. Phys., 30 (2023), 135–155. https://doi.org/10.1007/s44198-022-00075-4 doi: 10.1007/s44198-022-00075-4
    [18] S. Azami, G. Fasihi-Ramandi, Hyperbolic Ricci soliton on warped product manifolds, Filomat, 37 (2023), 6843–6853. https://doi.org/10.2298/FIL2320843A doi: 10.2298/FIL2320843A
    [19] A. M. Blaga, C. Özgür, Results of hyperbolic Ricci solitons, Symmetry, 15 (2023), 1548. https://doi.org/10.3390/sym15081548 doi: 10.3390/sym15081548
    [20] A. M. Blaga, C. Özgür, 2-Killing vector fields on multiply warped product manifolds, Chaos Solitons Fractals, 180 (2024), 114561. https://doi.org/10.1016/j.chaos.2024.114561 doi: 10.1016/j.chaos.2024.114561
    [21] D. A. Kaya, C. Özgür, Hyperbolic Ricci solitons on sequential warped product manifolds, Filomat, 38 (2024), 1023–1032. https://doi.org/10.2298/FIL2403023A doi: 10.2298/FIL2403023A
    [22] P. J. E. Peebles, B. Ratra, The cosmological constant and dark energy, Rev. Modern Phys., 75 (2003), 559–606.
    [23] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math., 71 (1988), 237–261.
    [24] A. García-Parrado, J. M. M. Senovilla, Bi-conformal vector fields and their application, Class. Quantum Grav., 21 (2003), 2153. https://doi.org/10.1088/0264-9381/21/8/017 doi: 10.1088/0264-9381/21/8/017
    [25] A. H. Bokhari, A. Qadir, Collineations of the Ricci tensor, J. Math. Phys., 34 (1993), 3543–3552. https://doi.org/10.1063/1.530043 doi: 10.1063/1.530043
    [26] I. Hinterleitner, V. A. Kiosak, $\varphi (Ric)$-vector fields in Riemannian spaces, Arch. Math., 44 (2008), 385–390.
    [27] A. Fialkow, Conformal geodesic, Trans. Amer. Math. Soc., 45 (1939), 443–473.
    [28] R. K. Sachs, H. H. Hu, General relativity for mathematicians, Springer Science & Business Media, 2012.
    [29] F. J. Tipler, Energy condition and spacetime singularities, Phys. Rev. D, 17 (1978), 2521. https://doi.org/10.1103/PhysRevD.17.2521 doi: 10.1103/PhysRevD.17.2521
    [30] S. W. Hawking, G. F. R. Ellis, The large scale structure of spac-time, Cambridge: Cambridge University Press, 1973. https://doi.org/10.1017/CBO9780511524646
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(598) PDF downloads(55) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog