In this paper, we study normalized solutions of the fractional Schrödinger equation with a critical nonlinearity
$ \begin{eqnarray*} \left\{ \begin{array}{lll} (-\Delta)^su = \lambda u+|u|^{p-2}u+|u|^{2^\ast_s-2}u, & x\in \mathbb{R}^N, \\ \int_{\mathbb{R}^N}u^2{\rm d}x = a^2, \ u\in H^{s}(\mathbb{R}^N), \end{array}\right. \end{eqnarray*} $
where $ N\geq2 $, $ s\in(0, 1) $, $ a > 0 $, $ 2 < p < 2^\ast_s\triangleq\frac{2N}{N-2s} $ and $ (-\Delta)^s $ is the fractional Laplace operator. In the purely $ L^2 $-subcritical perturbation case $ 2 < p < 2+\frac{4s}{N} $, we prove the existence of a second normalized solution under some conditions on $ a $, $ p $, $ s $, and $ N $. This is a continuation of our previous work (Z. Angew. Math. Phys., 73 (2022) 149) where only one solution is obtained.
Citation: Xizheng Sun, Zhiqing Han. Note on normalized solutions to a kind of fractional Schrödinger equation with a critical nonlinearity[J]. AIMS Mathematics, 2024, 9(8): 21641-21655. doi: 10.3934/math.20241052
In this paper, we study normalized solutions of the fractional Schrödinger equation with a critical nonlinearity
$ \begin{eqnarray*} \left\{ \begin{array}{lll} (-\Delta)^su = \lambda u+|u|^{p-2}u+|u|^{2^\ast_s-2}u, & x\in \mathbb{R}^N, \\ \int_{\mathbb{R}^N}u^2{\rm d}x = a^2, \ u\in H^{s}(\mathbb{R}^N), \end{array}\right. \end{eqnarray*} $
where $ N\geq2 $, $ s\in(0, 1) $, $ a > 0 $, $ 2 < p < 2^\ast_s\triangleq\frac{2N}{N-2s} $ and $ (-\Delta)^s $ is the fractional Laplace operator. In the purely $ L^2 $-subcritical perturbation case $ 2 < p < 2+\frac{4s}{N} $, we prove the existence of a second normalized solution under some conditions on $ a $, $ p $, $ s $, and $ N $. This is a continuation of our previous work (Z. Angew. Math. Phys., 73 (2022) 149) where only one solution is obtained.
[1] | D. Applebaum, Lévy processes–-From probability to finance and quantum groups, Notices of the American Mathematical Society, 51 (2004), 1336–1347. |
[2] | T. Bartsch, N. Soave, Multiple normalized solutions for a competing system of Schrödinger equations, Calc. Var., 58 (2019), 22. https://doi.org/10.1007/s00526-018-1476-x doi: 10.1007/s00526-018-1476-x |
[3] | T. Bartsch, H. W. Li, W. M. Zou, Existence and asymptotic behavior of normalized ground states for Sobolev critical Schrödinger systems, Calc. Var., 62 (2023), 9. https://doi.org/10.1007/s00526-022-02355-9 doi: 10.1007/s00526-022-02355-9 |
[4] | H. Berestycki, P.-L. Lions, Nonlinear scalar field equations, Ⅰ existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313–345. https://doi.org/10.1007/BF00250555 doi: 10.1007/BF00250555 |
[5] | C. Bucur, E. Valdinoci, Nonlocal diffusion and applications, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-28739-3 |
[6] | L. A. Caffarelli, J.-M. Roquejoffre, Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151–1179. https://doi.org/10.4171/JEMS/226 doi: 10.4171/JEMS/226 |
[7] | L. A. Caffarelli, S. Salsa, L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425–461. https://doi.org/10.1007/s00222-007-0086-6 doi: 10.1007/s00222-007-0086-6 |
[8] | Z. J. Chen, W. M. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Rational Mech. Anal., 205 (2012), 515–551. https://doi.org/10.1007/s00205-012-0513-8 doi: 10.1007/s00205-012-0513-8 |
[9] | V. Coti Zelati, M. Nolasco, Existence of ground states for nonlinear, pseudo-relativistic Schrödinger equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., 22 (2011), 51–72. https://doi.org/10.4171/RLM/587 doi: 10.4171/RLM/587 |
[10] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[11] | P. Felmer, A. Quaas, J. G. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinb. A, 142 (2012), 1237–1262. https://doi.org/10.1017/S0308210511000746 doi: 10.1017/S0308210511000746 |
[12] | R. L. Frank, E. Lenzmann, L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Commun. Pure Appl. Math., 69 (2016), 1671–1726. https://doi.org/10.1002/cpa.21591 doi: 10.1002/cpa.21591 |
[13] | N. Ghoussoub, Duality and perturbation methods in critical point theory, Cambridge: Cambridge University Press, 1993. https://doi.org/10.1017/cbo9780511551703 |
[14] | L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. Theor., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1 |
[15] | L. Jeanjean, T. T. Le, Multiple normalized solutions for a Sobolev critical Schrödinger equation, Math. Ann., 384 (2022), 101–134. https://doi.org/10.1007/s00208-021-02228-0 doi: 10.1007/s00208-021-02228-0 |
[16] | E. H. Lieb, M. P. Loss, Analysis, second edition, Providence, RI: American Mathematical Society, 2001. https://doi.org/10.1090/gsm/014 |
[17] | H. J. Luo, Z. T. Zhang, Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var., 59 (2020), 143. https://doi.org/10.1007/s00526-020-01814-5 doi: 10.1007/s00526-020-01814-5 |
[18] | R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67–102. https://doi.org/10.1090/S0002-9947-2014-05884-4 doi: 10.1090/S0002-9947-2014-05884-4 |
[19] | L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007) 67–112. https://doi.org/10.1002/cpa.20153 doi: 10.1002/cpa.20153 |
[20] | N. Soave, Normalized ground state for the NLS equations with combined nonlinearities, J. Differ. Equations, 269 (2020), 6941–6987. https://doi.org/10.1016/j.jde.2020.05.016 doi: 10.1016/j.jde.2020.05.016 |
[21] | N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279 (2020) 108610. https://doi.org/10.1016/j.jfa.2020.108610 doi: 10.1016/j.jfa.2020.108610 |
[22] | J. C. Wei, Y. Z. Wu, Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities, J. Funct. Anal., 283 (2022), 109574. https://doi.org/10.1016/j.jfa.2022.109574 doi: 10.1016/j.jfa.2022.109574 |
[23] | M. Willem, Minimax theorems, Boston: Birkhäuser, 1996. https://doi.org/10.1007/978-1-4612-4146-1 |
[24] | P. H. Zhang, Z. Q. Han, Normalized ground states for Kirchhoff equations in $\mathbb{R}^3$ with a critical nonlinearity, J. Math. Phys., 63 (2022), 021505. https://doi.org/10.1063/5.0067520 doi: 10.1063/5.0067520 |
[25] | P. H. Zhang, Z. Q. Han, Normalized solutions to a kind of fractional Schrödinger equation with a critical nonlinearity, Z. Angew. Math. Phys., 73 (2022), 149. https://doi.org/10.1007/s00033-022-01792-y doi: 10.1007/s00033-022-01792-y |
[26] | P. H. Zhang, Z. Q. Han, Normalized ground states for Schrödinger system with a coupled critical nonlinearity, Appl. Math. Lett., 150 (2024), 108947. https://doi.org/10.1016/j.aml.2023.108947 doi: 10.1016/j.aml.2023.108947 |
[27] | M. D. Zhen, B. L. Zhang, Normalized ground states for the critical fractional NLS equation with a perturbation, Rev. Mat. Complut., 35 (2022), 89–132. https://doi.org/10.1007/s13163-021-00388-w doi: 10.1007/s13163-021-00388-w |