In this paper, we study normalized solutions of the fractional Schrödinger equation with a critical nonlinearity
{(−Δ)su=λu+|u|p−2u+|u|2∗s−2u,x∈RN,∫RNu2dx=a2, u∈Hs(RN),
where N≥2, s∈(0,1), a>0, 2<p<2∗s≜2NN−2s and (−Δ)s is the fractional Laplace operator. In the purely L2-subcritical perturbation case 2<p<2+4sN, we prove the existence of a second normalized solution under some conditions on a, p, s, and N. This is a continuation of our previous work (Z. Angew. Math. Phys., 73 (2022) 149) where only one solution is obtained.
Citation: Xizheng Sun, Zhiqing Han. Note on normalized solutions to a kind of fractional Schrödinger equation with a critical nonlinearity[J]. AIMS Mathematics, 2024, 9(8): 21641-21655. doi: 10.3934/math.20241052
[1] | K. Kefi, Jian Liu . Triple solutions for a Leray-Lions p(x)-biharmonic operator involving Hardy potential and indefinite weight. AIMS Mathematics, 2024, 9(8): 22697-22711. doi: 10.3934/math.20241106 |
[2] | Jia Li, Changchun Bi . Study of weak solutions of variational inequality systems with degenerate parabolic operators and quasilinear terms arising Americian option pricing problems. AIMS Mathematics, 2022, 7(11): 19758-19769. doi: 10.3934/math.20221083 |
[3] | Lulu Tao, Rui He, Sihua Liang, Rui Niu . Existence and multiplicity of solutions for critical Choquard-Kirchhoff type equations with variable growth. AIMS Mathematics, 2023, 8(2): 3026-3048. doi: 10.3934/math.2023156 |
[4] | Xiaomin Wang, Zhong Bo Fang . New Fujita type results for quasilinear parabolic differential inequalities with gradient dissipation terms. AIMS Mathematics, 2021, 6(10): 11482-11493. doi: 10.3934/math.2021665 |
[5] | Khaled Kefi, Mohammed M. Al-Shomrani . On multiple solutions for an elliptic problem involving Leray–Lions operator, Hardy potential and indefinite weight with mixed boundary conditions. AIMS Mathematics, 2025, 10(3): 5444-5455. doi: 10.3934/math.2025251 |
[6] | José L. Díaz . Non-Lipschitz heterogeneous reaction with a p-Laplacian operator. AIMS Mathematics, 2022, 7(3): 3395-3417. doi: 10.3934/math.2022189 |
[7] | Jia Li, Zhipeng Tong . Local Hölder continuity of inverse variation-inequality problem constructed by non-Newtonian polytropic operators in finance. AIMS Mathematics, 2023, 8(12): 28753-28765. doi: 10.3934/math.20231472 |
[8] | Shulin Zhang . Existence of nontrivial positive solutions for generalized quasilinear elliptic equations with critical exponent. AIMS Mathematics, 2022, 7(6): 9748-9766. doi: 10.3934/math.2022543 |
[9] | Huashui Zhan, Yuan Zhi, Xiaohua Niu . On a non-Newtonian fluid type equation with variable diffusion coefficient. AIMS Mathematics, 2022, 7(10): 17747-17766. doi: 10.3934/math.2022977 |
[10] | Dengming Liu, Luo Yang . Extinction behavior for a parabolic p-Laplacian equation with gradient source and singular potential. AIMS Mathematics, 2022, 7(1): 915-924. doi: 10.3934/math.2022054 |
In this paper, we study normalized solutions of the fractional Schrödinger equation with a critical nonlinearity
{(−Δ)su=λu+|u|p−2u+|u|2∗s−2u,x∈RN,∫RNu2dx=a2, u∈Hs(RN),
where N≥2, s∈(0,1), a>0, 2<p<2∗s≜2NN−2s and (−Δ)s is the fractional Laplace operator. In the purely L2-subcritical perturbation case 2<p<2+4sN, we prove the existence of a second normalized solution under some conditions on a, p, s, and N. This is a continuation of our previous work (Z. Angew. Math. Phys., 73 (2022) 149) where only one solution is obtained.
The presence of singularities and degeneracies in elliptic equations introduces significant challenges in analyzing the behavior of solutions. These singularities, especially near the origin or boundary, can profoundly affect the properties of the operator, making solutions more sensitive to changes in the domain. For instance, when 1<p<N, it is known that ˜u/|y|∈Lp(RN) if ˜u∈W1,p(RN), or ˜u/|y|∈Lp(Ω) when ˜u∈W1,p(Ω), where Ω is a bounded domain (see Lemma 2.1 in [12] for further details). In this context, the solution under consideration is ˜u, and such behavior leads to the development of Hardy-type inequalities, which are crucial for controlling the singularities of solutions near critical points, particularly when the equation includes singular potential terms (see, e.g., [1,12,17,18,20]).
Furthermore, the presence of an indefinite weight in the source term creates several challenges, mainly because it can change sign or behave irregularly. This complicates the application of standard methods for proving the existence of solutions, such as ensuring the necessary properties of the energy functional. The irregular behavior of the weight also makes it difficult to use common mathematical tools like Sobolev embeddings and variational methods. To overcome these difficulties, this manuscript employs a more flexible approach based on critical point theory [4], which allows establishing the existence of solutions despite the complexities introduced by the indefinite weight.
Finally, the degeneracy of differential operators, such as p-Laplacian or p(x)-Laplacian, when coupled with a weight function ω(x) inside the divergence, introduces additional complexity to the problem. The presence of ω(x), whether it is singular or merely bounded, requires a shift in the selection of appropriate functional spaces. Traditional Sobolev spaces like W1,p(Ω) or W1,p(x)(Ω) may no longer be adequate in such cases. To properly handle the singularities or degeneracies, it becomes necessary to consider alternative Sobolev spaces, such as W1,p(x)(ω,Ω) (see section 2 for the definition of W1,p(ω,Ω)), which are specifically designed to accommodate the weight function (see [6] for further details). The most recent contribution to the study of the p Laplacian in a bounded domain and in the whole space can be found in respectively in [5] and [3], furthermore, the degenerate p-Laplacian operator combined with a Hardy potential can be found in [16].
This paper tackles the challenges posed by degeneracy, Hardy-type singularities, and sign-changing source terms, which are common in applied mathematical models, by examining a class of weighted quasilinear elliptic Dirichlet problem involving a variable exponent p(x) and an indefinite source term. The main objective is to prove the existence of three weak solutions, using a critical point theorem introduced by Bonanno and Moranno in [4] while accounting for the complexities introduced by the operator's degeneracy and the singularities in the equation.
This manuscript explores the multiplicity of weak solutions to a weighted elliptic equations of the form:
{−Δp(x),a(x,u)u+b(x)|u|q−2u|x|q=λk(x)|u|s(x)−2uin Ω,u=0on ∂Ω, | (1.1) |
where λ is a positive parameter, 1<q<N, and Ω⊂RN (with N≥2) is a bounded open subset with smooth boundary ∂Ω. The function u is a solution to a weighted quasilinear elliptic equation involving a variable exponent p(x)∈C+(¯Ω)(see, the beginning of Section 2) and the nonlinear source term of the form k(x)|u|s(x)−2u which involves a weight function k(x) and may exhibit singularities on Ω and can change sign, belongs to a nonstandard Lebesgue space Lγ(x)(Ω).
The operator Δp(x),a(x,u)u represents a nonlinear generalization of the classical Laplacian, defined by:
Δp(x),a(x,u)u=div(a(x,u)|∇u|p(x)−2∇u), |
here a(x,u) denotes a Carathéodory function satisfying the inequality:
a1ω(x)≤a(x,u)≤a2ω(x), |
with a1,a2 are two positive constants, the function ω(x) is assumed to belongs to the local Lebesgue space L1loc(Ω), and it satisfies additional growth conditions, such as ω−h(x)∈L1(Ω), where h(x) satisfies certain bounds related to the variable exponent p(x). Specifically, we assume that
(ω)ω−h(x)∈L1(Ω),forh(x)∈C(¯Ω)andh(x)∈(Np(x),+∞)∩[1p(x)−1,+∞). |
The nonlinearity in the equation involves the functions k(x) and s(x), which are assumed to satisfy the following inequality for almost every x∈Ω
(k)1<s(x)<ph(x)<N<γ(x), |
where ph(x)=h(x)p(x)h(x)+1.
Set, S(Ω), the space that contains all measurable functions in Ω and
C+(¯Ω)={p(x)|p(x)∈C(¯Ω), p(x)>1, ∀x∈¯Ω}, |
p+=max |
For \tau > 0 , and p(x)\in C_+(\overline\Omega), we use the following notations
\begin{equation*} \tau^{\hat{p}} = \max\{\tau^{p^{-}},\ \tau^{p^{+}}\},\ \ \tau^{\check{p}} = \min\{\tau^{p^{-}}, \ \tau^{p^{+}}\}. \end{equation*} |
In the sequel, we define the space L^{p(x)}(\omega, \Omega) as follows
L^{p(x)}(\omega, \Omega) = \left\{ u \in \mathcal{S}(\Omega) \mid \int_{\Omega} \omega(x) |u(x)|^{p(x)} \, dx < \infty \right\}, |
where p(x) is a variable exponent, and \omega(x) is a weight function. The space is endowed with a Luxemburg-type norm, given by:
\|u\|_{L^{p(x)}(\omega, \Omega)} = \inf \left\{ \nu > 0 \mid \int_{\Omega} \omega(x) \left| \frac{u(x)}{\nu} \right|^{p(x)} \, dx \leq 1 \right\}. |
Next, we define the corresponding variable exponent Sobolev space, which incorporates the variable exponent p(x) in the functional setting.
W^{1,p(x) }( \Omega ) = \big\{ u\in L^{p(x) }( \Omega ):\ | \nabla u| \in L^{p(x) }( \Omega) \big\}, |
with the norm
\|u\|_{W^{1,p(x)}( \Omega )} = \|\nabla u\|_{p(x)}+\|u\|_{p(x)}, |
where \|\nabla u\|_{p(x)} = \||\nabla u| \|_{p(x)}, |\nabla u| = (\sum\limits_{i = 1}^N \big|\frac{\partial u}{\partial x_{i}}\big|^{2})^{\frac{1}{2}}, \nabla u = \Big(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, ..., \frac{\partial u}{\partial x_{N}}\Big) is the gradient of u at (x_{1}, x_{2}, ..., x_{N}).
Denote, by
W^{1,p(x)}(\omega,\Omega) = \{u\in L^{p(x)}(\Omega):\omega^{\frac{1}{p(x)}}|\nabla u|\in L^{p(x)}(\Omega)\} |
the weighted Sobolev space and by W^{1, p(x)}_0(\omega, \Omega) as the closure of C_{0}^{\infty}(\Omega) in the space W^{1, p(x)}(\omega, \Omega) endowed with the norm
\begin{gather*} \|u\| = \inf\Big\{\nu > 0: \int_\Omega\omega(x)\big| \frac{\nabla u(x)}{\nu}\big|^{p(x)} dx \leq 1\Big\}. \end{gather*} |
Lemma 2.1. [8] If p_1(x), p_2(x)\in C_+(\overline\Omega) such that p_1(x) \leq p_2(x) a.e. x\in \Omega, then there exists the continuous embedding W^{1, p_{2}(x)}(\Omega)\hookrightarrow W^{1, p_{1}(x)}(\Omega) .
Proposition 2.1 ([9]) For p(x)\in C_+(\overline\Omega), u, u_n \in L^{p(x)}(\Omega), one has
\min \big\{ \| u\| _{p(x)}^{p^{-}},\| u\| _{p(x) }^{p^{+}}\big\} \leq \int_\Omega|u(x)|^{p(x)}dx \leq \max\big\{ \| u\| _{p(x) }^{p^{-}},\| u\| _{p(x) }^{p^{+}}\text{ }\big\}. |
Let 0 < d(x) \in S(\Omega) , and define the space
L^{p(x)}(d, \Omega) : = L^{p(x)}_{d(x)}(\Omega) = \left\{ u \in S(\Omega) \mid \int_{\Omega} d(x) |u(x)|^{p(x)} \, dx < \infty \right\}, |
where p(x) is a variable exponent, and d(x) is a weight function. The space is equipped with a Luxemburg-type norm, defined by
\|u\|_{L^{p(x)}_{d(x)}(\Omega)} = \|u\|_{(p(x), d(x))} : = \inf \left\{ \nu > 0 \mid \int_{\Omega} d(x) \left| \frac{u(x)}{\nu} \right|^{p(x)} \, dx \leq 1 \right\}. |
Proposition 2.2 ([10]) If p\in C_+(\overline\Omega). Then
\min \big\{ \|u\|_{(p(x),d(x))}^{p^{-}},\| u\| _{(p(x),d(x))}^{p^{+}}\big\} \leq \int_\Omega d(x)|u(x)|^{p(x)}dx \leq \max\big\{ \| u\|_{ {(p(x),d(x))}}^{p^{-}},\| u\| _{(p(x),d(x))}^{p^{+}}\big\} |
for every u\in L^{p(x)}_{d(x)}(\Omega) and for a.e. x\in \Omega .
Combining Proposition 2.1 with Proposition 2.2, one has
Lemma 2.2. Let
\rho_{\omega}(u) = \int_\Omega \omega(x)\big| \nabla u(x)\big|^{p(x)}dx. |
For p\in C_+(\overline\Omega), u \in W^{1, p(x) }(\omega, \Omega), we have
\min \big\{ \| u\|^{p^{-}},\| u\|^{p^{+}}\big\} \leq \rho_{\omega}(u) \leq \max\big\{ \| u\| ^{p^{-}},\| u\|^{p^{+}}\mathit{\text{}}\big\}. |
From Proposition 2.4 of [20], if (\omega) holds, W^{1, p(x)}(\omega, \Omega) is a reflexive separable Banach space.
From Theorem 2.11 of [15], if (\omega) holds, the following embedding
\begin{equation} \begin{aligned}W^{1,p(x)}(\omega,\Omega)\hookrightarrow W^{1,p_{h}(x)}(\Omega)\end{aligned} \end{equation} | (2.1) |
is continuous, where
p_{h}(x) = \frac{p(x)h(x)}{h(x)+1} < p(x). |
Combining (2.1) with Proposition 2.7 and Proposition 2.8 in [11], we get the following embedding
W^{1,p(x)}(\omega,\Omega)\hookrightarrow L^{r(x)}(\Omega) |
is continuous, where
\ 1\leq r(x) \leq p_{h}^{*}(x) = \frac{Np_{h}(x)}{N-p_{h}(x)} = \frac{Np(x)h(x)}{Nh(x)+N-p(x)h(x)}. |
Furthermore, the following embedding
W^{1,p(x)}(\omega,\Omega)\hookrightarrow \hookrightarrow L^{t(x)}(\Omega) |
is compact, when 1\leq t(x) < p_{h}^{*}(x).
In what follows, and for any p(x)\in C_+(\overline\Omega) , let us denote by p'(x): = \frac{p(x)}{p(x)-1} , the conjugate exponent of p(x) .
Remark 2.1. Under Condition (k) , one has
● 1 < \beta(x) < p^{*}_{h}(x) for almost every x\in\Omega , where \beta(x): = \frac{\gamma(x) s(x)}{\gamma(x)-s(x)} , consequently
W^{1,p(x)}(\omega,\Omega)\hookrightarrow \hookrightarrow L^{\beta(x)}(\Omega) |
is compact.
● 1 < \alpha(x) < p^{*}_{h}(x) for almost every x\in\Omega , where \alpha(x) = \gamma'(x)s(x) , consequently
W^{1,p(x)}(\omega,\Omega)\hookrightarrow \hookrightarrow L^{\alpha(x)}(\Omega) |
is compact.
Lemma 2.3 (Hölder type inequality [2,11]). Let p_1, p_2, t\geq 1 three functions that belong in \mathcal{S}(\Omega) such that
\frac{1}{t( x) } = \frac{1}{p_1( x) }+\frac{1}{p_2(x) },\quad \mathit{\text{for almost every}}\ x\in \Omega. |
If f\in L^{p_1(x) }(\Omega) and g\in L^{p_2(x) }(\Omega) , then fg\in L^{t(x) }(\Omega) , moreover
\| fg\| _{t( x ) }\leq 2\|f\| _{p_1(x) }\| g\| _{p_2(x ) }. |
Similarly, if \frac{1}{t(x) }+\frac{1}{p_1(x) }+\frac{1}{p_2(x) } = 1 , for a.e. x\in \Omega , then
\int_{\Omega}|f(x)g(x)h(x)|dx\leq 3\|f\|_{t(x)}\|g\|_{p_1(x)}\|h\|_{p_2(x)}. |
Lemma 2.4 ([7]). Let r_1(x) and r_2(x) be measurable functions such that r_1(x)\in L^{\infty}(\Omega) , and 1\leq r_1(x)r_2(x)\leq\infty , for a.e. x\in\Omega . Let w\in L^{r_2(x)}(\Omega) , w\neq0 . Then
\|w\|^{\check{r_1}}_{r_1(x)r_2(x)} \leq \||w|^{p(x)}\|_{r_2(x)} \leq \|w\|^{\hat{p}}_{r_1(x)r_2(x)}. |
Let's define the functional \mathcal{I}_{\lambda}\colon W^{1, p(x)}_0(\omega, \Omega)\to \mathbb{R} as
\mathcal{I}_{\lambda}(u): = \mathcal{L}(u)-\lambda\mathcal{M}(u), |
where
\begin{eqnarray} \mathcal{L}(u): = \int_{\Omega} \frac{a(x,u)}{p(x)}|\nabla u|^{p(x)}dx+\frac{1}{q}\int_{\Omega}\frac{b(x)|u|^{q}}{|x|^{q}} dx, \end{eqnarray} | (2.2) |
and
\begin{eqnarray} \mathcal{M}(u): = \int_{\Omega}\frac{1}{s(x)}k(x)|u|^{s(x)} dx. \end{eqnarray} | (2.3) |
It is noted that, based on Remark 2.1 and Lemma 2.4, the aforementioned functionals are both well-defined and continuously Gâteaux differentiable (see [14] for further details). The Gâteaux derivatives are as follows
\langle\mathcal{L}'(u),v\rangle = \int_{\Omega} a(x,u) |\nabla u|^{p(x)-2} \nabla u \cdot \nabla v \, dx + \int_{\Omega} \frac{b(x) |u|^{q-2} u v}{|x|^q} \, dx, |
and
\langle\mathcal{M}'(u),v\rangle = \int_{\Omega} k(x) |u|^{s(x)-2} u v \, dx. |
Furthermore, \mathcal{M}'(u) is compact in the dual space (W^{1, p(x)}_0(\omega, \Omega))^* (see [14]).
u\in W^{1, p(x)}_0(\omega, \Omega) is said to be a weak solution of the problem (1.1) if, the following holds for every v\in W^{1, p(x)}_0(\omega, \Omega) .
\langle\mathcal{I}'_{\lambda}(u),v\rangle = \langle\mathcal{L}'(u),v\rangle-\lambda\langle\mathcal{M}'(u),v\rangle = 0. |
Lemma 2.5. \mathcal{L}' is a strictly monotone coercive functional that belongs in (W^{1, p(x)}_{0}(\omega, \Omega))^*.
Proof. For any u \in W^{1, p(x)}_{0}(\omega, \Omega)\setminus {\{0\}} , by Lemma 2.2, one has
\begin{align*} \mathcal{L}'(u)(u)& = \int_{\Omega}a(x,u) |\nabla u|^{p(x)-2}\nabla u \nabla udx +\int_{\Omega}\frac{b(x)|u|^{q-2}u^{2}}{|x|^{q}}dx\\& \geq a_{1}\rho_{\omega}(u)\\&\geq a_{1}\cdot\min\{\|u\|^{p^{+}},\|u\|^{p^{-}}\}, \end{align*} |
thus
\lim\limits_{\|u\|\to \infty}\frac{\mathcal{L}'(u)(u)}{\|u\|}\geq a_{1}\cdot \lim\limits_{\|u\|\to \infty}\frac{\min\{\|u\|^{p^{+}},\|u\|^{p^{-}}\}}{\|u\|} = +\infty, |
then \mathcal{L}' is coercive in view of p(x)\in C_+(\overline\Omega) .
According to (2.2) of [13], for all x, y \in \mathbb{R}^{N} , there is a positive constant C_{p} such that
\langle|x|^{p-2}x-|y|^{p-2}y, x-y\rangle\geq C_{p}|x-y|^{p},\ \text{if}\ p\geq 2, |
and
\langle|x|^{p-2}x-|y|^{p-2}y, x-y\rangle\geq \frac{C_{p}|x-y|^{2}}{(|x|+|y|)^{2-p}},\ \text{if}\ 1 < p < 2,\ \text{and}\ (x,y)\neq(0,0), |
where \langle., .\rangle is the usual inner product in \mathbb{R}^{N}. Thus, for any u, v\in X satisfying u\neq v, by standard arguments we can obtain
\begin{align*} \langle\mathcal{L}'(u)-\mathcal{L}'(v),u-v\rangle& = \int_{\Omega} a(x,u)(|\nabla u|^{p(x)-2}\nabla u -|\nabla v|^{p(x)-2}\nabla v)(\nabla u -\nabla v)dx \\& \ \ \ \\&\ \ \ +\int_{\Omega}\frac{b(x)}{{|x|^{q}}}(|u|^{q-2}u-|v|^{q-2}v)(u-v))dx\\& > 0, \end{align*} |
hence, one has \mathcal{L}' is strictly monotone in W^{1, p(x)}_0(\omega, \Omega) .
Lemma 2.6. The functional \mathcal{L}' is a mapping of (S_{+}) -type, i.e. if u_{n}\rightharpoonup u in W^{1, p(x)}_{0}(\omega, \Omega), and \overline{\lim}_{n\rightarrow \infty}\langle \mathcal{L}'(u_{n})-\mathcal{L}'(u), u_{n}-u)\rangle\leq 0, then u_{n}\rightarrow u in W^{1, p(x)}_{0}(\omega, \Omega).
Proof. Let u_{n}\rightharpoonup u in W^{1, p(x)}_{0}(\omega, \Omega), and \overline{\lim}_{n\rightarrow \infty}\langle \mathcal{L}'(u_{n})-\mathcal{L}'(u), u_{n}-u\rangle\leq 0.
Noting that \mathcal{L}' is strictly monotone in W^{1, p(x)}_{0}(\omega, \Omega), we have
\lim\limits_{n\rightarrow \infty}\langle \mathcal{L}'(u_{n})-\mathcal{L}'(u),u_{n}-u\rangle = 0, |
while
\begin{align*} \langle\mathcal{L}'(u_{n})-\mathcal{L}'(u),u_{n}-u\rangle& = \int_{\Omega} a(x,u)(|\nabla u_{n}|^{p(x)-2}\nabla u_{n} -|\nabla u|^{p(x)-2}\nabla u)(\nabla u_{n} -\nabla u)dx \\&\ \ \ +\int_{\Omega}\Big(\frac{b(x)|u_{n}|^{q-2}}{|x|^{q}} u_{n}(u_{n}-u)-\frac{b(x)|u|^{q-2}}{|x|^{q}} u(u_{n}-u)\Big )dx , \end{align*} |
thus we get
\overline{\lim}_{n\rightarrow \infty}\int_{\Omega} a(x,u)(|\nabla u_{n}|^{p(x)-2}\nabla u_{n} -|\nabla u|^{p(x)-2}\nabla u)(\nabla u_{n} -\nabla u)dx \leq 0. |
Further, by (1.2) one has
\overline{\lim}_{n\rightarrow \infty}\int_{\Omega} \omega(x)(|\nabla u_{n}|^{p(x)-2}\nabla u_{n} -|\nabla u|^{p(x)-2}\nabla u)(\nabla u_{n} -\nabla u)dx \leq 0, |
then u_{n}\rightarrow u in W^{1, p(x)}_{0}(\omega, \Omega) via Lemma 3.2 in [19].
Lemma 2.7. \mathcal{L}' is an homeomorphism.
Proof. The strict monotonicity of \mathcal{L}' implies that it is injective. Since \mathcal{L}' is coercive, it is also surjective, and hence \mathcal{L}' has an inverse mapping.
Next, we show that the inverse mapping (\mathcal{L}')^{-1} is continuous.
Let \tilde{f}_n, \tilde{f} \in (W^{1, p(x)}_0(\omega, \Omega))^* such that \tilde{f}_n \to \tilde{f} . We aim to prove that (\mathcal{L}')^{-1}(\tilde{f}_n) \to (\mathcal{L}')^{-1}(\tilde{f}) .
Indeed, let (\mathcal{L}')^{-1}(\tilde{f}_n) = u_n and (\mathcal{L}')^{-1}(\tilde{f}) = u , so that \mathcal{L}'(u_n) = \tilde{f}_n and \mathcal{L}'(u) = \tilde{f} . By the coercivity of \mathcal{L}' , the sequence u_n is bounded. Without loss of generality, assume u_n \rightharpoonup u_0 , which implies
\lim\limits_{n \to \infty} \left( \mathcal{L}'(u_n) - \mathcal{L}'(u), u_n - u_0 \right) = \lim\limits_{n \to \infty} \left( \tilde{f}_n - \tilde{f}, u_n - u_0 \right) = 0. |
Thus, u_n \to u_0 because \mathcal{L}' is of (S_+) -type, which ensures that \mathcal{L}'(u_n) \to \mathcal{L}'(u_0) . Combining this with \mathcal{L}'(u_n) \to \mathcal{L}'(u) , we deduce that \mathcal{L}'(u) = \mathcal{L}'(u_0) . Since \mathcal{L}' is injective, it follows that u = u_0 , and hence u_n \to u . Therefore, we have (\mathcal{L}')^{-1}(\tilde{f}_n) \to (\mathcal{L}')^{-1}(\tilde{f}) , proving that (\mathcal{L}')^{-1} is continuous.
The following critical point theorems constitute the principal tools used to obtain our result.
Theorem 2.1. ([4, Theorem 3.6]). Let X be a reflexive real Banach space and assume the following
● \mathcal{L}: X \to \mathbb{R} be a coercive functional that is continuously Gateaux differentiable and weakly lower semicontinuous in the sequential sense
● The Gateaux derivative of \mathcal{L} has a continuous inverse on the dual space X^* .
● \mathcal{M}: X \to \mathbb{R} is a continuously Gateaux differentiable functional whith a compact Gateaux derivative.
Furthermore, suppose that
(a_0) \quad \inf\limits_X \mathcal{L} = \mathcal{L}(0) = 0\ and\ \mathcal{M}(0) = 0. |
There exist a positive constant d and a point \overline{v} \in X such that d 06 \mathcal{L}(\overline{v}) , and the following conditions are satisfied:
(a_1) \quad \frac{\sup\nolimits_{\mathcal{L}(x) < d} \mathcal{M}(x)}{d} < \frac{\mathcal{M}(\overline{v})}{\mathcal{L}(\overline{v})}, |
(a_2) \quad \mathit{\text{For each}}\ \lambda \in \Lambda_d : = \left( \frac{\mathcal{L}(\overline{v})}{\mathcal{M}(\overline{v})}, \frac{d}{\sup\nolimits_{\mathcal{L}(x) \leq d} \mathcal{M}(x)} \right), \mathit{\text{the functional}}\ I_{\lambda} : = \mathcal{L} - \lambda \mathcal{M}\ \mathit{\text{is coercive.}} |
Then, for any \lambda \in \Lambda_d , \mathcal{L} - \lambda \mathcal{M} has at least three distinct critical points in X .
In this section, a theorem about the existence of at least three weak solutions to the problem (1.1) is obtained.
Recall the Hardy inequality (refer to Lemma 2.1 in [12] for more details), which asserts that for 1 < t < N , the following inequality holds:
\int_{\Omega} \frac{|u(x)|^t}{|x|^t} \, dx \leq \frac{1}{\mathcal{H}} \int_{\Omega} |\nabla u|^t \, dx, \quad \forall u \in W^{1,t}_0(\Omega), |
where the optimal constant \mathcal{H} is given by:
\mathcal{H} = \left( \frac{N-t}{t} \right)^t. |
By combining this with Lemma 2.1 and using the fact that 1 < q < p_h(x) < N , we deduce the continuous embeddings
W^{1,p(x)}_0(\omega, \Omega) \hookrightarrow W^{1,p_h(x)}_0(\Omega) \hookrightarrow W^{1,q}_0(\Omega), |
which leads to the inequality
\int_{\Omega} \frac{|u(x)|^q}{|x|^q} \, dx \leq \frac{1}{\mathcal{H}} \int_{\Omega} |\nabla u|^q \, dx, \quad \forall u \in W^{1,p(x)}_0(\omega, \Omega), |
where \mathcal{H} = \left(\frac{N-q}{q} \right)^q .
We are now ready to present our primary result. To this end, we define
\tilde{\mathfrak{D}}(x) : = \sup \left\{ \tilde{\mathfrak{D}} > 0 \mid B(x, \tilde{\mathfrak{D}}) \subseteq \Omega \right\} |
for each x \in \Omega , here B(x, \tilde{\mathfrak{D}}) denotes a ball centered at x with radius \tilde{\mathfrak{D}} . It is clear that there exists a point x^0 \in \Omega such that B(x^0, R) \subseteq \Omega , where
R = \sup\limits_{x \in \Omega} \tilde{\mathfrak{D}}(x). |
In the remainder, assume that k(x) , fulfill this requirement
k(x): = \left\{ \begin{array}{l} {\leq 0,} & {\mbox{ for}\, x\in \Omega\setminus B(x^0,R),}\\{\geq k_0,} & {\mbox{ for}\, x\in B(x^0,\frac{R}{2}),}\\{ > 0, } & { \mbox{ for } \, x\in B(x^0,R)\setminus B(x^0,\frac{R}{2}),} \end{array} \right. |
where k_0 is a positive constant, the symbol \tilde{m} will represent the constant
\tilde{m} = \frac{\pi^{\frac{N}{2}}}{\frac{N}{2} \Gamma\left( \frac{N}{2} \right)}, |
with \Gamma denoting the Gamma function.
Theorem 3.1. Assume that p^- > s^+ , and, there exist two positive constants d and \delta > 0 , such that
\frac{1}{{p}^+}\Big(\frac{2 \delta}{R}\Big)^{{\check{p}}}\|w\|_{L^1(\mathfrak{B})} = d, |
and
A_{\delta}: = \frac{\frac{1}{{p^-}}\Big(\frac{2 \delta}{R}\Big)^{\hat{p}}\|\omega\|_{L^1(\mathfrak{B})}+\Big(\frac{2 \delta}{R}\Big)^{{q}}\frac{\|b\|_{\infty}}{q \mathcal{H}}\tilde{m}\left(R^{N}-\left(\frac{R}{2}\right)^{N}\right)}{ \frac{1}{s^{+}} k_{0}\delta^{\check{s}} \tilde{m}\left(\frac{R}{2}\right)^{N}} < B_{d}: = \frac{d}{\frac{c_{\gamma' s}^{\hat{s}}\|k\|_{\gamma(x)}}{s^{-}} \big[\Big({p}^{+} d\Big)^{\frac{1}{\check{p}}}\big]^{\hat{s}}}, |
then for any \lambda \in] A_{\delta}, B_{d}[ , problem (1.1) has at least three weak solutions.
Proof. It is worth noting that the functional \mathcal{L} and \mathcal{M} associated with problem (1.1) and defined in (2.2) and (2.3), satisfy the regularity assumptions outlined in Theorem 2.1. We will now establish the fulfillment of conditions (a_1) and (a_2) . To this end, let's consider
\frac{1}{{p}^+}\Big(\frac{2 \delta}{R}\Big)^{\check{p}}\|\omega\|_{L^1(\mathfrak{B})} = d |
and consider v_d \in X such that
v_{\delta}(x): = \begin{cases}0 & x \in \Omega \backslash B\left(x^{0}, R\right) \\ \frac{2 \delta}{R}\left(R-\left|x-x^{0}\right|\right) & x \in \mathfrak{B}: = \overline{B}\left(x^{0}, R\right) \backslash B\left(x^{0}, \frac{R}{2}\right), \\ \delta & x \in \overline{B}\left(x^{0}, \frac{R}{2}\right) .\end{cases} |
Then, by the definition of \mathcal{L} , we have
\begin{aligned} & \frac{1}{{p^+}}\Big(\frac{2 \delta}{R}\Big)^{\check{p}}\|\omega\|_{L^1(\mathfrak{B})} \\ & \quad < \mathcal{L}(v_{\delta}) \\ & \quad \leq \frac{1}{{p^-}}\Big(\frac{2 \delta}{R}\Big)^{\hat{p}}\|\omega\|_{L^1(\mathfrak{B})}+\Big(\frac{2 \delta}{R}\Big)^{{q}}\frac{\|b\|_{\infty}}{q \mathcal{H}}\tilde{m}\left(R^{N}-\left(\frac{R}{2}\right)^{N}\right) \end{aligned} |
Therefore, \mathcal{L}(v_{\delta}) > d . However, it is important to consider the following
\begin{eqnarray} \mathcal{M}\left(v_{\delta}\right) \geq \int_{B\left(x_{0}, \frac{R}{2}\right)} \frac{k(x)}{s(x)}\left|v_{\delta}\right|^{\gamma(x)} d x \geq \frac{1}{s^{+}} k_{0}\delta^{\check{s}} \tilde{m}\left(\frac{R}{2}\right)^{N} \end{eqnarray} | (3.1) |
In addition, for each u\in\mathcal{L}^{-1}(]-\infty, d]) , we have
\begin{equation} \frac{1}{p^+}\|u\|^{\check{p}}\leq d. \end{equation} | (3.2) |
therefore,
\|u\| \leq \Big({p}^{+}\mathcal{L}(u)\Big)^{\frac{1}{\check{p}}} < \Big({p}^{+} d\Big)^{\frac{1}{\check{p}}}. |
Furthermore, we can deduce using Lemmas 2.3, 2.4 and Remark 2.1 the following
\begin{eqnarray} \mathcal{M}(u) \leq \frac{1}{s^{-}}\|k\|_{\gamma(x)} \||u|^{s(x)}\|_{\gamma'(x)} \leq \frac{1}{s^{-}}\|k\|_{s(x)}(c_{\gamma' s}\|u\|)^{\hat{s}}, \end{eqnarray} | (3.3) |
where c_{\gamma' s} is the constant from the continuous embedding of W^{1, p(x)}_0(\omega, \Omega) into W^{1, \gamma'(x) s(x)}(\Omega) .
This leads to the following result
\begin{eqnarray*} \sup\limits_{\mathcal{L}(u) < d}\mathcal{M}(u)&\leq& \frac{c_{\gamma' s}^{\hat{s}}\|k\|_{\gamma(x)}}{s^{-}} \big[\Big({p}^{+} d\Big)^{\frac{1}{\check{p}}}\big]^{\hat{s}}, \end{eqnarray*} |
and
\begin{aligned} \frac{1}{d} \sup _{\mathcal{L}(u) < d} \mathcal{M}(u) < \frac{1}{\lambda} . \end{aligned} |
Furthermore, we can establish the coerciveness of \mathcal{I}_{\lambda} for any positive value of \lambda by employing inequality (3.1) once more. This yields the following result
\mathcal{M}(u)\leq \frac{c_{\gamma' s}^{\hat{s}}\|k\|_{\gamma(x)}}{s^{-}}\|u\|^{\hat{s}} . |
When \|u\| is great enough, the following can be inferred
\mathcal{L}(u)-\lambda \mathcal{M}(u) \geq \frac{1}{p^+}\|u\|^{p^-}-\lambda \frac{c_{\gamma' s}^{\hat{s}}\|k\|_{\gamma(x)}}{s^{-}}\|u\|^{\hat{s}} . |
By considering the fact that p^- > s^+ , we can reach the desired conclusion. In conclusion, considering the aforementioned fact that
\bar{\Lambda}_d: = \left(A_{ \delta}, B_d\right) \subseteq\left(\frac{\mathcal{L}\left(v_{\delta}\right)}{\mathcal{M}\left(v_{\delta}\right)}, \frac{d}{\sup\nolimits_{\mathcal{L}(u) < d} \mathcal{M}(u)}\right), |
since all assumptions of Theorem 2.1 are fulfilled, it can be deduced that for any \lambda \in \bar{\Lambda}_d , the function \mathcal{L}-\lambda \mathcal{M} possesses at least three critical points that belong in X: = W^{1, p}_0(\omega, \Omega) . Consequently these critical points are exactly weak solutions of problem (1.1) .
Khaled Kefi: Conceptualization, Methodology, Writing–original draft, Supervision; Nasser S. Albalawi: Conceptualization, Methodology, Writing–original draft, Supervision. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number NBU-FPEJ-2025-1706-01.
The authors declare that they have no conflicts of interest.
[1] | D. Applebaum, Lévy processes–-From probability to finance and quantum groups, Notices of the American Mathematical Society, 51 (2004), 1336–1347. |
[2] |
T. Bartsch, N. Soave, Multiple normalized solutions for a competing system of Schrödinger equations, Calc. Var., 58 (2019), 22. https://doi.org/10.1007/s00526-018-1476-x doi: 10.1007/s00526-018-1476-x
![]() |
[3] |
T. Bartsch, H. W. Li, W. M. Zou, Existence and asymptotic behavior of normalized ground states for Sobolev critical Schrödinger systems, Calc. Var., 62 (2023), 9. https://doi.org/10.1007/s00526-022-02355-9 doi: 10.1007/s00526-022-02355-9
![]() |
[4] |
H. Berestycki, P.-L. Lions, Nonlinear scalar field equations, Ⅰ existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313–345. https://doi.org/10.1007/BF00250555 doi: 10.1007/BF00250555
![]() |
[5] | C. Bucur, E. Valdinoci, Nonlocal diffusion and applications, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-28739-3 |
[6] |
L. A. Caffarelli, J.-M. Roquejoffre, Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151–1179. https://doi.org/10.4171/JEMS/226 doi: 10.4171/JEMS/226
![]() |
[7] |
L. A. Caffarelli, S. Salsa, L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425–461. https://doi.org/10.1007/s00222-007-0086-6 doi: 10.1007/s00222-007-0086-6
![]() |
[8] |
Z. J. Chen, W. M. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Rational Mech. Anal., 205 (2012), 515–551. https://doi.org/10.1007/s00205-012-0513-8 doi: 10.1007/s00205-012-0513-8
![]() |
[9] |
V. Coti Zelati, M. Nolasco, Existence of ground states for nonlinear, pseudo-relativistic Schrödinger equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., 22 (2011), 51–72. https://doi.org/10.4171/RLM/587 doi: 10.4171/RLM/587
![]() |
[10] |
E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
![]() |
[11] |
P. Felmer, A. Quaas, J. G. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinb. A, 142 (2012), 1237–1262. https://doi.org/10.1017/S0308210511000746 doi: 10.1017/S0308210511000746
![]() |
[12] |
R. L. Frank, E. Lenzmann, L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Commun. Pure Appl. Math., 69 (2016), 1671–1726. https://doi.org/10.1002/cpa.21591 doi: 10.1002/cpa.21591
![]() |
[13] | N. Ghoussoub, Duality and perturbation methods in critical point theory, Cambridge: Cambridge University Press, 1993. https://doi.org/10.1017/cbo9780511551703 |
[14] |
L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. Theor., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1
![]() |
[15] |
L. Jeanjean, T. T. Le, Multiple normalized solutions for a Sobolev critical Schrödinger equation, Math. Ann., 384 (2022), 101–134. https://doi.org/10.1007/s00208-021-02228-0 doi: 10.1007/s00208-021-02228-0
![]() |
[16] | E. H. Lieb, M. P. Loss, Analysis, second edition, Providence, RI: American Mathematical Society, 2001. https://doi.org/10.1090/gsm/014 |
[17] |
H. J. Luo, Z. T. Zhang, Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var., 59 (2020), 143. https://doi.org/10.1007/s00526-020-01814-5 doi: 10.1007/s00526-020-01814-5
![]() |
[18] |
R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67–102. https://doi.org/10.1090/S0002-9947-2014-05884-4 doi: 10.1090/S0002-9947-2014-05884-4
![]() |
[19] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007) 67–112. https://doi.org/10.1002/cpa.20153 doi: 10.1002/cpa.20153
![]() |
[20] |
N. Soave, Normalized ground state for the NLS equations with combined nonlinearities, J. Differ. Equations, 269 (2020), 6941–6987. https://doi.org/10.1016/j.jde.2020.05.016 doi: 10.1016/j.jde.2020.05.016
![]() |
[21] |
N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal., 279 (2020) 108610. https://doi.org/10.1016/j.jfa.2020.108610 doi: 10.1016/j.jfa.2020.108610
![]() |
[22] |
J. C. Wei, Y. Z. Wu, Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities, J. Funct. Anal., 283 (2022), 109574. https://doi.org/10.1016/j.jfa.2022.109574 doi: 10.1016/j.jfa.2022.109574
![]() |
[23] | M. Willem, Minimax theorems, Boston: Birkhäuser, 1996. https://doi.org/10.1007/978-1-4612-4146-1 |
[24] |
P. H. Zhang, Z. Q. Han, Normalized ground states for Kirchhoff equations in \mathbb{R}^3 with a critical nonlinearity, J. Math. Phys., 63 (2022), 021505. https://doi.org/10.1063/5.0067520 doi: 10.1063/5.0067520
![]() |
[25] |
P. H. Zhang, Z. Q. Han, Normalized solutions to a kind of fractional Schrödinger equation with a critical nonlinearity, Z. Angew. Math. Phys., 73 (2022), 149. https://doi.org/10.1007/s00033-022-01792-y doi: 10.1007/s00033-022-01792-y
![]() |
[26] |
P. H. Zhang, Z. Q. Han, Normalized ground states for Schrödinger system with a coupled critical nonlinearity, Appl. Math. Lett., 150 (2024), 108947. https://doi.org/10.1016/j.aml.2023.108947 doi: 10.1016/j.aml.2023.108947
![]() |
[27] |
M. D. Zhen, B. L. Zhang, Normalized ground states for the critical fractional NLS equation with a perturbation, Rev. Mat. Complut., 35 (2022), 89–132. https://doi.org/10.1007/s13163-021-00388-w doi: 10.1007/s13163-021-00388-w
![]() |