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Abstract: In this paper, we study normalized solutions of the fractional Schrödinger equation with a
critical nonlinearity {

(−∆)su = λu + |u|p−2u + |u|2
∗
s−2u, x ∈ RN ,∫

RN u2dx = a2, u ∈ H s(RN),

where N ≥ 2, s ∈ (0, 1), a > 0, 2 < p < 2∗s ,
2N

N−2s and (−∆)s is the fractional Laplace operator. In the
purely L2-subcritical perturbation case 2 < p < 2 + 4s

N , we prove the existence of a second normalized
solution under some conditions on a, p, s, and N. This is a continuation of our previous work (Z.
Angew. Math. Phys., 73 (2022) 149) where only one solution is obtained.
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1. Introduction and main results

In this paper, we study normalized solutions of the fractional Schrödinger equation with a critical
nonlinearity of |u|2

∗
s−2u, 

(−∆)su = λu + |u|p−2u + |u|2
∗
s−2u, x ∈ RN ,∫

RN
u2dx = a2, u ∈ H s(RN),

(1.1)

where N ≥ 2, s ∈ (0, 1), a > 0, and 2 < p < 2∗s ,
2N

N−2s . The fractional Laplace operator (−∆)s is
defined by

(−∆)su = −
C(N, s)

2
P.V.

∫
RN

u(x + y) + u(x − y) − 2u(x)
|y|N+2s dy
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=
C(N, s)

2
P.V.

∫
RN

u(x) − u(y)
|x − y|N+2s dy

with a positive constant C(N, s), and we normalize the factor C(N, s)/2 = 1 for convenience. For
problem (1.1), p = 2 + 4s

N is the L2-critical exponent.
The operator (−∆)s arises in physics, chemistry, biology, and finance and can be seen as the

infinitesimal generators of the Lévy stable diffusion process (see [1]). Moreover, (−∆ + m2)
1
2 appears

in quantum mechanics, where m is the mass of the particle under consideration (see [16]). The study
of fractional Laplacian nonlinear equations has attracted much attention from many mathematicians
working in different fields. Felmer et al. [11] studied the existence, regularity, and symmetry of positive
solutions to the fractional Schrödinger equations in the whole space RN . Caffarelli et al. investigated a
fractional Laplacian with free boundary conditions (see [6, 7]). We also refer the interested readers to
the works [5, 9, 10, 19] for more details on the fractional operator and its applications.

Normalized solutions to Schrödinger equations with L2-supercritical nonlinearity were first studied
in the paper [14], where the energy functional was unbounded from below on the L2-constraint.
Recently, Soave in [21] proved several existence (or nonexistence) and stability (or instability) results
for the Schrödinger equation with combined nonlinearities as follows:

−∆u = λu + µ|u|q−2u + |u|2
∗−2u, x ∈ RN ,∫

RN
u2dx = a2, u ∈ H1(RN),

where N ≥ 3, µ > 0, λ ∈ R and 2 < q < 2∗ , 2N
N−2 . Wei and Wu in [22] extended the results in [21] in

three aspects. Firstly, they obtained the existence of a solution of mountain-pass type for N ≥ 3 and
2 < q < 2 + 4

N . Secondly, the existence and nonexistence of ground states for 2 + 4
N ≤ q < 2∗ with

µ > 0 large were obtained. Finally, they obtained the precisely asymptotic behaviors of ground states
and mountain-pass solutions as µ → 0. Luo and Zhang in [17] dealt with the existence of normalized
ground states for the fractional Schrödinger equation with combined nonlinearities as follows:

(−∆)su = λu + |u|p−2u + |u|q−2u, x ∈ RN ,∫
RN

u2dx = a2, u ∈ H s(RN).
(1.2)

Under different assumptions on q < p and a > 0, they proved the existence and nonexistence of
normalized solutions in the L2-subcritical case and L2-supercritical case, respectively. But they only
considered the Sobolev subcritical case p, q < 2∗s. Motivated by the above papers, Zhang and Han
in [25] considered problem (1.2) in the Sobolev critical case q = 2∗s, i.e., problem (1.1). They obtained
the following results:

(i) Let N ≥ 2, s ∈ (0, 1), 2 < p < 2 + 4s
N , and assume that 0 < a < min{α1, α2}. Then, m+

a ,
infu∈V(a)+ E(u) = infu∈V(a) E(u) < 0 and it can be attained by ua,+, which is nonnegative and radially
decreasing. Moreover, problem (1.1) has a ground state (ua,+, λa,+) with λa,+ < 0;

(ii) Let N ≥ 2, s ∈ (0, 1), N2 > 8s2, p = 2 + 4s
N , and assume that 0 < a < α3. Then,

m−a , infu∈V(a)− E(u) ∈ (0, s
N S

N
2s
s ) and it can be attained by ua,− which is nonnegative and radially

decreasing. Moreover, problem (1.1) has a ground state (ua,−, λa,−) with λa,− < 0;
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(iii) Let N ≥ 2, s ∈ (0, 1), N2 > 8s2, 2 + 4s
N < p < 2∗s, and assume that 0 < a < α4. Then,

m−a , infu∈V(a)− E(u) ∈ (0, s
N S

N
2s
s ) and it can be attained by ua,− which is nonnegative and radially

decreasing. Moreover, problem (1.1) has a ground state (ua,−, λa,−) with λa,− < 0.

The constants α1, α2, α3, α4 that appear in (i)–(iii) are

α1 ,

 p(2∗s − 2)
2C(s,N, p)(2∗s − pγp,s)

2∗sS
2∗s
2

s (2 − pγp,s)
2(2∗s − pγp,s)


2−pγp,s

2∗s−2


1

p(1−γp,s)

,

α2 ,

 22∗s s
Nγp,sC(s,N, p)(2∗s − pγp,s)

 γp,sS
N
2s
s

2 − pγp,s


2−pγp,s

2


1
p(1−γp,s)

,

α3 ,

(
p

2C(s,N, p)

) 1
p−2

, α4 , γ
− 1

p(1−γp,s)
p,s S

N
4s
s

where γp,s ,
N(p−2)

2ps < 1, the constants S s, C(s,N, p) are defined in (1.3), (1.5) respectively and V(a) is
defined in (1.6).

We also refer to the works [2–4, 15, 20, 24, 26] for other related equations.
In order to state our main results, we denote the best constant of the embedding Ds,2(RN) ↪→ L2∗s (RN)

by

S s = inf
u∈Ds,2(RN )\{0}

‖(−∆)
s
2 u‖22

‖u‖22∗s
, (1.3)

where Ds,2(RN) denotes the completion of the space C∞c (RN) with the norm ‖u‖Ds,2(RN ) = ‖(−∆)
s
2 u‖2.

Solutions to (1.1) can be obtained as the critical points of the associated energy functional

E(u) =
1
2

∫
RN

∫
RN

|u(x) − u(y)|2

|x − y|N+2s dxdy −
1
p
‖u(x)‖p

p −
1
2∗s
‖u(x)‖2

∗
s

2∗s
(1.4)

defined on the constraint manifold S (a) ,
{
u ∈ H s(RN) : ‖u‖22 = a2

}
, where

H s(RN) ,
{

u ∈ L2(RN) : ‖(−∆)
s
2 u‖22 =

∫
RN

∫
RN

|u(x) − u(y)|2

|x − y|N+2s dxdy < +∞

}
endowed with the natural norm

‖u‖2Hs = ‖u‖22 + ‖(−∆)
s
2 u‖22.

We recall the following fractional Gagliardo–Nirenberg–Sobolev inequality (see [12])

‖u‖p
p ≤ C(s,N, p)‖u‖(1−γp,s)p

2 ‖(−∆)
s
2 u‖γp,s p

2 , ∀u ∈ H s(RN). (1.5)

Define H s
r (RN) ,

{
u ∈ H s(RN) : u(x) = u(|x|)

}
. It is well known that H s

r (RN) is compactly embedded
into Lp(RN) for any p ∈ (2, 2∗s), and H s

r (RN) is a natural constraint (see [23]).
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Lemma 1. (Lemma 2.1 in [25]). Let (u, λ) ∈ S (a) × R be a weak solution to problem (1.1). Then u
belongs to the set

V(a) ,
{
u ∈ S (a) : P(u) , ‖(−∆)

s
2 u‖22 − γp,s‖u‖p

p − ‖u‖
2∗s
2∗s

= 0
}
. (1.6)

Moreover, V(a) can be naturally divided into the following three parts:

V(a)+ ,
{
u ∈ V(a) : 2‖(−∆)

s
2 u‖22 > pγ2

p,s‖u‖
p
p − 2∗s‖u‖

2∗s
2∗s

}
,

V(a)0 ,
{
u ∈ V(a) : 2‖(−∆)

s
2 u‖22 = pγ2

p,s‖u‖
p
p − 2∗s‖u‖

2∗s
2∗s

}
,

V(a)− ,
{
u ∈ V(a) : 2‖(−∆)

s
2 u‖22 < pγ2

p,s‖u‖
p
p − 2∗s‖u‖

2∗s
2∗s

}
.

In the L2-subcritical perturbation case 2 < p < 2+ 4s
N , since the functional (1.4) is unbounded below

on S (a) as 2∗s < 2+ 4s
N , it will be naturally expected that E(u) |S (a) has a second critical point of mountain

pass type for problem (1.1). In this paper, we give a complete positive answer to the above expectation
(see Theorem 1). Since H s

r (RN) is a natural constraint, we only need to find the critical point for the
functional E(u) defined on H s

r (RN) ∩ S (a). Define

Vr(a)− , V(a)− ∩ H s
r (RN).

Theorem 1. Let N ≥ 2, s ∈ (0, 1), 2 < p < 2 + 4s
N , and assume that 0 < a < min{α1, α2}. Then m−a,r ,

infu∈Vr(a)− E(u) ∈ (0, s
N S

N
2s
s ) and it can be attained by ua,− which is positive and radially decreasing.

Moreover, problem (1.1) has a second solution (ua,−, λa,−) with some λa,− < 0.

Remark 1. The method used in this paper can also be applied to the following Sobolev critical
fractional Schrödinger equation with a parameter µ > 0

(−∆)su = λu + µ|u|p−2u + |u|2
∗
s−2u, x ∈ RN ,∫

RN
u2dx = a2,

which was considered in [27]. We leave the details to the interested readers.

Notations. The notation C in the following context denotes some positive constant that might be
changed from line to line and even in the same line. a ∼ b means that Cb ≤ a ≤ Cb and a . b (a & b)
means that a ≤ Cb (a ≥ Cb) for some positive constant C. The notation Bz(0) denotes the ball in RN of
center at origin and radius z.

2. Proof of Theorem 1

As in [14], we use the fiber map preserving the L2-norm τ ∗ u = e
Nτ
2 u(eτx) for a.e. x ∈ RN . For

u ∈ S (a), define the auxiliary function

Ψu(τ) := E(τ ∗ u) =
1
2

e2sτ‖(−∆)
s
2 u‖22 −

epsγp,sτ

p
‖u‖p

p −
e2∗s sτ

2∗s
‖u‖2

∗
s

2∗s
, τ ∈ R.

Lemma 2. (Lemma 3.3 in [25]). Let N ≥ 2, 2 < p < 2 + 4s
N , and 0 < a < α1. For every u ∈ S (a),

the function Ψu(τ) has exactly two critical points su < tu ∈ R and two zeros cu < du ∈ R with
su < cu < tu < du. Moreover, we have the following statements:
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(i) su ∗ u ∈ V(a)+ and tu ∗ u ∈ V(a)−. If τ ∗ u ∈ S (a), then either τ = su or τ = tu.
(ii) We have

E(tu ∗ u) = max {E(τ ∗ u) : τ ∈ R} > 0

and Ψu(τ) is strictly decreasing on (tu,+∞). In particular, if tu < 0, then P(u) < 0.
(iii) The maps u ∈ V(a) 7→ su ∈ R and u ∈ V(a) 7→ tu ∈ R are of class C1.

Proof. Statements (i), (iii), and the first part of (ii) have already been shown in Lemma 3.3 in [25]. From
the proof of Lemma 3.3 in [25], we know the functions Ψu(τ) and Ψ′′u (τ) have exactly two inflection
points. In particular, Ψu(τ) is strictly decreasing and concave on [tu,+∞). Hence, if tu < 0, then
P(u) = Ψ′u(0) < 0. �

Lemma 3. Let N ≥ 2, 2 < p < 2 + 4s
N , and 0 < a < min{α1, α2}. Then, we have

m−a,r , inf
u∈Vr(a)−

E(u) > 0.

Proof. Applying (1.4), (1.5), and ‖u‖22∗s ≤ S −1
s ‖(−∆)

s
2 u‖22, we have

E(u) =
1
2
‖(−∆)

s
2 u‖22 −

1
p
‖u‖p

p −
1
2∗s
‖u‖2

∗
s

2∗s

≥
1
2
‖(−∆)

s
2 u‖22 −

1
p

Cp(s,N, p)a(1−γp,s)p‖(−∆)
s
2 u‖γp,s p

2 −
1

2∗sS
2∗s
2

s

‖(−∆)
s
2 u‖2

∗
s

2

for every u ∈ Vr(a)−. Define

h(t) ,
1
2

t2 −
Cp(s,N, p)

p
a(1−γp,s)ptpγp,s −

1

2∗sS
2∗s
2

s

t2∗s .

Since pγp,s < 2 < 2∗s, it is easy to see that h(0+) = 0− and h(+∞) = −∞. Let tmax denote the
strict maximum of the function h(t), which is at a positive level (see Lemma 3.2 in [25]). For every
u ∈ Vr(a)−, by an easy computation, there exists τu ∈ R such that ‖(−∆)

s
2 (τu ∗ u)‖2 = tmax. Moreover,

by Lemma 2, we see that the value 0 is the unique strict maximum of the function Ψu(τ). Therefore,

E(u) = Ψu(0) ≥ Ψu(τu) = E(τu ∗ u) ≥ h(‖(−∆)
s
2 (τu ∗ u)‖2) = h(tmax) > 0.

Since u ∈ Vr(a)− is arbitrarily chosen, we deduce that

m−a,r , inf
u∈Vr(a)−

E(u) ≥ h(tmax) > 0. �

Lemma 4. Let N ≥ 2, 2 < p < 2 + 4s
N , and 0 < a < min{α1, α2}. Then m+

a , infu∈V(a)+ E(u) =

infu∈V(a) E(u) < 0 and it can be attained by ua,+, which is positive and radially decreasing. Moreover,
problem (1.1) has the ground state solution (ua,+, λa,+) with λa,+ < 0.

Proof. By using a similar method used in Theorem 1.1 in [25], we obtain

m+
a , inf

u∈V(a)+
E(u) = inf

u∈V(a)
E(u) < 0

and it can be attained by ua,+, which is nonnegative and radially decreasing. Moreover, problem (1.1)
has the ground state (ua,+, λa,+) with λa,+ < 0. Finally, by the strong maximum principle for the
fractional Laplacian (see Proposition 2.17 in [19]), we have that ua,+ is positive. �
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Lemma 5. Let N ≥ 2, 2 < p < 2 + 4s
N , and 0 < a < min{α1, α2}. Then, we have

m−a,r , inf
u∈Vr(a)−

E(u) < m+
a +

s
N

S
N
2s
s .

Proof. As in [18], the function Uε(x) = ε−
N−2s

2 u∗( x
ε
) solves the equation (−∆)su = |u|2

∗
s−2u in RN , where

u∗(x) = ũ(x/S
1
2s
s )/‖ũ‖2∗s and ũ(x) = k(µ2 + |x|2)−

N−2s
2 , x ∈ RN , with k > 0 and µ > 0 are fixed constants.

Let χ(x) ∈ C∞c (RN) be a cut-off function satisfying:

(a) 0 ≤ χ(x) ≤ 1 for any x ∈ RN ,
(b) χ(x) ≡ 1 in B1(0),
(c) χ(x) ≡ 0 in RN \ B2(0).

Define Wε = χ(x)Uε(x). According to Propositions 21 and 22 in [18], we know that

‖(−∆)
s
2 Wε‖

2
2 ≤ S

N
2s
s + O(εN−2s), ‖Wε‖

2∗s
2∗s

= S
N
2s
s + O(εN), (2.1)

‖Wε‖
p
p =


CεN− N−2s

2 p + O(ε
N−2s

2 p), N > p
p−12s,

Cε
N
2 log 1

ε
+ O(ε

N
2 ), N =

p
p−12s,

Cε
N−2s

2 p + O(εN− N−2s
2 p), N < p

p−12s
(2.2)

and

‖Wε‖
2
2 =


Cε2s + O(εN−2s), N > 4s,
Cε2s log 1

ε
+ O(ε2s), N = 4s,

CεN−2s + O(ε2s), N < 4s.
(2.3)

Now, we define

Ŵε,t , ua,+ + tWε and Wε,t , ξ
N−2s

2 Ŵε,t(ξx).

Then, it is well known that

‖(−∆)
s
2 Wε,t‖

2
2 = ‖(−∆)

s
2 Ŵε,t‖

2
2, ‖Wε,t‖

2∗s
2∗s

= ‖Ŵε,t‖
2∗s
2∗s

(2.4)

and

‖Wε,t‖
2
2 = ξ−2s‖Ŵε,t‖

2
2, ‖Wε,t‖

p
p = ξ(pγp,s−p)s‖Ŵε,t‖

p
p. (2.5)

We choose ξ =
(
‖Ŵε,t‖2/a

) 1
s , then Wε,t ∈ H s

r (RN) ∩ S (a). By Lemma 2, there exists τε,t > 0 such that

(Wε,t)τε,t ∈ Vr(a)−, where (Wε,t)τε,t = τ
N
2
ε,tWε,t(τε,tx). Thus,

‖(−∆)
s
2 Wε,t‖

2
2τ

s(2−pγp,s)
ε,t = γp,s‖Wε,t‖

p
p + ‖Wε,t‖

2∗s
2∗s
τ

s(2∗s−pγp,s)
ε,t . (2.6)
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Since ua,+ ∈ V(a)+, by Lemma 2, we get τε,0 > 1. By (2.1), (2.2), and (2.6), we know that τε,t → 0 as
t → +∞ uniformly for ε > 0 sufficiently small. Since τε,t is unique by Lemma 2, it is standard to show
that τε,t is continuous for t, which implies that there exists tε > 0 such that τε,tε = 1. It follows that

m−a,r ≤ sup
t≥0

E(Wε,t). (2.7)

Recall that ua,+ ∈ H s
r (RN) ∩ S (a) and Wε are positive. By (2.4) and (2.5), we have

E(Wε,t) =
1
2
‖(−∆)

s
2 Ŵε,t‖

2
2 −

1
p
ξ(pγp,s−p)s‖Ŵε,t‖

p
p −

1
2∗s
‖Ŵε,t‖

2∗s
2∗s

=
1
2
‖(−∆)

s
2
(
ua,+ + tWε

)
‖22 −

1
p
ξ(pγp,s−p)s‖ua,+ + tWε‖

p
p −

1
2∗s
‖ua,+ + tWε‖

2∗s
2∗s
. (2.8)

By the fact that ua,+ is a solution to problem (1.1) for some λa,+ < 0 and the Pohazaev identity satisfied
by ua,+, we have

λa,+a2 = λa,+‖ua,+‖
2
2 = (γp,s − 1)‖ua,+‖

p
p. (2.9)

Then, by (2.8) and (2.9), we deduce that E(Wε,t)→ m+
a as t → 0+ and

E(Wε,t) < t2‖(−∆)
s
2 Wε‖

2
2 −

∫
RN

(−∆)
s
2 ua,+(−∆)

s
2 Wεdx +

λa,+a2

p(γp,s − 1)
−

1
2∗s

t2∗s‖Wε‖
2∗s
2∗s
→ −∞

as t → +∞ uniformly for ε > 0 sufficiently small. Hence, there exists t0 > 0 large enough such that
tε ∈ ( 1

t0
, t0) and E(Wε,t) < 0 for t < 1

t0
and t > t0. Now, we estimate E(Wε,t) for 1

t0
≤ t ≤ t0. Let ua,+ be a

positive and radially decreasing ground state solution to problem (1.1) (see Lemma 4). Then, we have∫
RN

ua,+Wεdx ∼
∫

B1(0)
Uε(x)dx ∼ ε

N+2s
2

∫ 1
ε

0

1

(C + r2)
N−2s

2

rN−1dr

∼ ε
N+2s

2

(
1
ε

)2s

∼ ε
N−2s

2 . (2.10)

From the definition of Ŵε,t, we obtain

ξ2s =
‖Ŵε,t‖

2
2

a2 = 1 +
2t
a2

∫
RN

ua,+Wεdx +
t2

a2 ‖Wε‖
2
2 (2.11)

for 1
t0
≤ t ≤ t0. Applying (2.11) and the inequality (1 + t̂)α ≥ 1 + αt̂ for t̂ ≥ 0 and α < 0, we obtain that

ξ(pγp,s−p)s = (ξ2s)
pγp,s−p

2 =

(
1 +

2t
a2

∫
RN

ua,+Wεdx +
t2

a2 ‖Wε‖
2
2

) pγp,s−p
2

≥ 1 +
pγp,s − p

2

(
2t
a2

∫
RN

ua,+Wεdx +
t2

a2 ‖Wε‖
2
2

)
. (2.12)

Applying (2.8)–(2.10) and (2.12), we have

E(Wε,t) ≤
1
2
‖(−∆)

s
2 ua,+‖

2
2 +

1
2

t2‖(−∆)
s
2 Wε‖

2
2 −

1
p
‖ua,+ + tWε‖

p
p
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+ t
∫
RN

(−∆)
s
2 ua,+(−∆)

s
2 Wεdx −

1
2∗s
‖ua,+ + tWε‖

2∗s
2∗s

−
pγp,s − p

2p

(
2t
a2

∫
RN

ua,+Wεdx +
t2

a2 ‖Wε‖
2
2

)
‖Ŵε,t‖

p
p

≤ m+
a + E(tWε) −

t(γp,s − 1)
a2

∫
RN

ua,+Wεdx‖Ŵε,t‖
p
p

+ tλa,+

∫
RN

ua,+Wεdx −
t2(γp,s − 1)

2a2 ‖Wε‖
2
2‖Ŵε,t‖

p
p

= m+
a + E(tWε) +

t2(1 − γp,s)
2a2 ‖Wε‖

2
2‖Ŵε,t‖

p
p

+
t(1 − γp,s)

a2

∫
RN

ua,+Wεdx
(
‖Ŵε,t‖

p
p − ‖ua,+‖

p
p

)
(2.13)

for 1
t0
≤ t ≤ t0. By direct calculation, we have

‖Ŵε,t‖
p
p − ‖ua,+‖

p
p = ‖ua,+ + tWε‖

p
p − ‖ua,+‖

p
p

. ‖ua,+‖
p
p + ‖tWε‖

p
p − ‖ua,+‖

p
p +

∫
RN

up−1
a,+ tWεdx. (2.14)

Similar to (2.10), we have ∫
RN

up−1
a,+ Wεdx .

∫
B2(0)

Uε(x)dx . ε
N−2s

2 . (2.15)

By (2.1)–(2.3) and (2.13)–(2.15), we have

E(Wε,t) ≤ m+
a +

t(1 − γp,s)
a2

(
O(ε

N−2s
2 ) + ‖tWε‖

p
p

)
O(ε

N−2s
2 )

+ E(tWε) +
t2(1 − γp,s)

2a2 ‖Wε‖
2
2‖ua,+ + tWε‖

p
p

≤ m+
a +

t2

2

(
S

N
2s
s + O(εN−2s)

)
−

t2∗s

2∗s

(
S

N
2s
s + O(εN)

)
− O(‖Wε‖

p
p)

+ O(εN−2s) + O(ε
N−2s

2 )O(‖Wε‖
p
p) + O(‖Wε‖

2
2) + O(‖Wε‖

2
2)O(‖Wε‖

p
p)

< m+
a +

t2

2
S

N
2s
s −

t2∗s

2∗s
S

N
2s
s ≤ m+

a +
s
N

S
N
2s
s (2.16)

for 1
t0
≤ t ≤ t0 by taking ε > 0 sufficiently small. By Lemma 3 and (2.16), we obtain

0 < m−a,r , inf
u∈Vr(a)−

E(u) ≤ E((Wε,tε)τε,tε ) = E(Wε,tε)

≤ sup
t∈(t−1

0 ,t0)
E(Wε,t) < m+

a +
s
N

S
N
2s
s . (2.17)

Moreover, by (2.17), for t < 1
t0

and t > t0, we have

E(Wε,t) < 0 < m+
a +

s
N

S
N
2s
s . (2.18)
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It follows from (2.16) and (2.18) that

sup
t≥0

E(Wε,t) < m+
a +

s
N

S
N
2s
s .

Then, the conclusion follows from (2.7). �
For 0 < c < min{α1, α2}, let u ∈ V(c)±. Then vb ,

b
c u ∈ S (b) for all b > 0. By Lemma 2, there

exists τ±(b) > 0 such that
(vb)τ±(b) = (τ±(b))

N
2 vb(τ±(b)x) ∈ V(b)±,

where 0 < b < min{α1, α2}. Clearly, τ±(c) = 1.

Lemma 6. Let N ≥ 2, 2 < p < 2 + 4s
N , and 0 < c < min{α1, α2}. Then, (τs

±(c))′ exist and

(τs
±(c))′ =

γp,s p‖u‖p
p + 2∗s‖u‖

2∗s
2∗s
− 2‖(−∆)

s
2 u‖22

c
(
2‖(−∆)

s
2 u‖22 − γ

2
p,s p‖u‖p

p − 2∗s‖u‖
2∗s
2∗s

) . (2.19)

Moreover, E((vb)τ±(b)) < E(u) for all b > c such that b < min{α1, α2}.

Proof. The proof is mainly inspired by [8, 22]. Since (vb)τ±(b) ∈ V(b)±, we have(
b
c
τs
±(b)

)2

‖(−∆)
s
2 u‖22 = γp,s

(
b
c
τ
γp,s s
± (b)

)p

‖u‖p
p +

(
b
c
τs
±(b)

)2∗s

‖u‖2
∗
s

2∗s
.

Next, we define the function

Φ(b, τs
±) =

(
b
c
τs
±

)2

‖(−∆)
s
2 u‖22 − γp,s

(
b
c
τ
γp,s s
±

)p

‖u‖p
p −

(
b
c
τs
±

)2∗s

‖u‖2
∗
s

2∗s
.

Clearly, Φ(b, τs
±(b)) = 0 for 0 < b < min{α1, α2}. Applying u ∈ V(c)± and Lemma 1, we have

∂τs
±
Φ(c, 1) = 2‖(−∆)

s
2 u‖22 − γ

2
p,s p‖u‖p

p − 2∗s‖u‖
2∗s
2∗s
, 0.

Applying the implicit function theorem, we have (τs
±(c))′ exists and (2.19) holds. By u ∈ V(c)± once

more, we deduce that

1 + c(τs
±(c))′ = 1 +

γp,s p‖u‖p
p + 2∗s‖u‖

2∗s
2∗s
− 2‖(−∆)

s
2 u‖22

2‖(−∆)
s
2 u‖22 − γ

2
p,s p‖u‖p

p − 2∗s‖u‖
2∗s
2∗s

=
pγp,s(1 − γp,s)‖u‖

p
p

2‖(−∆)
s
2 u‖22 − γ

2
p,s p‖u‖p

p − 2∗s‖u‖
2∗s
2∗s

.

Since (vb)τ±(b) ∈ V(b)± and u ∈ V(c)±, we obtain

E((vb)τ±(b)) =

(
1
2
−

1
pγp,s

)
‖(−∆)

s
2 (vb)τ±(b)‖

2
2 +

(
1

pγp,s
−

1
2∗s

)
‖(vb)τ±(b)‖

2∗s
2∗s

=

(
b
c
τs
±(b)

)2 (
1
2
−

1
pγp,s

)
‖(−∆)

s
2 u‖22 +

(
b
c
τs
±(b)

)2∗s ( 1
pγp,s

−
1
2∗s

)
‖u‖2

∗
s

2∗s
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=

(
1
2
−

1
pγp,s

)
‖(−∆)

s
2 u‖22 +

(
1

pγp,s
−

1
2∗s

)
‖u‖2

∗
s

2∗s
+ o(b − c)

+
1 + c(τs

±(c))′

c

[
2
(
1
2
−

1
pγp,s

)
‖(−∆)

s
2 u‖22 + 2∗s

(
1

pγp,s
−

1
2∗s

)
‖u‖2

∗
s

2∗s

]
(b − c)

= E(u) −
(1 − γp,s)‖u‖

p
p

c
(b − c) + o(b − c).

Thus, we obtain

dE((vb)τ±(b))
db

∣∣∣∣
b=c

= −
(1 − γp,s)‖u‖

p
p

c
< 0.

Since 0 < c < min{α1, α2} is arbitrary and (vb)τ±(b) ∈ V(b)±, we have E((vb)τ±(b)) < E(u) for all b > c
such that b < min{α1, α2}. �

Lemma 7. Let N ≥ 2, 2 < p < 2 + 4s
N , and 0 < a < min{α1, α2}. Assume that u ∈ V(a) is a critical

point for E(u) |V(a), then u is a critical point for E(u) |S (a).

Proof. By Lemma 3.1 in [25], we have that V(a) is a smooth manifold of codimension 2 in H s(RN) and
V(a)0 is empty. If u ∈ V(a) is a critical point for E(u) |V(a), then by the Lagrange multipliers rule there
exist λ, µ ∈ R such that

E′(u)ϕ − λ
∫
RN

uϕdx − µP′(u)ϕ = 0

for every ϕ ∈ H s(RN). This implies

(1 − 2µ)(−∆)su = λu + (1 − µγp,s p)|u|p−2u + (1 − µ2∗s)|u|
2∗s−2u, x ∈ RN .

We have to prove that µ = 0. By using the Pohozaev identity for the above equation, we know that

(1 − 2µ)‖(−∆)
s
2 u‖22 = γp,s(1 − γp,s pµ)‖u‖p

p + (1 − µ2∗s)‖u‖
2∗s
2∗s
. (2.20)

Applying u ∈ V(a) and (2.20), we deduce that

µ
(
2‖(−∆)

s
2 u‖22 − γ

2
p,s p‖u‖p

p − 2∗s‖u‖
2∗s
2∗s

)
= 0.

Since u < V(a)0, we have 2‖(−∆)
s
2 u‖22 − γ

2
p,s p‖u‖p

p − 2∗s‖u‖
2∗s
2∗s
, 0 . Thus, we have µ = 0. Hence, u is a

critical point for E(u) |S (a), that is, V(a) is a natural constraint. �

Lemma 8. Let N ≥ 2, 2 < p < 2 + 4s
N , and 0 < a < min{α1, α2}. Assume that m−a,r < m+

a + s
N S

N
2s
s , then

m−a,r can be attained by some ua,− ∈ H s
r (RN), which is positive and radially decreasing. Furthermore,

problem (1.1) has a second solution ua,− with some λa,− < 0.

Proof. Let {ūn} ⊂ Vr(a)− be a minimizing sequence. By Ekeland’s variational principle (see [13]), there
exists a new minimizing sequence {un} satisfying

‖ūn − un‖Hs(RN ) → 0, as n→ ∞,

E(un)→ m−a,r, as n→ ∞,

P(un)→ 0, as n→ ∞,

E′|Vr(a)−(un)→ 0, as n→ ∞.

(2.21)

AIMS Mathematics Volume 9, Issue 8, 21641–21655.
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Therefore, we obtain

E(un) −
1
2

P(un) =
1
p

( pγp,s

2
− 1

)
‖un‖

p
p +

s
N
‖un‖

2∗s
2∗s
→ m−a,r, as n→ ∞. (2.22)

From the third property in (2.21), we have

E(un) =
s
N
‖(−∆)

s
2 un‖

2
2 −

1
p

(
1 −

γp,s p
2∗s

)
‖un‖

p
p + on(1)

≥
s
N
‖(−∆)

s
2 un‖

2
2 −

1
p

Cp(s,N, p)
(
1 −

γp,s p
2∗s

)
a(1−γp,s)p‖(−∆)

s
2 un‖

γp,s p
2 + on(1)

by the Gagliardo–Nirenberg–Sobolev inequality (1.5). Then, using that E(un) ≤ m−a,r + 1 for n large,
we deduce that

s
N
‖(−∆)

s
2 un‖

2
2 ≤

1
p

Cp(s,N, p)
(
1 −

γp,s p
2∗s

)
a(1−γp,s)p‖(−∆)

s
2 un‖

γp,s p
2 + m−a,r + 1.

This implies that {un} is bounded in H s
r (RN). Therefore, un ⇀ u0 in H s

r (RN) up to a subsequence. By the
Sobolev compact embedding theorem H s

r (RN) ↪→ Lp(RN) for 2 < p < 2∗s, we have un → u0 strongly in
Lp(RN) as n → ∞ up to a subsequence. Without loss of generality, we assume that un ⇀ u0 weakly in
H s

r (RN) and un → u0 strongly in Lp(RN) as n→ ∞. We claim that u0 , 0. Otherwise, un → 0 strongly
in Lp(RN). By P(un)→ 0 as n→ ∞, it follows that

‖(−∆)
s
2 un‖

2
2 = ‖un‖

2∗s
2∗s

+ on(1). (2.23)

Applying (2.23) and the embedding Ds,2(RN) ↪→ L2∗s (RN), we obtain either un → 0 strongly in Ds,2(RN)
as n→ ∞ or

‖(−∆)
s
2 un‖

2
2 = ‖un‖

2∗s
2∗s

+ on(1)

≥ S
N
2s
s + on(1).

According to (2.22), either m−a,r = 0 or m−a,r ≥
s
N S

N
2s
s , which contradicts Lemmas 3 and 5. Therefore, we

obtain u0 , 0. Let vn , un − u0. Then, there are the following two cases:

(i) vn → 0 strongly in H s
r (RN) as n→ ∞;

(ii) ‖(−∆)
s
2 vn‖

2
2 + ‖vn‖

2
2 & 1.

In the case (i), u0 ∈ Vr(a)− and m−a,r is attained by u0, which is nonnegative and radially decreasing. By
Lemma 7, u0 is a solution to problem (1.1) with λ0 ∈ R, which appears as a Lagrange multiplier. By
multiplying equation (1.1) with u0 and integrating by parts, it follows from u0 ∈ Vr(a)− that

λ0a2 = (γp,s − 1)‖u0‖
p
p < 0.

Hence, λ0 < 0. By using the strong maximum principle for the fractional Laplacian, we can see that
u0 is positive. It remains to consider the case (ii). Let ‖u0‖

2
2 = t2

0. Then, by Fatou’s lemma, we get
0 < t0 ≤ a. Next, we have the following two subcases:

AIMS Mathematics Volume 9, Issue 8, 21641–21655.



21652

(a) ‖vn‖2∗s → 0 as n→ ∞ up to a subsequence;
(b) ‖vn‖

2∗s
2∗s
& 1.

In the subcase (a), by Lemma 2, there exists s0 > 0 such that (u0)s0 ∈ Vr(t0)−. Using Lemma 2 again,
(2.21) and un → u0 strongly in Lp(RN) ∩ L2∗s (RN) as n→ ∞ up to a subsequence, we deduce that

m−a,r + on(1) = E(un) ≥ E((un)s0) = E((u0)s0) + on(1).

By Lemma 6, we have m−t0,r ≥ m−a,r. Therefore, E((u0)s0) = m−t0,r and m−t0,r = m−a,r. If t0 < a, we take (u0)s0

as the test function in the proof of Lemma 6, and we deduce that m−t0,r > m−a,r, which is a contradiction.
Thus, in the case of (a), we have t0 = a, and m−a,r is attained by (u0)s0 , which is nonnegative and radially
decreasing. As above, we can see that (u0)s0 is positive and (u0)s0 is a solution to problem (1.1) with
λ′0 < 0. Now, it remains to consider the case (b). Let

sn ,

‖(−∆)
s
2 vn‖

2
2

‖vn‖
2∗s
2∗s


1

(2∗s−2)s

.

Clearly, in the case (b), sn . 1, and by the embedding Ds,2(RN) ↪→ L2∗s (RN), we deduce that

‖(−∆)
s
2 (vn)sn‖

2
2 = ‖(vn)sn‖

2∗s
2∗s

≥ S
N
2s
s .

Since 0 < t0 ≤ a, by Lemma 2, there exists τ0 > 0 such that (u0)τ0 ∈ Vr(t0)−. We claim that sn ≥ τ0 up
to a subsequence. If not, suppose the contrary: sn < τ0 for all n. Define an auxiliary functional

E0(u) ,
1
2
‖(−∆)

s
2 u‖22 −

1
2∗s
‖u‖2

∗
s

2∗s
.

Applying Lemma 2 once more, the Brezis–Lieb lemma (see Lemma 1.32 in [23]), Lemma 6, un → u0

strongly in Lp(RN) as n→ ∞, and the boundedness of {sn}, it follows that

m−a,r + on(1) = E(un) ≥ E((un)sn)
= E((u0)sn) + E0((vn)sn) + on(1)

≥ m+
t0 +

s
N

S
N
2s
s + on(1)

≥ m+
a +

s
N

S
N
2s
s + on(1),

which is impossible. Therefore, we have sn ≥ τ0 up to a subsequence. Without loss of generality, we
assume that sn ≥ τ0 for all n ∈ N. Again, by Lemma 2, the Brezis–Lieb lemma (see Lemma 1.32
in [23]), and the fact that un → u0 strongly in Lp(RN) as n→ ∞, we obtain

m−a,r + on(1) = E(un) ≥ E((un)τ0)
= E((u0)τ0) + E0((vn)τ0) + on(1).

According to sn ≥ τ0, by the proof of Theorem 1.4 in [27] (see Section 8 in [27]), we have

E0((vn)τ0) ≥ 0.
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By Lemma 6, we have t0 = a, and m−a,r is attained by (u0)τ0 , which is nonnegative and radially
decreasing. By the above analysis, we prove that (u0)τ0 is positive and (u0)τ0 is a solution for problem
(1.1) with some λ′′0 < 0. Thus, we have proved that m−a,r can always be attained by ua,−, which is
positive and radially decreasing. Hence, problem (1.1) has a second solution (ua,−, λa,−) with some
λa,− < 0. �

We are ready to give the proof of Theorem 1.
Proof of Theorem 1. By Lemmas 3 and 5, we have m−a,r < m+

a + s
N S

N
2s
s . Then, Theorem 1 follows from

Lemma 8. �
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23. M. Willem, Minimax theorems, Boston: Birkhäuser, 1996. https://doi.org/10.1007/978-1-4612-
4146-1

24. P. H. Zhang, Z. Q. Han, Normalized ground states for Kirchhoff equations in R3 with a critical
nonlinearity, J. Math. Phys., 63 (2022), 021505. https://doi.org/10.1063/5.0067520

AIMS Mathematics Volume 9, Issue 8, 21641–21655.

https://dx.doi.org/https://doi.org/10.1007/s00205-012-0513-8
https://dx.doi.org/https://doi.org/10.4171/RLM/587
https://dx.doi.org/https://doi.org/10.1016/j.bulsci.2011.12.004
https://dx.doi.org/https://doi.org/10.1017/S0308210511000746
https://dx.doi.org/https://doi.org/10.1002/cpa.21591
https://dx.doi.org/https://doi.org/10.1017/cbo9780511551703
https://dx.doi.org/https://doi.org/10.1016/S0362-546X(96)00021-1
https://dx.doi.org/https://doi.org/10.1007/s00208-021-02228-0
https://dx.doi.org/https://doi.org/10.1090/gsm/014
https://dx.doi.org/https://doi.org/10.1007/s00526-020-01814-5
https://dx.doi.org/https://doi.org/10.1090/S0002-9947-2014-05884-4
https://dx.doi.org/https://doi.org/10.1002/cpa.20153
https://dx.doi.org/https://doi.org/10.1016/j.jde.2020.05.016
https://dx.doi.org/https://doi.org/10.1016/j.jfa.2020.108610
https://dx.doi.org/https://doi.org/10.1016/j.jfa.2022.109574
https://dx.doi.org/https://doi.org/10.1007/978-1-4612-4146-1
https://dx.doi.org/https://doi.org/10.1007/978-1-4612-4146-1
https://dx.doi.org/https://doi.org/10.1063/5.0067520


21655

25. P. H. Zhang, Z. Q. Han, Normalized solutions to a kind of fractional Schrödinger equation with a
critical nonlinearity, Z. Angew. Math. Phys., 73 (2022), 149. https://doi.org/10.1007/s00033-022-
01792-y

26. P. H. Zhang, Z. Q. Han, Normalized ground states for Schrödinger system with a coupled critical
nonlinearity, Appl. Math. Lett., 150 (2024), 108947. https://doi.org/10.1016/j.aml.2023.108947

27. M. D. Zhen, B. L. Zhang, Normalized ground states for the critical fractional NLS equation with a
perturbation, Rev. Mat. Complut., 35 (2022), 89–132. https://doi.org/10.1007/s13163-021-00388-
w

c© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 8, 21641–21655.

https://dx.doi.org/https://doi.org/10.1007/s00033-022-01792-y
https://dx.doi.org/https://doi.org/10.1007/s00033-022-01792-y
https://dx.doi.org/https://doi.org/10.1016/j.aml.2023.108947
https://dx.doi.org/https://doi.org/10.1007/s13163-021-00388-w
https://dx.doi.org/https://doi.org/10.1007/s13163-021-00388-w
https://creativecommons.org/licenses/by/4.0

	Introduction and main results
	Proof of Theorem 1

