Research article

Fractional calculus in beam deflection: Analyzing nonlinear systems with Caputo and conformable derivatives

  • Received: 07 June 2024 Revised: 24 June 2024 Accepted: 01 July 2024 Published: 05 July 2024
  • MSC : 30C45, 39B72, 39B82

  • In this paper, our study is divided into two parts. The first part involves analyzing a coupled system of beam deflection type that involves nonlinear equations with sequential Caputo derivatives. The also system incorporates the Caputo derivatives in the initial conditions, which adds a layer of complexity and realism to the problem. We focus on proving the existence of a unique solution for this system, and highlighting the robustness and applicability of fractional derivatives in modeling complex physical phenomena. In the second part of the paper, we employ conformable fractional derivatives, as defined by Khalil, to examine another system consisting of two coupled evolution equations. By the Tanh method, we derive new progressive waves. The connection between these two parts lies in the use of fractional calculus to extend and enhance classical problems.

    Citation: Abdelkader Lamamri, Iqbal Jebril, Zoubir Dahmani, Ahmed Anber, Mahdi Rakah, Shawkat Alkhazaleh. Fractional calculus in beam deflection: Analyzing nonlinear systems with Caputo and conformable derivatives[J]. AIMS Mathematics, 2024, 9(8): 21609-21627. doi: 10.3934/math.20241050

    Related Papers:

  • In this paper, our study is divided into two parts. The first part involves analyzing a coupled system of beam deflection type that involves nonlinear equations with sequential Caputo derivatives. The also system incorporates the Caputo derivatives in the initial conditions, which adds a layer of complexity and realism to the problem. We focus on proving the existence of a unique solution for this system, and highlighting the robustness and applicability of fractional derivatives in modeling complex physical phenomena. In the second part of the paper, we employ conformable fractional derivatives, as defined by Khalil, to examine another system consisting of two coupled evolution equations. By the Tanh method, we derive new progressive waves. The connection between these two parts lies in the use of fractional calculus to extend and enhance classical problems.



    加载中


    [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [2] A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl., 116 (1986), 415–426. https://doi.org/10.1016/S0022-247X(86)80006-3 doi: 10.1016/S0022-247X(86)80006-3
    [3] R. Agarwal, On fourth-order boundary value problems arising in beam analysis, Differ. Integr. Equ., 2 (1989), 91–110.
    [4] B. Ahmad, S. K. Ntouyas, Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Appl. Math. Comput., 266 (2015), 615–622. https://doi.org/10.1016/j.amc.2015.05.116 doi: 10.1016/j.amc.2015.05.116
    [5] A. Alsaedi, M. Alnahdi, B. Ahmad, S. K. Ntouyas, On a nonlinear coupled Caputo-type fractional differential system with coupled closed boundary conditions, AIMS Math., 8 (2023), 17981–17995. https://doi.org/10.3934/math.2023914 doi: 10.3934/math.2023914
    [6] E. Alvarez, H. Cabrales, T. Castro, Optimal control theory for a system of partial differential equations associated with stratified fluids, Mathematics, 9 (2021), 1–23. https://doi.org/10.3390/math9212672 doi: 10.3390/math9212672
    [7] A. Anber, Z. Dahmani, The SGEM method for solving some time and Space-Conformable fractional evolution problems, Int. J. Open Prob. Comput. Math., 16 (2023), 33–44.
    [8] A. Anber, I. Jebril, Z. Dahmani, N. Bedjaoui, A. Lamamri, The Tanh method and the (G'/G)-expansion method for solving the space-time conformable FZK and FZZ evolution equations, Int. J. Innov. Comput. Inf. Contr., 20 (2024), 557–573. https://doi.org/10.24507/ijicic.20.02.557 doi: 10.24507/ijicic.20.02.557
    [9] I. M. Batiha, S. Alshorm, I. H. Jebril, M. A. Hammad, A brief review about fractional calculus, J. Open Prob. Comput. Math., 15 (2022), 39–56.
    [10] I. M. Batiha, S. A. Njadat, R. M. Batyha, A. Zraiqat, A. Dababneh, S. Momani, Design fractional-order PID controllers for Single-Joint robot arm model, Int. J. Adv. Soft Comput. Appl., 14 (2022), 96–114. https://doi.org/10.15849/IJASCA.220720.07 doi: 10.15849/IJASCA.220720.07
    [11] K. Bensaassa, R. Wael Ibrahim, Z. Dahmani, Existence, uniqueness and numerical simulation for solutions of a class of fractional differential problems, Submitted, 2023.
    [12] K. Bensaassa, Z. Dahmani, M. Rakah, M. Z. Sarikaya, Beam deflection coupled systems of fractional differential equations: Existence of solutions, Ulam-Hyers stability and travelling waves, Anal. Math. Phys., 14 (2024). https://doi.org/10.1007/s13324-024-00890-6
    [13] A. Carpinteri, F. Mainardi, Fractional calculus in continuum mechanics, 2 Eds., New York: Academic Press, 1997. https://doi.org/10.1007/978-3-7091-2664-6
    [14] Z. Dahmani, A. Anber, Y. Gouari, M. Kaid, I. Jebril, Extension of a method for solving nonlinear evolution equations via conformable fractional approach, Int. Conf. Infor. Tech., 2021, 38–42. http://doi.org/10.1109/ICIT52682.2021.9491735
    [15] Z. Dahmani, A. Anber, I. Jebril, Solving conformable evolution equations by an extended numerical method, Jordan J. Math. Stat., 15 (2022), 363–380. https://doi.org/10.47013/15.2.14 doi: 10.47013/15.2.14
    [16] M. A. Del Pino, R. F. Manasevich, Existence for a fourth-order boundary value problem under a two-parameter nonresonance condition, Proc. American Math. Soc., 112 (1991), 81–86. https://doi.org/10.2307/2048482 doi: 10.2307/2048482
    [17] B. M. Dia, M. S. Goudiaby, O. Dorn, Boundary feedback stabilization of Two-Dimensional shallow water equations with viscosity term, Mathematics, 10 (2022), 4036,132–143. https://doi.org/10.3390/math10214036 doi: 10.3390/math10214036
    [18] Y. Gouari, Z. Dahmani, I. Jebril, Application of fractional calculus on a new differential problem of duffing type, Adv. Math. Sci. J., 9 (2020), 10989–11002. https://doi.org/10.37418/amsj.9.12.82 doi: 10.37418/amsj.9.12.82
    [19] Y. Gouari, Z. Dahmani, S. E. Farooq, F. Ahmad, Fractional singular differential systems of Lane-Emden type: Existence and uniqueness of solutions, Axioms, 9 (2020), 95. https://doi.org/10.3390/axioms9030095 doi: 10.3390/axioms9030095
    [20] Y. Gouari, Z. Dahmani, Stability of solutions for two classes of fractional differential equations of Lane-Emden type, J. Int. Math., 24 (2021), 2087–2099. http://doi.org/10.1080/09720502.2020.1856343 doi: 10.1080/09720502.2020.1856343
    [21] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [22] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier B.V., 2006.
    [23] P. Li, Y. Lu, C. Xu, J. Ren, Dynamic exploration and control of bifurcation in a fractional-order Lengyel-Epstein model owing time delay, MATCH Commun. Math. Comput. Chem., 92 (2024), 437–482.
    [24] P. Li, C. Xu, M. Farman, A. Akgül, Y. Pang, Qualitative and stability analysis with lyapunov function of emotion panic spreading model insight of fractional operator, Fractals, 32 (2024), 2440011. http://doi.org/10.1142/S0218348X24400115 doi: 10.1142/S0218348X24400115
    [25] W. Malfliet, W. Hereman, The Tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys. Scripta, 54 (1996), 563–568. http://doi.org/10.1088/0031-8949/54/6/003 doi: 10.1088/0031-8949/54/6/003
    [26] M. Marin, A. Öchsner, M. M. Bhatti, Some results in Moore-Gibson-Thompson thermoelasticity of dipolar bodies, ZAMM J. Appl. Math. Mech., 100 (2020), e202000090. https://doi.org/10.1002/zamm.202000090 doi: 10.1002/zamm.202000090
    [27] M. Marin, A. Hobiny, I. Abbas, Finite element analysis of nonlinear bioheat model in skin tissue due to external thermal sources, Mathematics, 9 (2021), 1459. https://doi.org/10.3390/math9131459 doi: 10.3390/math9131459
    [28] M. Rakah, Z. Dahmani, A. Senouci, New uniqueness results for fractional differential equations with a Caputo and khalil derivatives, Appl. Math. Inf. Sci., 16 (2022), 943–952. http://dx.doi.org/10.18576/amis/160611 doi: 10.18576/amis/160611
    [29] M. Rakah, Y. Gouari, R. Ibrahim, Z. Dahmani, H. Kahtan, Unique solutions, stability and travelling waves for some generalized fractional differential problems, Appl. Math. Sci. Engineer., 23 (2023). https://doi.org/10.1080/27690911.2023.2232092
    [30] U. Sadiya, M. Inc, M. A. Arefin, M. H. Uddin, Consistent travelling waves solutions to the non-linear time fractional Klein-Gordon and Sine-Gordon equations through extended tanh-function approach, J. Taibah Univ. Sci., 16 (2022), 594–607. https://doi.org/10.1080/16583655.2022.2089396 doi: 10.1080/16583655.2022.2089396
    [31] A. Tudorache, R. Luca, On a system of sequential Caputo fractional differential equations with nonlocal boundary conditions, Frac. Fract., 7 (2023), 1–23. https://doi.org/10.3390/fractalfract7020181 doi: 10.3390/fractalfract7020181
    [32] Q. Wang, L. Yang, Positive solution for a nonlinear system of fourth-order ordinary differential equations, Electr. J. Differ. Equat., 2020 (2020), 1–15.
    [33] A. M. Wazwaz, The Tanh method for compact and non compact solutions for variants of the KdV-Burger and the K(n, n)-Burger equations, Phys. Nonlinear Phen., 213 (2006), 147–151. https://doi.org/10.1016/j.physd.2005.09.018 doi: 10.1016/j.physd.2005.09.018
    [34] M. Xia, X. Zhang, D. Kang, C. Liu, Existence and concentration of nontrivial solutions for an elastic beam equation with local nonlinearity, AIMS Math., 7 (2021), 579–605. https://doi.org/10.3934/math.2022037 doi: 10.3934/math.2022037
    [35] Y. Yang, Q. Qi, J. Hu, J. Dai, C. Yang, Adaptive Fault-Tolerant control for consensus of nonlinear fractional order Multi-Agent systems with diffusion, Frac. Fract., 7 (2023), 760. https://doi.org/10.3390/fractalfract7100760 doi: 10.3390/fractalfract7100760
    [36] M. Younis, Soliton solutions of fractional order KdV-Burger's equation, J. Adv. Phys., 3 (2014), 325–328.
    [37] J. L. Zhou, Y. B. He, S. Q. Zhang, H. Y. Deng, X. Y. Lin, Existence and stability results for nonlinear fractional integrodifferential coupled systems, Boundary Value Pro., 10 (2023), 1–14. https://doi.org/10.1186/s13661-023-01698-2 doi: 10.1186/s13661-023-01698-2
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(712) PDF downloads(216) Cited by(2)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog