Research article

An application of Pascal distribution involving Kamali type related to leaf like domain

  • Received: 08 February 2023 Revised: 25 March 2023 Accepted: 29 March 2023 Published: 10 May 2023
  • MSC : 52A41, 32W50

  • This paper aims to study the Geometric properties of analytic function in the open unit disk. In the present investigation, we obtain some geometric properties of Pascal distribution involving Kamali type related to leaf like domain. In this paper, we find coefficient inequality, Radii Properties, convolution product, partial sum of the class $ \Sigma(\delta, \Phi, \beta, s, t, m) $. Furthermore, we examine the distortion bounds belonging to the same class.

    Citation: K. Saritha, K. Thilagavathi. An application of Pascal distribution involving Kamali type related to leaf like domain[J]. AIMS Mathematics, 2023, 8(7): 16511-16527. doi: 10.3934/math.2023844

    Related Papers:

  • This paper aims to study the Geometric properties of analytic function in the open unit disk. In the present investigation, we obtain some geometric properties of Pascal distribution involving Kamali type related to leaf like domain. In this paper, we find coefficient inequality, Radii Properties, convolution product, partial sum of the class $ \Sigma(\delta, \Phi, \beta, s, t, m) $. Furthermore, we examine the distortion bounds belonging to the same class.



    加载中


    [1] R. M Ali, N. E Cho, V. Ravichandran, S. S. Kumar, Differential subordination foe functions associated with the lemniscate of Bernoulli, Taiwan. J. Math., 16 (2012), 469–474. https://doi.org/10.11650/twjm/1500406676 doi: 10.11650/twjm/1500406676
    [2] W. G. Atshan, Subclass of meromorphic functions with positive coefficients defined by Ruscheweyh derivativ Ⅱ, Surv. Math. Appl., 3 (2008), 67–77.
    [3] W. G. Atshan, S. R. Kulkarni, Neighborhoods and partial sums of subclass of k-uniformly convex functions and related class of k-starlike functions with negative o-efficient based on integral operator, SE Asian Bull. Math., 33 (2009), 623–637.
    [4] B. A. Frasin, Generalization of partial sums of certain analytic and univalent functions, Appl. Math. Lett., 21 (2008), 735–741. https://doi.org/10.1016/j.aml.2007.08.002 doi: 10.1016/j.aml.2007.08.002
    [5] B. A. Frasin, Partial sums of certain analytic and univalent functions, Acta Math. Acad., 21 (2005), 135–145.
    [6] Y. Gao, H. Liu, X. Wang, K. Zhang, On an artificial neural network for inverse scattering problems, J. Comput. Phys., 448 (2022), 110771. https://doi.org/10.1016/j.jcp.2021.110771 doi: 10.1016/j.jcp.2021.110771
    [7] A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8 (1957), 598–601.
    [8] R. W. Ibrahim, M. Darus, Partial sums for certain classes of meromorphic functions, Tamkang J. Math., 41 (2010), 39–49.
    [9] W. Janowski, External problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23 (1970), 159–177.
    [10] S. S. Miller, P. T. Mocanu, Differential subordinations: theory and applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, New York: Marcel Dekker, 2000.
    [11] M. Kamali, S. Akbulut, On a subclass of certain convex functions with negative coefficients, Appl. Math. Comput., 145 (2003), 341–350. https://doi.org/10.1016/S0096-3003(02)00491-5 doi: 10.1016/S0096-3003(02)00491-5
    [12] E. Paprocki, J. Sokół, The extremal problems in some subclass of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 20 (1996), 89–94.
    [13] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81 (1981), 521–527.
    [14] T. Sheil-Smal, A note on the partial sums of convex schlicht function, Bull. Lond. Math. Soc., 2 (1970), 165168. https://doi.org/10.1112/blms/2.2.165 doi: 10.1112/blms/2.2.165
    [15] S. M. El-Deep, T. Bulboaca, J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J., 59 (2019), 301–314.
    [16] H. Silverman, Partial sums of starlike and convex function, J. Math. Anal. Appl., 209 (1997), 221–227. https://doi.org/10.1006/jmaa.1997.5361 doi: 10.1006/jmaa.1997.5361
    [17] J. Sokół, On sufficient condition for starlikeness of certain integral of analytic functions defined by subordination, J. Math. Appl., 28 (2006), 127–130.
    [18] J. Sokół, On some subclass of strongly starlike functions, Demonstr. Math., 31 (1998), 81–86. https://doi.org/10.1515/dema-1998-0111 doi: 10.1515/dema-1998-0111
    [19] W. G. Atshan, A. H. Majeed, K. A. Jassim, Some geometric properties of a certain subclass of univalent functions defined by differential subordination property, Gen. Math. Notes, 20 (2014), 79–94.
    [20] W. Yin, W. Yang, H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless for field data, J. Comput. Phys., 417 (2020), 109594. https://doi.org/10.1016/j.jcp.2020.109594 doi: 10.1016/j.jcp.2020.109594
    [21] Y. Yin, W. Yin, P. Meng, H. Liu, The interior inverse scattering problem for a two layeral cavity using the Bayesian method, Inverse Probl. Imag., 16 (2022), 673–690. http://dx.doi.org/10.3934/ipi.2021069 doi: 10.3934/ipi.2021069
    [22] P. Zhang, P. Meng, W. Yin, H. Liu, A neural networks method for time dependent inverse source problem with limited-aperture data, J. Comput. Appl. Math., 421 (2023), 114842. https://doi.org/10.1016/j.cam.2022.114842 doi: 10.1016/j.cam.2022.114842
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1041) PDF downloads(42) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog