Research article

Identifications of the coefficients of the Taylor expansion (second order) of periodic non-collision solutions for the perturbed planar Keplerian Hamiltonian system

  • Received: 14 February 2023 Revised: 15 March 2023 Accepted: 16 April 2023 Published: 10 May 2023
  • MSC : 65M06, 65M12, 65M22, 35Q05, 35L80, 35C65

  • Citation: Riadh Chteoui. 2023: Identifications of the coefficients of the Taylor expansion (second order) of periodic non-collision solutions for the perturbed planar Keplerian Hamiltonian system, AIMS Mathematics, 8(7): 16528-16541. doi: 10.3934/math.2023845

    Related Papers:

    [1] Riadh Chteoui . Retraction notice to "Identifications of the coefficients of the Taylor expansion (second order) of periodic non-collision solutions for the perturbed planar Keplerian Hamiltonian system " [AIMS Mathematics 8(7) (2023) 16528–16541]. AIMS Mathematics, 2023, 8(10): 22730-22730. doi: 10.3934/math.20231157
    [2] Huiting He, Chungen Liu, Jiabin Zuo . Periodic solutions of a class of non-autonomous second-order discrete Hamiltonian systems. AIMS Mathematics, 2024, 9(2): 3303-3319. doi: 10.3934/math.2024161
    [3] Jia Li, Xia Li, Chunpeng Zhu . Reducibility for a class of almost periodic Hamiltonian systems which are degenerate. AIMS Mathematics, 2023, 8(1): 2296-2307. doi: 10.3934/math.2023119
    [4] Muhammad Afzal, Tariq Ismaeel, Azhar Iqbal Kashif Butt, Zahid Farooq, Riaz Ahmad, Ilyas Khan . On the reducibility of a class of almost-periodic linear Hamiltonian systems and its application in Schrödinger equation. AIMS Mathematics, 2023, 8(3): 7471-7489. doi: 10.3934/math.2023375
    [5] Zhongdi Cen, Jian Huang, Aimin Xu . A posteriori mesh method for a system of singularly perturbed initial value problems. AIMS Mathematics, 2022, 7(9): 16719-16732. doi: 10.3934/math.2022917
    [6] Hui Wang, Xue Wang . Bifurcations of traveling wave solutions for the mixed Korteweg-de Vries equation. AIMS Mathematics, 2024, 9(1): 1652-1663. doi: 10.3934/math.2024081
    [7] Zongning Zhang, Chunguang Li, Jianqiang Dong . A class of lattice Boltzmann models for the Burgers equation with variable coefficient in space and time. AIMS Mathematics, 2022, 7(3): 4502-4516. doi: 10.3934/math.2022251
    [8] Aidi Yao . Two-dimensional pseudo-steady supersonic flow around a sharp corner for the generalized Chaplygin gas. AIMS Mathematics, 2022, 7(7): 11732-11758. doi: 10.3934/math.2022654
    [9] Yameng Duan, Wieslaw Krawcewicz, Huafeng Xiao . Periodic solutions in reversible systems in second order systems with distributed delays. AIMS Mathematics, 2024, 9(4): 8461-8475. doi: 10.3934/math.2024411
    [10] Dan Chen, Da Shi, Feng Chen . Qualitative analysis and new traveling wave solutions for the stochastic Biswas-Milovic equation. AIMS Mathematics, 2025, 10(2): 4092-4119. doi: 10.3934/math.2025190




  • This article has been cited by:

    1. Riadh Chteoui, Retraction notice to "Identifications of the coefficients of the Taylor expansion (second order) of periodic non-collision solutions for the perturbed planar Keplerian Hamiltonian system " [AIMS Mathematics 8(7) (2023) 16528–16541], 2023, 8, 2473-6988, 22730, 10.3934/math.20231157
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1320) PDF downloads(58) Cited by(1)

Article outline

Figures and Tables

Figures(14)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog