We present some existence and localization results for periodic solutions of first-order coupled nonlinear systems of two equations, without requiring periodicity for the nonlinearities. The arguments are based on Schauder's fixed point theorem together with not necessarily well-ordered upper and lower solutions. A real-case scenario shows the applicability of our results to some population dynamics models, describing the interaction between a criminal and a non-criminal population with a law enforcement component.
Citation: Feliz Minhós, Sara Perestrelo. First-order periodic coupled systems with orderless lower and upper solutions[J]. AIMS Mathematics, 2023, 8(7): 16542-16555. doi: 10.3934/math.2023846
We present some existence and localization results for periodic solutions of first-order coupled nonlinear systems of two equations, without requiring periodicity for the nonlinearities. The arguments are based on Schauder's fixed point theorem together with not necessarily well-ordered upper and lower solutions. A real-case scenario shows the applicability of our results to some population dynamics models, describing the interaction between a criminal and a non-criminal population with a law enforcement component.
[1] | S. Cenci, S. Saavedra, Structural stability of nonlinear population dynamics, Phys. Rev. E, 97 (2018), 012401. https://doi.org/10.1103/PhysRevE.97.012401 doi: 10.1103/PhysRevE.97.012401 |
[2] | P. Ashwin, S. Coombes, R. Nicks Mathematical frameworks for oscillatory network dynamics in neuroscience, J. Math. Neurosc., 6 (2016), 2. https://doi.org/10.1186/s13408-015-0033-6 doi: 10.1186/s13408-015-0033-6 |
[3] | S. Audoly, G. Bellu, L. D' Angio, M. P. Saccomani, C. Cobelli, Global identifiability of nonlinear models of biological systems, IEEE T. Biomed. Eng., 48 (2001), 55–65. https://doi.org/10.1109/10.900248 doi: 10.1109/10.900248 |
[4] | F. E. Udwadia, N. Raju, Dynamics of coupled nonlinear maps and its application to ecological modeling, Appl. Math. Comput., 82 (1997), 137–179. https://doi.org/10.1016/S0096-3003(96)00027-6 doi: 10.1016/S0096-3003(96)00027-6 |
[5] | M. Itoh, Synthesis of electronic circuits for simulating nonlinear dynamics, Int. J. Bifurcat. Chaos, 11 (2001), 605–653. https://doi.org/10.1142/S0218127401002341 doi: 10.1142/S0218127401002341 |
[6] | J. Fejoz, Introduction to KAM theory, with a view to celestial mechanics, 2017. https://doi.org/10.1515/9783110430394-013 |
[7] | A. Cabada, J. A. Cid, On a class of singular Sturm-Liouville periodic boundary value problems, Nonlinear Anal. Real, 12 (2011), 2378–2384. https://doi.org/10.1016/j.nonrwa.2011.02.010 doi: 10.1016/j.nonrwa.2011.02.010 |
[8] | H. M. Oliveira, S. Perestrelo, Stability of coupled Huygens oscillators, J. Differ. Equ. Appl., 28 (2022), 1362–1380. https://doi.org/10.1080/10236198.2022.2147001 doi: 10.1080/10236198.2022.2147001 |
[9] | Oeuvres complètes de Christiaan Huygens. Publiées par la Société hollandaise des sciences, Works Science, 2003, Available from: https://www.biodiversitylibrary.org/item/61160 |
[10] | J. Li, C. Du, Existence of positive periodic solutions for a generalized Nicholson's blowflies model, J. Comput. Appl. Math., 221 (2008), 226–233. https://doi.org/10.1016/j.cam.2007.10.049 doi: 10.1016/j.cam.2007.10.049 |
[11] | M. Adimy, P. Amster, J. Epstein, Periodic solutions for a nonautonomous mathematical model of hematopoietic stem cell dynamics, Nonlinear Anal., 211 (2021), 112397. https://doi.org/10.1016/j.na.2021.112397 doi: 10.1016/j.na.2021.112397 |
[12] | J. Fialho, F. Minhós, First order coupled systems with functional and periodic boundary conditions: Existence results and application to an SIRS model, Axioms, 8 (2019), 23. https://doi.org/10.3390/axioms8010023 doi: 10.3390/axioms8010023 |
[13] | F. Minhós, J. Fialho, R. de Sousa, Periodic n dimensional first order coupled systems and periodic schizophrenia phenomena, J. Math. Anal. Appl., 492 (2020), 124482. http://dx.doi.org/10.1016/j.jmaa.2020.124482 doi: 10.1016/j.jmaa.2020.124482 |
[14] | E. Zeidler, P. R. Wadsack, Nonlinear functional analysis and its applications: Fixed-point theorems, Springer-Verlag, 1993. |
[15] | S. Abbas, J. P. Tripathi, A. A. Neha, Dynamical analysis of a model of social behavior: Criminal vs non-criminal population, Chaos Soliton. Fract., 98 (2017), 121–129. https://doi.org/10.1016/j.chaos.2017.03.027 doi: 10.1016/j.chaos.2017.03.027 |